Properties

Label 4788.2.i.h
Level $4788$
Weight $2$
Character orbit 4788.i
Analytic conductor $38.232$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(3457,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.3457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 860x^{12} + 7192x^{10} + 28448x^{8} + 45264x^{6} + 12088x^{4} + 784x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{12} q^{5} + ( - \beta_{10} - \beta_{3} + 1) q^{7} + \beta_{5} q^{11} + ( - \beta_{6} + \beta_{2}) q^{13} + (\beta_{12} + \beta_{4}) q^{17} + ( - \beta_{11} - \beta_{10} - \beta_{6}) q^{19} - \beta_{7} q^{23}+ \cdots + ( - \beta_{8} + \beta_{7} - \beta_{5}) q^{95}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{7} + 16 q^{25} + 64 q^{43} - 16 q^{49} + 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 48x^{14} + 860x^{12} + 7192x^{10} + 28448x^{8} + 45264x^{6} + 12088x^{4} + 784x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 5621 \nu^{14} - 264143 \nu^{12} - 4587660 \nu^{10} - 36675050 \nu^{8} - 136487358 \nu^{6} + \cdots + 49768688 ) / 5153652 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 4715 \nu^{14} - 225881 \nu^{12} - 4043958 \nu^{10} - 33963278 \nu^{8} - 137351826 \nu^{6} + \cdots - 12503284 ) / 2122092 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 1307 \nu^{14} - 62723 \nu^{12} - 1123548 \nu^{10} - 9394838 \nu^{8} - 37167174 \nu^{6} + \cdots - 513400 ) / 303156 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 36907 \nu^{15} + 1789930 \nu^{13} + 32617926 \nu^{11} + 281022442 \nu^{9} + 1178309178 \nu^{7} + \cdots + 135825596 \nu ) / 4244184 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 584417 \nu^{14} - 28003475 \nu^{12} - 500274870 \nu^{10} - 4161686408 \nu^{8} + \cdots - 179455828 ) / 36075564 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 20563 \nu^{14} - 984604 \nu^{12} - 17568924 \nu^{10} - 145853581 \nu^{8} - 568402110 \nu^{6} + \cdots - 3309428 ) / 1061046 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 752323 \nu^{14} - 35994757 \nu^{12} - 641491374 \nu^{10} - 5314271974 \nu^{8} + \cdots + 37865728 ) / 36075564 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 8864 \nu^{15} - 426770 \nu^{13} - 7684881 \nu^{11} - 64850468 \nu^{9} - 261355302 \nu^{7} + \cdots - 31128568 \nu ) / 606312 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 109649 \nu^{14} - 5270348 \nu^{12} - 94607160 \nu^{10} - 793219535 \nu^{8} - 3147603318 \nu^{6} + \cdots - 42589426 ) / 2576826 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 403567 \nu^{15} + 19362424 \nu^{13} + 346645500 \nu^{11} + 2894893780 \nu^{9} + \cdots + 173827424 \nu ) / 10307304 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 480349 \nu^{15} + 23054302 \nu^{13} + 412993974 \nu^{11} + 3453054772 \nu^{9} + \cdots + 392545352 \nu ) / 10307304 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 253499 \nu^{15} - 12154460 \nu^{13} - 217360203 \nu^{11} - 1811514836 \nu^{9} + \cdots - 104900536 \nu ) / 4244184 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 1240375 \nu^{15} + 59629117 \nu^{13} + 1071080967 \nu^{11} + 8998400482 \nu^{9} + \cdots + 1478547368 \nu ) / 12025188 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 12603541 \nu^{15} - 604487902 \nu^{13} - 10816013568 \nu^{11} - 90234830716 \nu^{9} + \cdots - 6558814088 \nu ) / 72151128 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 127043 \nu^{15} + 6096770 \nu^{13} + 109194729 \nu^{11} + 912574814 \nu^{9} + 3604738788 \nu^{7} + \cdots + 80946700 \nu ) / 606312 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{13} - \beta_{11} - \beta_{10} - 2\beta_{4} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{6} + \beta_{5} + \beta_{3} - \beta_{2} + \beta _1 - 12 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -6\beta_{15} - 11\beta_{13} - 10\beta_{12} + 19\beta_{11} + 17\beta_{10} + 28\beta_{4} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{9} + 2\beta_{7} + 10\beta_{6} - 15\beta_{5} - 11\beta_{3} + 9\beta_{2} - 7\beta _1 + 73 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 65 \beta_{15} - 14 \beta_{14} + 72 \beta_{13} + 126 \beta_{12} - 177 \beta_{11} - 153 \beta_{10} + \cdots - 207 \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -28\beta_{9} - 53\beta_{7} - 170\beta_{6} + 290\beta_{5} + 268\beta_{3} - 169\beta_{2} + 104\beta _1 - 1041 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 1183 \beta_{15} + 453 \beta_{14} - 1050 \beta_{13} - 2630 \beta_{12} + 3272 \beta_{11} + \cdots + 3245 \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 610\beta_{9} + 1174\beta_{7} + 2742\beta_{6} - 5170\beta_{5} - 5804\beta_{3} + 3140\beta_{2} - 1632\beta _1 + 16116 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 20706 \beta_{15} - 10560 \beta_{14} + 16307 \beta_{13} + 51168 \beta_{12} - 59701 \beta_{11} + \cdots - 52964 \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 12120 \beta_{9} - 24168 \beta_{7} - 43653 \beta_{6} + 90421 \beta_{5} + 115957 \beta_{3} + \cdots - 260926 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 359480 \beta_{15} + 217378 \beta_{14} - 263135 \beta_{13} - 959878 \beta_{12} + \cdots + 886482 \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 230080 \beta_{9} + 475114 \beta_{7} + 698076 \beta_{6} - 1576116 \beta_{5} - 2211682 \beta_{3} + \cdots + 4337374 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 3121313 \beta_{15} - 2106124 \beta_{14} + 2176409 \beta_{13} + 8813206 \beta_{12} + \cdots - 7536449 \beta_{4} \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 4256486 \beta_{9} - 9047168 \beta_{7} - 11296978 \beta_{6} + 27497108 \beta_{5} + 41047822 \beta_{3} + \cdots - 73321926 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 54331355 \beta_{15} + 39468547 \beta_{14} - 36620811 \beta_{13} - 159698772 \beta_{12} + \cdots + 129464559 \beta_{4} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4788\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(1009\) \(2395\) \(4105\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3457.1
3.58985i
0.466174i
0.299193i
2.82448i
2.34875i
1.92240i
0.0746361i
4.19650i
0.0746361i
4.19650i
2.34875i
1.92240i
0.299193i
2.82448i
3.58985i
0.466174i
0 0 0 2.32685i 0 −0.414214 2.61313i 0 0 0
3457.2 0 0 0 2.32685i 0 −0.414214 2.61313i 0 0 0
3457.3 0 0 0 2.32685i 0 −0.414214 + 2.61313i 0 0 0
3457.4 0 0 0 2.32685i 0 −0.414214 + 2.61313i 0 0 0
3457.5 0 0 0 1.60804i 0 2.41421 1.08239i 0 0 0
3457.6 0 0 0 1.60804i 0 2.41421 1.08239i 0 0 0
3457.7 0 0 0 1.60804i 0 2.41421 + 1.08239i 0 0 0
3457.8 0 0 0 1.60804i 0 2.41421 + 1.08239i 0 0 0
3457.9 0 0 0 1.60804i 0 2.41421 1.08239i 0 0 0
3457.10 0 0 0 1.60804i 0 2.41421 1.08239i 0 0 0
3457.11 0 0 0 1.60804i 0 2.41421 + 1.08239i 0 0 0
3457.12 0 0 0 1.60804i 0 2.41421 + 1.08239i 0 0 0
3457.13 0 0 0 2.32685i 0 −0.414214 2.61313i 0 0 0
3457.14 0 0 0 2.32685i 0 −0.414214 2.61313i 0 0 0
3457.15 0 0 0 2.32685i 0 −0.414214 + 2.61313i 0 0 0
3457.16 0 0 0 2.32685i 0 −0.414214 + 2.61313i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3457.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
19.b odd 2 1 inner
21.c even 2 1 inner
57.d even 2 1 inner
133.c even 2 1 inner
399.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4788.2.i.h 16
3.b odd 2 1 inner 4788.2.i.h 16
7.b odd 2 1 inner 4788.2.i.h 16
19.b odd 2 1 inner 4788.2.i.h 16
21.c even 2 1 inner 4788.2.i.h 16
57.d even 2 1 inner 4788.2.i.h 16
133.c even 2 1 inner 4788.2.i.h 16
399.h odd 2 1 inner 4788.2.i.h 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4788.2.i.h 16 1.a even 1 1 trivial
4788.2.i.h 16 3.b odd 2 1 inner
4788.2.i.h 16 7.b odd 2 1 inner
4788.2.i.h 16 19.b odd 2 1 inner
4788.2.i.h 16 21.c even 2 1 inner
4788.2.i.h 16 57.d even 2 1 inner
4788.2.i.h 16 133.c even 2 1 inner
4788.2.i.h 16 399.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4788, [\chi])\):

\( T_{5}^{4} + 8T_{5}^{2} + 14 \) Copy content Toggle raw display
\( T_{13}^{4} - 44T_{13}^{2} + 356 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T^{4} + 8 T^{2} + 14)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} - 4 T^{3} + 10 T^{2} + \cdots + 49)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} - 24 T^{2} + 112)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} - 44 T^{2} + 356)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 32 T^{2} + 14)^{4} \) Copy content Toggle raw display
$19$ \( (T^{8} - 12 T^{6} + \cdots + 130321)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} - 40 T^{2} + 112)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + 96 T^{2} + 1246)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} - 68 T^{2} + 356)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + 112 T^{2} + 2848)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 200 T^{2} + 9968)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 8 T - 2)^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} + 144 T^{2} + 1134)^{4} \) Copy content Toggle raw display
$53$ \( (T^{4} + 104 T^{2} + 1246)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} - 400 T^{2} + 39872)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + 16 T^{2} + 32)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 224 T^{2} + 11392)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 104 T^{2} + 1246)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 272 T^{2} + 16928)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + 112 T^{2} + 2848)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + 72 T^{2} + 1134)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} - 200 T^{2} + 9968)^{4} \) Copy content Toggle raw display
$97$ \( T^{16} \) Copy content Toggle raw display
show more
show less