Defining parameters
Level: | \( N \) | = | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | = | \( 14 \) |
Nonzero newspaces: | \( 4 \) | ||
Sturm bound: | \(1792\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(48))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 860 | 355 | 505 |
Cusp forms | 804 | 347 | 457 |
Eisenstein series | 56 | 8 | 48 |
Trace form
Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(48))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
48.14.a | \(\chi_{48}(1, \cdot)\) | 48.14.a.a | 1 | 1 |
48.14.a.b | 1 | |||
48.14.a.c | 1 | |||
48.14.a.d | 1 | |||
48.14.a.e | 1 | |||
48.14.a.f | 2 | |||
48.14.a.g | 2 | |||
48.14.a.h | 2 | |||
48.14.a.i | 2 | |||
48.14.c | \(\chi_{48}(47, \cdot)\) | 48.14.c.a | 2 | 1 |
48.14.c.b | 8 | |||
48.14.c.c | 16 | |||
48.14.d | \(\chi_{48}(25, \cdot)\) | None | 0 | 1 |
48.14.f | \(\chi_{48}(23, \cdot)\) | None | 0 | 1 |
48.14.j | \(\chi_{48}(13, \cdot)\) | n/a | 104 | 2 |
48.14.k | \(\chi_{48}(11, \cdot)\) | n/a | 204 | 2 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(48))\) into lower level spaces
\( S_{14}^{\mathrm{old}}(\Gamma_1(48)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)