Properties

Label 48.2.c.a
Level 48
Weight 2
Character orbit 48.c
Analytic conductor 0.383
Analytic rank 0
Dimension 2
CM discriminant -3
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 48.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.383281929702\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - 2 \zeta_{6} ) q^{3} + ( -2 + 4 \zeta_{6} ) q^{7} -3 q^{9} +O(q^{10})\) \( q + ( 1 - 2 \zeta_{6} ) q^{3} + ( -2 + 4 \zeta_{6} ) q^{7} -3 q^{9} -2 q^{13} + ( 2 - 4 \zeta_{6} ) q^{19} + 6 q^{21} + 5 q^{25} + ( -3 + 6 \zeta_{6} ) q^{27} + ( 6 - 12 \zeta_{6} ) q^{31} -10 q^{37} + ( -2 + 4 \zeta_{6} ) q^{39} + ( -6 + 12 \zeta_{6} ) q^{43} -5 q^{49} -6 q^{57} + 14 q^{61} + ( 6 - 12 \zeta_{6} ) q^{63} + ( 2 - 4 \zeta_{6} ) q^{67} + 10 q^{73} + ( 5 - 10 \zeta_{6} ) q^{75} + ( -10 + 20 \zeta_{6} ) q^{79} + 9 q^{81} + ( 4 - 8 \zeta_{6} ) q^{91} -18 q^{93} -14 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 6q^{9} + O(q^{10}) \) \( 2q - 6q^{9} - 4q^{13} + 12q^{21} + 10q^{25} - 20q^{37} - 10q^{49} - 12q^{57} + 28q^{61} + 20q^{73} + 18q^{81} - 36q^{93} - 28q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
47.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 0 0 0 3.46410i 0 −3.00000 0
47.2 0 1.73205i 0 0 0 3.46410i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.2.c.a 2
3.b odd 2 1 CM 48.2.c.a 2
4.b odd 2 1 inner 48.2.c.a 2
5.b even 2 1 1200.2.h.e 2
5.c odd 4 2 1200.2.o.i 4
7.b odd 2 1 2352.2.h.c 2
8.b even 2 1 192.2.c.a 2
8.d odd 2 1 192.2.c.a 2
9.c even 3 1 1296.2.s.b 2
9.c even 3 1 1296.2.s.e 2
9.d odd 6 1 1296.2.s.b 2
9.d odd 6 1 1296.2.s.e 2
12.b even 2 1 inner 48.2.c.a 2
15.d odd 2 1 1200.2.h.e 2
15.e even 4 2 1200.2.o.i 4
16.e even 4 2 768.2.f.d 4
16.f odd 4 2 768.2.f.d 4
20.d odd 2 1 1200.2.h.e 2
20.e even 4 2 1200.2.o.i 4
21.c even 2 1 2352.2.h.c 2
24.f even 2 1 192.2.c.a 2
24.h odd 2 1 192.2.c.a 2
28.d even 2 1 2352.2.h.c 2
36.f odd 6 1 1296.2.s.b 2
36.f odd 6 1 1296.2.s.e 2
36.h even 6 1 1296.2.s.b 2
36.h even 6 1 1296.2.s.e 2
48.i odd 4 2 768.2.f.d 4
48.k even 4 2 768.2.f.d 4
60.h even 2 1 1200.2.h.e 2
60.l odd 4 2 1200.2.o.i 4
84.h odd 2 1 2352.2.h.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
48.2.c.a 2 1.a even 1 1 trivial
48.2.c.a 2 3.b odd 2 1 CM
48.2.c.a 2 4.b odd 2 1 inner
48.2.c.a 2 12.b even 2 1 inner
192.2.c.a 2 8.b even 2 1
192.2.c.a 2 8.d odd 2 1
192.2.c.a 2 24.f even 2 1
192.2.c.a 2 24.h odd 2 1
768.2.f.d 4 16.e even 4 2
768.2.f.d 4 16.f odd 4 2
768.2.f.d 4 48.i odd 4 2
768.2.f.d 4 48.k even 4 2
1200.2.h.e 2 5.b even 2 1
1200.2.h.e 2 15.d odd 2 1
1200.2.h.e 2 20.d odd 2 1
1200.2.h.e 2 60.h even 2 1
1200.2.o.i 4 5.c odd 4 2
1200.2.o.i 4 15.e even 4 2
1200.2.o.i 4 20.e even 4 2
1200.2.o.i 4 60.l odd 4 2
1296.2.s.b 2 9.c even 3 1
1296.2.s.b 2 9.d odd 6 1
1296.2.s.b 2 36.f odd 6 1
1296.2.s.b 2 36.h even 6 1
1296.2.s.e 2 9.c even 3 1
1296.2.s.e 2 9.d odd 6 1
1296.2.s.e 2 36.f odd 6 1
1296.2.s.e 2 36.h even 6 1
2352.2.h.c 2 7.b odd 2 1
2352.2.h.c 2 21.c even 2 1
2352.2.h.c 2 28.d even 2 1
2352.2.h.c 2 84.h odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(48, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + 3 T^{2} \)
$5$ \( ( 1 - 5 T^{2} )^{2} \)
$7$ \( ( 1 - 4 T + 7 T^{2} )( 1 + 4 T + 7 T^{2} ) \)
$11$ \( ( 1 + 11 T^{2} )^{2} \)
$13$ \( ( 1 + 2 T + 13 T^{2} )^{2} \)
$17$ \( ( 1 - 17 T^{2} )^{2} \)
$19$ \( ( 1 - 8 T + 19 T^{2} )( 1 + 8 T + 19 T^{2} ) \)
$23$ \( ( 1 + 23 T^{2} )^{2} \)
$29$ \( ( 1 - 29 T^{2} )^{2} \)
$31$ \( ( 1 - 4 T + 31 T^{2} )( 1 + 4 T + 31 T^{2} ) \)
$37$ \( ( 1 + 10 T + 37 T^{2} )^{2} \)
$41$ \( ( 1 - 41 T^{2} )^{2} \)
$43$ \( ( 1 - 8 T + 43 T^{2} )( 1 + 8 T + 43 T^{2} ) \)
$47$ \( ( 1 + 47 T^{2} )^{2} \)
$53$ \( ( 1 - 53 T^{2} )^{2} \)
$59$ \( ( 1 + 59 T^{2} )^{2} \)
$61$ \( ( 1 - 14 T + 61 T^{2} )^{2} \)
$67$ \( ( 1 - 16 T + 67 T^{2} )( 1 + 16 T + 67 T^{2} ) \)
$71$ \( ( 1 + 71 T^{2} )^{2} \)
$73$ \( ( 1 - 10 T + 73 T^{2} )^{2} \)
$79$ \( ( 1 - 4 T + 79 T^{2} )( 1 + 4 T + 79 T^{2} ) \)
$83$ \( ( 1 + 83 T^{2} )^{2} \)
$89$ \( ( 1 - 89 T^{2} )^{2} \)
$97$ \( ( 1 + 14 T + 97 T^{2} )^{2} \)
show more
show less