Properties

Label 48.14
Level 48
Weight 14
Dimension 347
Nonzero newspaces 4
Sturm bound 1792
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) = \( 14 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(1792\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(48))\).

Total New Old
Modular forms 860 355 505
Cusp forms 804 347 457
Eisenstein series 56 8 48

Trace form

\( 347 q + 727 q^{3} - 728 q^{4} - 33802 q^{5} + 255052 q^{6} - 182888 q^{7} + 2153748 q^{8} + 7890447 q^{9} - 3619616 q^{10} + 14171988 q^{11} + 36466552 q^{12} + 498878 q^{13} + 64418244 q^{14} - 113906250 q^{15}+ \cdots + 29280615671072 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(48))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
48.14.a \(\chi_{48}(1, \cdot)\) 48.14.a.a 1 1
48.14.a.b 1
48.14.a.c 1
48.14.a.d 1
48.14.a.e 1
48.14.a.f 2
48.14.a.g 2
48.14.a.h 2
48.14.a.i 2
48.14.c \(\chi_{48}(47, \cdot)\) 48.14.c.a 2 1
48.14.c.b 8
48.14.c.c 16
48.14.d \(\chi_{48}(25, \cdot)\) None 0 1
48.14.f \(\chi_{48}(23, \cdot)\) None 0 1
48.14.j \(\chi_{48}(13, \cdot)\) n/a 104 2
48.14.k \(\chi_{48}(11, \cdot)\) n/a 204 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(48))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_1(48)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)