Properties

Label 4788.2.i.h.3457.7
Level $4788$
Weight $2$
Character 4788.3457
Analytic conductor $38.232$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(3457,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.3457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 860x^{12} + 7192x^{10} + 28448x^{8} + 45264x^{6} + 12088x^{4} + 784x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3457.7
Root \(-0.0746361i\) of defining polynomial
Character \(\chi\) \(=\) 4788.3457
Dual form 4788.2.i.h.3457.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.60804i q^{5} +(2.41421 + 1.08239i) q^{7} +O(q^{10})\) \(q-1.60804i q^{5} +(2.41421 + 1.08239i) q^{7} -4.20201 q^{11} -3.26899 q^{13} -0.666071i q^{17} +(2.31152 + 3.69552i) q^{19} -1.74053 q^{23} +2.41421 q^{25} -8.97368i q^{29} -7.89204 q^{31} +(1.74053 - 3.88215i) q^{35} +8.54228i q^{37} +9.71304 q^{41} -0.242641 q^{43} +11.6464i q^{47} +(4.65685 + 5.22625i) q^{49} +3.71702i q^{53} +6.75699i q^{55} -13.7363 q^{59} +1.53073i q^{61} +5.25666i q^{65} -12.0806i q^{67} +3.71702i q^{71} +9.81845i q^{73} +(-10.1445 - 4.54822i) q^{77} +8.54228i q^{79} +4.82411i q^{83} -1.07107 q^{85} -9.71304 q^{89} +(-7.89204 - 3.53833i) q^{91} +(5.94253 - 3.71702i) q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 16 q^{7} + 16 q^{25} + 64 q^{43} - 16 q^{49} + 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4788\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(1009\) \(2395\) \(4105\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.60804i 0.719136i −0.933119 0.359568i \(-0.882924\pi\)
0.933119 0.359568i \(-0.117076\pi\)
\(6\) 0 0
\(7\) 2.41421 + 1.08239i 0.912487 + 0.409106i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.20201 −1.26695 −0.633476 0.773762i \(-0.718373\pi\)
−0.633476 + 0.773762i \(0.718373\pi\)
\(12\) 0 0
\(13\) −3.26899 −0.906655 −0.453327 0.891344i \(-0.649763\pi\)
−0.453327 + 0.891344i \(0.649763\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.666071i 0.161546i −0.996733 0.0807730i \(-0.974261\pi\)
0.996733 0.0807730i \(-0.0257389\pi\)
\(18\) 0 0
\(19\) 2.31152 + 3.69552i 0.530300 + 0.847810i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.74053 −0.362925 −0.181463 0.983398i \(-0.558083\pi\)
−0.181463 + 0.983398i \(0.558083\pi\)
\(24\) 0 0
\(25\) 2.41421 0.482843
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.97368i 1.66637i −0.552994 0.833185i \(-0.686515\pi\)
0.552994 0.833185i \(-0.313485\pi\)
\(30\) 0 0
\(31\) −7.89204 −1.41745 −0.708726 0.705484i \(-0.750730\pi\)
−0.708726 + 0.705484i \(0.750730\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.74053 3.88215i 0.294203 0.656203i
\(36\) 0 0
\(37\) 8.54228i 1.40434i 0.712008 + 0.702171i \(0.247786\pi\)
−0.712008 + 0.702171i \(0.752214\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.71304 1.51692 0.758461 0.651718i \(-0.225952\pi\)
0.758461 + 0.651718i \(0.225952\pi\)
\(42\) 0 0
\(43\) −0.242641 −0.0370024 −0.0185012 0.999829i \(-0.505889\pi\)
−0.0185012 + 0.999829i \(0.505889\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.6464i 1.69881i 0.527743 + 0.849404i \(0.323038\pi\)
−0.527743 + 0.849404i \(0.676962\pi\)
\(48\) 0 0
\(49\) 4.65685 + 5.22625i 0.665265 + 0.746607i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.71702i 0.510572i 0.966866 + 0.255286i \(0.0821696\pi\)
−0.966866 + 0.255286i \(0.917830\pi\)
\(54\) 0 0
\(55\) 6.75699i 0.911112i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.7363 −1.78832 −0.894158 0.447752i \(-0.852225\pi\)
−0.894158 + 0.447752i \(0.852225\pi\)
\(60\) 0 0
\(61\) 1.53073i 0.195990i 0.995187 + 0.0979952i \(0.0312430\pi\)
−0.995187 + 0.0979952i \(0.968757\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.25666i 0.652008i
\(66\) 0 0
\(67\) 12.0806i 1.47588i −0.674866 0.737941i \(-0.735798\pi\)
0.674866 0.737941i \(-0.264202\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.71702i 0.441129i 0.975372 + 0.220565i \(0.0707900\pi\)
−0.975372 + 0.220565i \(0.929210\pi\)
\(72\) 0 0
\(73\) 9.81845i 1.14916i 0.818447 + 0.574582i \(0.194835\pi\)
−0.818447 + 0.574582i \(0.805165\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.1445 4.54822i −1.15608 0.518318i
\(78\) 0 0
\(79\) 8.54228i 0.961082i 0.876972 + 0.480541i \(0.159560\pi\)
−0.876972 + 0.480541i \(0.840440\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.82411i 0.529515i 0.964315 + 0.264758i \(0.0852920\pi\)
−0.964315 + 0.264758i \(0.914708\pi\)
\(84\) 0 0
\(85\) −1.07107 −0.116174
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.71304 −1.02958 −0.514790 0.857316i \(-0.672130\pi\)
−0.514790 + 0.857316i \(0.672130\pi\)
\(90\) 0 0
\(91\) −7.89204 3.53833i −0.827310 0.370918i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.94253 3.71702i 0.609691 0.381358i
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.43037i 0.838853i 0.907789 + 0.419426i \(0.137769\pi\)
−0.907789 + 0.419426i \(0.862231\pi\)
\(102\) 0 0
\(103\) −4.62305 −0.455523 −0.227761 0.973717i \(-0.573141\pi\)
−0.227761 + 0.973717i \(0.573141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.4077i 1.58619i −0.609095 0.793097i \(-0.708467\pi\)
0.609095 0.793097i \(-0.291533\pi\)
\(108\) 0 0
\(109\) 12.0806i 1.15711i 0.815642 + 0.578556i \(0.196384\pi\)
−0.815642 + 0.578556i \(0.803616\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.97368i 0.844173i 0.906556 + 0.422086i \(0.138702\pi\)
−0.906556 + 0.422086i \(0.861298\pi\)
\(114\) 0 0
\(115\) 2.79884i 0.260993i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.720950 1.60804i 0.0660894 0.147409i
\(120\) 0 0
\(121\) 6.65685 0.605169
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.9223i 1.06637i
\(126\) 0 0
\(127\) 17.0846i 1.51601i 0.652249 + 0.758005i \(0.273826\pi\)
−0.652249 + 0.758005i \(0.726174\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.04019i 0.702475i 0.936286 + 0.351237i \(0.114239\pi\)
−0.936286 + 0.351237i \(0.885761\pi\)
\(132\) 0 0
\(133\) 1.58051 + 11.4237i 0.137048 + 0.990564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.7506 1.94371 0.971856 0.235577i \(-0.0756980\pi\)
0.971856 + 0.235577i \(0.0756980\pi\)
\(138\) 0 0
\(139\) 1.53073i 0.129835i −0.997891 0.0649176i \(-0.979322\pi\)
0.997891 0.0649176i \(-0.0206784\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 13.7363 1.14869
\(144\) 0 0
\(145\) −14.4300 −1.19835
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.48106 0.285179 0.142590 0.989782i \(-0.454457\pi\)
0.142590 + 0.989782i \(0.454457\pi\)
\(150\) 0 0
\(151\) 15.6189i 1.27105i −0.772080 0.635526i \(-0.780783\pi\)
0.772080 0.635526i \(-0.219217\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.6907i 1.01934i
\(156\) 0 0
\(157\) 4.96362i 0.396140i 0.980188 + 0.198070i \(0.0634673\pi\)
−0.980188 + 0.198070i \(0.936533\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.20201 1.88393i −0.331164 0.148475i
\(162\) 0 0
\(163\) 4.92893 0.386064 0.193032 0.981192i \(-0.438168\pi\)
0.193032 + 0.981192i \(0.438168\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −2.31371 −0.177978
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.02327 0.305884 0.152942 0.988235i \(-0.451125\pi\)
0.152942 + 0.988235i \(0.451125\pi\)
\(174\) 0 0
\(175\) 5.82843 + 2.61313i 0.440588 + 0.197534i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.4077i 1.22637i 0.789939 + 0.613185i \(0.210112\pi\)
−0.789939 + 0.613185i \(0.789888\pi\)
\(180\) 0 0
\(181\) 11.1610 0.829593 0.414796 0.909914i \(-0.363853\pi\)
0.414796 + 0.909914i \(0.363853\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.7363 1.00991
\(186\) 0 0
\(187\) 2.79884i 0.204671i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −22.0296 −1.59401 −0.797003 0.603975i \(-0.793583\pi\)
−0.797003 + 0.603975i \(0.793583\pi\)
\(192\) 0 0
\(193\) 3.53833i 0.254694i −0.991858 0.127347i \(-0.959354\pi\)
0.991858 0.127347i \(-0.0406463\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.48106 0.248015 0.124007 0.992281i \(-0.460425\pi\)
0.124007 + 0.992281i \(0.460425\pi\)
\(198\) 0 0
\(199\) 20.9050i 1.48192i 0.671551 + 0.740958i \(0.265628\pi\)
−0.671551 + 0.740958i \(0.734372\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.71304 21.6644i 0.681722 1.52054i
\(204\) 0 0
\(205\) 15.6189i 1.09087i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.71304 15.5286i −0.671865 1.07413i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.390175i 0.0266097i
\(216\) 0 0
\(217\) −19.0531 8.54228i −1.29341 0.579888i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.17738i 0.146466i
\(222\) 0 0
\(223\) −14.4300 −0.966305 −0.483153 0.875536i \(-0.660508\pi\)
−0.483153 + 0.875536i \(0.660508\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.7363 −0.911711 −0.455856 0.890054i \(-0.650667\pi\)
−0.455856 + 0.890054i \(0.650667\pi\)
\(228\) 0 0
\(229\) 2.16478i 0.143053i −0.997439 0.0715265i \(-0.977213\pi\)
0.997439 0.0715265i \(-0.0227870\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.92296 0.322514 0.161257 0.986912i \(-0.448445\pi\)
0.161257 + 0.986912i \(0.448445\pi\)
\(234\) 0 0
\(235\) 18.7279 1.22167
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.720950 −0.0466344 −0.0233172 0.999728i \(-0.507423\pi\)
−0.0233172 + 0.999728i \(0.507423\pi\)
\(240\) 0 0
\(241\) −20.4071 −1.31454 −0.657269 0.753656i \(-0.728289\pi\)
−0.657269 + 0.753656i \(0.728289\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.40401 7.48840i 0.536913 0.478416i
\(246\) 0 0
\(247\) −7.55635 12.0806i −0.480799 0.768671i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.4107i 1.22519i −0.790395 0.612597i \(-0.790125\pi\)
0.790395 0.612597i \(-0.209875\pi\)
\(252\) 0 0
\(253\) 7.31371 0.459809
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −23.4494 −1.46273 −0.731365 0.681986i \(-0.761116\pi\)
−0.731365 + 0.681986i \(0.761116\pi\)
\(258\) 0 0
\(259\) −9.24610 + 20.6229i −0.574525 + 1.28144i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 23.0492 1.42127 0.710637 0.703559i \(-0.248407\pi\)
0.710637 + 0.703559i \(0.248407\pi\)
\(264\) 0 0
\(265\) 5.97711 0.367171
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.02327 0.245303 0.122652 0.992450i \(-0.460860\pi\)
0.122652 + 0.992450i \(0.460860\pi\)
\(270\) 0 0
\(271\) 25.4972i 1.54885i 0.632669 + 0.774423i \(0.281959\pi\)
−0.632669 + 0.774423i \(0.718041\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −10.1445 −0.611739
\(276\) 0 0
\(277\) 4.58579 0.275533 0.137767 0.990465i \(-0.456008\pi\)
0.137767 + 0.990465i \(0.456008\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.1511i 0.665216i −0.943065 0.332608i \(-0.892071\pi\)
0.943065 0.332608i \(-0.107929\pi\)
\(282\) 0 0
\(283\) 26.1313i 1.55334i 0.629906 + 0.776671i \(0.283093\pi\)
−0.629906 + 0.776671i \(0.716907\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 23.4494 + 10.5133i 1.38417 + 0.620582i
\(288\) 0 0
\(289\) 16.5563 0.973903
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.71304 0.567442 0.283721 0.958907i \(-0.408431\pi\)
0.283721 + 0.958907i \(0.408431\pi\)
\(294\) 0 0
\(295\) 22.0885i 1.28604i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.68977 0.329048
\(300\) 0 0
\(301\) −0.585786 0.262632i −0.0337642 0.0151379i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.46148 0.140944
\(306\) 0 0
\(307\) −5.18392 −0.295862 −0.147931 0.988998i \(-0.547261\pi\)
−0.147931 + 0.988998i \(0.547261\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 29.4491i 1.66991i −0.550320 0.834954i \(-0.685494\pi\)
0.550320 0.834954i \(-0.314506\pi\)
\(312\) 0 0
\(313\) 18.1062i 1.02342i 0.859158 + 0.511711i \(0.170988\pi\)
−0.859158 + 0.511711i \(0.829012\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 26.9210i 1.51204i 0.654551 + 0.756018i \(0.272858\pi\)
−0.654551 + 0.756018i \(0.727142\pi\)
\(318\) 0 0
\(319\) 37.7075i 2.11121i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.46148 1.53964i 0.136960 0.0856679i
\(324\) 0 0
\(325\) −7.89204 −0.437772
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.6060 + 28.1170i −0.694992 + 1.55014i
\(330\) 0 0
\(331\) 8.54228i 0.469526i 0.972053 + 0.234763i \(0.0754314\pi\)
−0.972053 + 0.234763i \(0.924569\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −19.4261 −1.06136
\(336\) 0 0
\(337\) 5.00395i 0.272583i −0.990669 0.136291i \(-0.956482\pi\)
0.990669 0.136291i \(-0.0435183\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 33.1624 1.79584
\(342\) 0 0
\(343\) 5.58579 + 17.6578i 0.301604 + 0.953433i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −23.0492 −1.23735 −0.618673 0.785649i \(-0.712329\pi\)
−0.618673 + 0.785649i \(0.712329\pi\)
\(348\) 0 0
\(349\) 22.1731i 1.18690i −0.804871 0.593450i \(-0.797766\pi\)
0.804871 0.593450i \(-0.202234\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.1134i 1.70923i 0.519266 + 0.854613i \(0.326205\pi\)
−0.519266 + 0.854613i \(0.673795\pi\)
\(354\) 0 0
\(355\) 5.97711 0.317232
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.5486 0.978955 0.489478 0.872016i \(-0.337188\pi\)
0.489478 + 0.872016i \(0.337188\pi\)
\(360\) 0 0
\(361\) −8.31371 + 17.0846i −0.437564 + 0.899187i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.7884 0.826405
\(366\) 0 0
\(367\) 22.1731i 1.15743i 0.815531 + 0.578713i \(0.196445\pi\)
−0.815531 + 0.578713i \(0.803555\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.02327 + 8.97368i −0.208878 + 0.465890i
\(372\) 0 0
\(373\) 7.07666i 0.366415i 0.983074 + 0.183208i \(0.0586481\pi\)
−0.983074 + 0.183208i \(0.941352\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 29.3349i 1.51082i
\(378\) 0 0
\(379\) 1.46562i 0.0752840i 0.999291 + 0.0376420i \(0.0119847\pi\)
−0.999291 + 0.0376420i \(0.988015\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −33.1624 −1.69452 −0.847260 0.531179i \(-0.821749\pi\)
−0.847260 + 0.531179i \(0.821749\pi\)
\(384\) 0 0
\(385\) −7.31371 + 16.3128i −0.372741 + 0.831378i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.7884 −0.800506 −0.400253 0.916405i \(-0.631078\pi\)
−0.400253 + 0.916405i \(0.631078\pi\)
\(390\) 0 0
\(391\) 1.15932i 0.0586291i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.7363 0.691149
\(396\) 0 0
\(397\) 11.3492i 0.569599i −0.958587 0.284800i \(-0.908073\pi\)
0.958587 0.284800i \(-0.0919271\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.1777i 1.60688i −0.595387 0.803439i \(-0.703001\pi\)
0.595387 0.803439i \(-0.296999\pi\)
\(402\) 0 0
\(403\) 25.7990 1.28514
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 35.8947i 1.77923i
\(408\) 0 0
\(409\) 12.5151 0.618831 0.309416 0.950927i \(-0.399867\pi\)
0.309416 + 0.950927i \(0.399867\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −33.1624 14.8681i −1.63181 0.731610i
\(414\) 0 0
\(415\) 7.75736 0.380794
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 28.5072i 1.39267i 0.717719 + 0.696333i \(0.245186\pi\)
−0.717719 + 0.696333i \(0.754814\pi\)
\(420\) 0 0
\(421\) 20.6229i 1.00510i −0.864549 0.502549i \(-0.832396\pi\)
0.864549 0.502549i \(-0.167604\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.60804i 0.0780013i
\(426\) 0 0
\(427\) −1.65685 + 3.69552i −0.0801808 + 0.178839i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.53964i 0.0741618i −0.999312 0.0370809i \(-0.988194\pi\)
0.999312 0.0370809i \(-0.0118059\pi\)
\(432\) 0 0
\(433\) 29.6532 1.42504 0.712522 0.701650i \(-0.247553\pi\)
0.712522 + 0.701650i \(0.247553\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.02327 6.43215i −0.192459 0.307692i
\(438\) 0 0
\(439\) −14.4300 −0.688707 −0.344354 0.938840i \(-0.611902\pi\)
−0.344354 + 0.938840i \(0.611902\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.4715 −1.11516 −0.557582 0.830122i \(-0.688271\pi\)
−0.557582 + 0.830122i \(0.688271\pi\)
\(444\) 0 0
\(445\) 15.6189i 0.740409i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.1777i 1.51856i 0.650764 + 0.759280i \(0.274449\pi\)
−0.650764 + 0.759280i \(0.725551\pi\)
\(450\) 0 0
\(451\) −40.8143 −1.92187
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.68977 + 12.6907i −0.266740 + 0.594949i
\(456\) 0 0
\(457\) 4.38478 0.205111 0.102556 0.994727i \(-0.467298\pi\)
0.102556 + 0.994727i \(0.467298\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 23.9590i 1.11588i −0.829881 0.557940i \(-0.811592\pi\)
0.829881 0.557940i \(-0.188408\pi\)
\(462\) 0 0
\(463\) 24.2843 1.12859 0.564293 0.825575i \(-0.309149\pi\)
0.564293 + 0.825575i \(0.309149\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.05625i 0.0488773i −0.999701 0.0244386i \(-0.992220\pi\)
0.999701 0.0244386i \(-0.00777983\pi\)
\(468\) 0 0
\(469\) 13.0760 29.1652i 0.603792 1.34672i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.01958 0.0468802
\(474\) 0 0
\(475\) 5.58051 + 8.92177i 0.256052 + 0.409359i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.65001i 0.349538i 0.984609 + 0.174769i \(0.0559179\pi\)
−0.984609 + 0.174769i \(0.944082\pi\)
\(480\) 0 0
\(481\) 27.9246i 1.27325i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 12.0806i 0.547425i −0.961812 0.273712i \(-0.911748\pi\)
0.961812 0.273712i \(-0.0882516\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 23.0492 1.04020 0.520098 0.854107i \(-0.325896\pi\)
0.520098 + 0.854107i \(0.325896\pi\)
\(492\) 0 0
\(493\) −5.97711 −0.269195
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.02327 + 8.97368i −0.180468 + 0.402525i
\(498\) 0 0
\(499\) −13.6569 −0.611365 −0.305682 0.952134i \(-0.598885\pi\)
−0.305682 + 0.952134i \(0.598885\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13.9206i 0.620687i 0.950625 + 0.310343i \(0.100444\pi\)
−0.950625 + 0.310343i \(0.899556\pi\)
\(504\) 0 0
\(505\) 13.5563 0.603250
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.02327 −0.178328 −0.0891642 0.996017i \(-0.528420\pi\)
−0.0891642 + 0.996017i \(0.528420\pi\)
\(510\) 0 0
\(511\) −10.6274 + 23.7038i −0.470129 + 1.04860i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.43404i 0.327583i
\(516\) 0 0
\(517\) 48.9384i 2.15231i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −37.1857 −1.62913 −0.814567 0.580070i \(-0.803025\pi\)
−0.814567 + 0.580070i \(0.803025\pi\)
\(522\) 0 0
\(523\) −27.5060 −1.20275 −0.601376 0.798966i \(-0.705381\pi\)
−0.601376 + 0.798966i \(0.705381\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.25666i 0.228984i
\(528\) 0 0
\(529\) −19.9706 −0.868285
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −31.7518 −1.37532
\(534\) 0 0
\(535\) −26.3842 −1.14069
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −19.5681 21.9607i −0.842859 0.945916i
\(540\) 0 0
\(541\) −18.6274 −0.800855 −0.400428 0.916328i \(-0.631138\pi\)
−0.400428 + 0.916328i \(0.631138\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 19.4261 0.832122
\(546\) 0 0
\(547\) 37.7075i 1.61225i −0.591742 0.806127i \(-0.701560\pi\)
0.591742 0.806127i \(-0.298440\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 33.1624 20.7429i 1.41277 0.883676i
\(552\) 0 0
\(553\) −9.24610 + 20.6229i −0.393184 + 0.876975i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.7127 1.25897 0.629483 0.777014i \(-0.283267\pi\)
0.629483 + 0.777014i \(0.283267\pi\)
\(558\) 0 0
\(559\) 0.793190 0.0335484
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.4261 0.818712 0.409356 0.912375i \(-0.365753\pi\)
0.409356 + 0.912375i \(0.365753\pi\)
\(564\) 0 0
\(565\) 14.4300 0.607075
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 32.1777i 1.34896i −0.738293 0.674480i \(-0.764368\pi\)
0.738293 0.674480i \(-0.235632\pi\)
\(570\) 0 0
\(571\) −7.17157 −0.300121 −0.150060 0.988677i \(-0.547947\pi\)
−0.150060 + 0.988677i \(0.547947\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.20201 −0.175236
\(576\) 0 0
\(577\) 23.3324i 0.971342i −0.874142 0.485671i \(-0.838575\pi\)
0.874142 0.485671i \(-0.161425\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5.22158 + 11.6464i −0.216628 + 0.483176i
\(582\) 0 0
\(583\) 15.6189i 0.646870i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 38.9358i 1.60705i 0.595271 + 0.803525i \(0.297045\pi\)
−0.595271 + 0.803525i \(0.702955\pi\)
\(588\) 0 0
\(589\) −18.2426 29.1652i −0.751675 1.20173i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 26.2331i 1.07726i −0.842542 0.538631i \(-0.818942\pi\)
0.842542 0.538631i \(-0.181058\pi\)
\(594\) 0 0
\(595\) −2.58579 1.15932i −0.106007 0.0475273i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 19.4870i 0.796217i 0.917338 + 0.398109i \(0.130333\pi\)
−0.917338 + 0.398109i \(0.869667\pi\)
\(600\) 0 0
\(601\) 31.5682 1.28769 0.643846 0.765155i \(-0.277338\pi\)
0.643846 + 0.765155i \(0.277338\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.7045i 0.435199i
\(606\) 0 0
\(607\) 44.6441 1.81205 0.906024 0.423226i \(-0.139102\pi\)
0.906024 + 0.423226i \(0.139102\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 38.0721i 1.54023i
\(612\) 0 0
\(613\) −42.5269 −1.71765 −0.858823 0.512273i \(-0.828804\pi\)
−0.858823 + 0.512273i \(0.828804\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −34.6356 −1.39438 −0.697189 0.716887i \(-0.745566\pi\)
−0.697189 + 0.716887i \(0.745566\pi\)
\(618\) 0 0
\(619\) 17.2095i 0.691708i 0.938288 + 0.345854i \(0.112411\pi\)
−0.938288 + 0.345854i \(0.887589\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −23.4494 10.5133i −0.939478 0.421207i
\(624\) 0 0
\(625\) −7.10051 −0.284020
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.68977 0.226866
\(630\) 0 0
\(631\) 29.2132 1.16296 0.581480 0.813561i \(-0.302474\pi\)
0.581480 + 0.813561i \(0.302474\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 27.4726 1.09022
\(636\) 0 0
\(637\) −15.2232 17.0846i −0.603165 0.676915i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.8418i 0.941693i 0.882215 + 0.470846i \(0.156051\pi\)
−0.882215 + 0.470846i \(0.843949\pi\)
\(642\) 0 0
\(643\) 28.2960i 1.11589i −0.829879 0.557944i \(-0.811591\pi\)
0.829879 0.557944i \(-0.188409\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29.6108i 1.16412i −0.813146 0.582059i \(-0.802247\pi\)
0.813146 0.582059i \(-0.197753\pi\)
\(648\) 0 0
\(649\) 57.7201 2.26571
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.2120 −0.986623 −0.493312 0.869853i \(-0.664214\pi\)
−0.493312 + 0.869853i \(0.664214\pi\)
\(654\) 0 0
\(655\) 12.9289 0.505175
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.71702i 0.144795i −0.997376 0.0723973i \(-0.976935\pi\)
0.997376 0.0723973i \(-0.0230649\pi\)
\(660\) 0 0
\(661\) 41.3751 1.60931 0.804653 0.593746i \(-0.202351\pi\)
0.804653 + 0.593746i \(0.202351\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 18.3698 2.54153i 0.712351 0.0985562i
\(666\) 0 0
\(667\) 15.6189i 0.604768i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.43215i 0.248310i
\(672\) 0 0
\(673\) 32.7035i 1.26063i 0.776341 + 0.630314i \(0.217074\pi\)
−0.776341 + 0.630314i \(0.782926\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.1391 1.11991 0.559954 0.828524i \(-0.310819\pi\)
0.559954 + 0.828524i \(0.310819\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 34.3551i 1.31456i −0.753646 0.657280i \(-0.771707\pi\)
0.753646 0.657280i \(-0.228293\pi\)
\(684\) 0 0
\(685\) 36.5838i 1.39779i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.1509i 0.462912i
\(690\) 0 0
\(691\) 19.7457i 0.751162i −0.926790 0.375581i \(-0.877443\pi\)
0.926790 0.375581i \(-0.122557\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.46148 −0.0933692
\(696\) 0 0
\(697\) 6.46958i 0.245053i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.2708 1.06777 0.533886 0.845556i \(-0.320731\pi\)
0.533886 + 0.845556i \(0.320731\pi\)
\(702\) 0 0
\(703\) −31.5682 + 19.7457i −1.19062 + 0.744723i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.12496 + 20.3527i −0.343180 + 0.765442i
\(708\) 0 0
\(709\) −18.9289 −0.710891 −0.355445 0.934697i \(-0.615671\pi\)
−0.355445 + 0.934697i \(0.615671\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.7363 0.514429
\(714\) 0 0
\(715\) 22.0885i 0.826064i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.7045i 0.399210i 0.979876 + 0.199605i \(0.0639658\pi\)
−0.979876 + 0.199605i \(0.936034\pi\)
\(720\) 0 0
\(721\) −11.1610 5.00395i −0.415658 0.186357i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 21.6644i 0.804595i
\(726\) 0 0
\(727\) 25.4972i 0.945639i −0.881159 0.472820i \(-0.843236\pi\)
0.881159 0.472820i \(-0.156764\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.161616i 0.00597758i
\(732\) 0 0
\(733\) 42.8155i 1.58143i −0.612187 0.790713i \(-0.709710\pi\)
0.612187 0.790713i \(-0.290290\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 50.7628i 1.86987i
\(738\) 0 0
\(739\) −11.5563 −0.425107 −0.212554 0.977149i \(-0.568178\pi\)
−0.212554 + 0.977149i \(0.568178\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 34.3551i 1.26037i 0.776447 + 0.630183i \(0.217020\pi\)
−0.776447 + 0.630183i \(0.782980\pi\)
\(744\) 0 0
\(745\) 5.59767i 0.205083i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 17.7596 39.6117i 0.648921 1.44738i
\(750\) 0 0
\(751\) 13.5462i 0.494309i 0.968976 + 0.247155i \(0.0794955\pi\)
−0.968976 + 0.247155i \(0.920504\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25.1158 −0.914059
\(756\) 0 0
\(757\) −26.3431 −0.957458 −0.478729 0.877963i \(-0.658902\pi\)
−0.478729 + 0.877963i \(0.658902\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.1366i 0.621202i −0.950540 0.310601i \(-0.899470\pi\)
0.950540 0.310601i \(-0.100530\pi\)
\(762\) 0 0
\(763\) −13.0760 + 29.1652i −0.473381 + 1.05585i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 44.9039 1.62138
\(768\) 0 0
\(769\) 39.7540i 1.43357i −0.697296 0.716783i \(-0.745614\pi\)
0.697296 0.716783i \(-0.254386\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −23.4494 −0.843415 −0.421707 0.906732i \(-0.638569\pi\)
−0.421707 + 0.906732i \(0.638569\pi\)
\(774\) 0 0
\(775\) −19.0531 −0.684406
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 22.4519 + 35.8947i 0.804424 + 1.28606i
\(780\) 0 0
\(781\) 15.6189i 0.558890i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.98169 0.284879
\(786\) 0 0
\(787\) 43.2901 1.54312 0.771562 0.636154i \(-0.219476\pi\)
0.771562 + 0.636154i \(0.219476\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.71304 + 21.6644i −0.345356 + 0.770297i
\(792\) 0 0
\(793\) 5.00395i 0.177696i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −42.8754 −1.51873 −0.759363 0.650667i \(-0.774489\pi\)
−0.759363 + 0.650667i \(0.774489\pi\)
\(798\) 0 0
\(799\) 7.75736 0.274436
\(800\) 0 0
\(801\) 0 0