Properties

Label 4788.2.i.f.3457.13
Level $4788$
Weight $2$
Character 4788.3457
Analytic conductor $38.232$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(3457,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.3457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 37x^{12} + 415x^{10} + 1423x^{8} + 2053x^{6} + 1321x^{4} + 355x^{2} + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 1596)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3457.13
Root \(-0.348386i\) of defining polynomial
Character \(\chi\) \(=\) 4788.3457
Dual form 4788.2.i.f.3457.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.31434i q^{5} +(1.88089 - 1.86072i) q^{7} +4.03330 q^{11} -4.35648 q^{13} +3.96420i q^{17} +(-4.28615 - 0.793025i) q^{19} -5.24251 q^{23} -5.98483 q^{25} -6.11303i q^{29} -5.77562 q^{31} +(6.16704 + 6.23389i) q^{35} -4.33521i q^{37} -6.66165 q^{41} -6.98483 q^{43} -8.19086i q^{47} +(0.0754726 - 6.99959i) q^{49} -1.52777i q^{53} +13.3677i q^{55} -11.1249 q^{59} -1.72101i q^{61} -14.4388i q^{65} +3.12615i q^{67} +11.5125i q^{71} -7.60095i q^{73} +(7.58618 - 7.50482i) q^{77} +10.1692i q^{79} -2.51607i q^{83} -13.1387 q^{85} +3.82338 q^{89} +(-8.19405 + 8.10617i) q^{91} +(2.62835 - 14.2058i) q^{95} +9.44840 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - q^{7} - 6 q^{11} - 8 q^{13} - 8 q^{25} - 16 q^{31} - q^{35} - 8 q^{41} - 22 q^{43} + 15 q^{49} + 8 q^{59} + 7 q^{77} - 10 q^{85} - 8 q^{89} - 28 q^{91} + 14 q^{95} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4788\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(1009\) \(2395\) \(4105\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.31434i 1.48222i 0.671385 + 0.741108i \(0.265700\pi\)
−0.671385 + 0.741108i \(0.734300\pi\)
\(6\) 0 0
\(7\) 1.88089 1.86072i 0.710909 0.703285i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.03330 1.21608 0.608042 0.793905i \(-0.291955\pi\)
0.608042 + 0.793905i \(0.291955\pi\)
\(12\) 0 0
\(13\) −4.35648 −1.20827 −0.604135 0.796882i \(-0.706481\pi\)
−0.604135 + 0.796882i \(0.706481\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.96420i 0.961461i 0.876869 + 0.480730i \(0.159628\pi\)
−0.876869 + 0.480730i \(0.840372\pi\)
\(18\) 0 0
\(19\) −4.28615 0.793025i −0.983311 0.181932i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.24251 −1.09314 −0.546570 0.837414i \(-0.684067\pi\)
−0.546570 + 0.837414i \(0.684067\pi\)
\(24\) 0 0
\(25\) −5.98483 −1.19697
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.11303i 1.13516i −0.823318 0.567581i \(-0.807880\pi\)
0.823318 0.567581i \(-0.192120\pi\)
\(30\) 0 0
\(31\) −5.77562 −1.03733 −0.518666 0.854977i \(-0.673571\pi\)
−0.518666 + 0.854977i \(0.673571\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.16704 + 6.23389i 1.04242 + 1.05372i
\(36\) 0 0
\(37\) 4.33521i 0.712704i −0.934352 0.356352i \(-0.884020\pi\)
0.934352 0.356352i \(-0.115980\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.66165 −1.04037 −0.520187 0.854052i \(-0.674138\pi\)
−0.520187 + 0.854052i \(0.674138\pi\)
\(42\) 0 0
\(43\) −6.98483 −1.06518 −0.532589 0.846374i \(-0.678781\pi\)
−0.532589 + 0.846374i \(0.678781\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.19086i 1.19476i −0.801958 0.597380i \(-0.796208\pi\)
0.801958 0.597380i \(-0.203792\pi\)
\(48\) 0 0
\(49\) 0.0754726 6.99959i 0.0107818 0.999942i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.52777i 0.209855i −0.994480 0.104927i \(-0.966539\pi\)
0.994480 0.104927i \(-0.0334610\pi\)
\(54\) 0 0
\(55\) 13.3677i 1.80250i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.1249 −1.44833 −0.724167 0.689625i \(-0.757776\pi\)
−0.724167 + 0.689625i \(0.757776\pi\)
\(60\) 0 0
\(61\) 1.72101i 0.220352i −0.993912 0.110176i \(-0.964859\pi\)
0.993912 0.110176i \(-0.0351415\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14.4388i 1.79092i
\(66\) 0 0
\(67\) 3.12615i 0.381920i 0.981598 + 0.190960i \(0.0611601\pi\)
−0.981598 + 0.190960i \(0.938840\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.5125i 1.36628i 0.730287 + 0.683140i \(0.239386\pi\)
−0.730287 + 0.683140i \(0.760614\pi\)
\(72\) 0 0
\(73\) 7.60095i 0.889623i −0.895624 0.444812i \(-0.853271\pi\)
0.895624 0.444812i \(-0.146729\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.58618 7.50482i 0.864525 0.855254i
\(78\) 0 0
\(79\) 10.1692i 1.14412i 0.820210 + 0.572062i \(0.193856\pi\)
−0.820210 + 0.572062i \(0.806144\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.51607i 0.276175i −0.990420 0.138087i \(-0.955905\pi\)
0.990420 0.138087i \(-0.0440955\pi\)
\(84\) 0 0
\(85\) −13.1387 −1.42509
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.82338 0.405277 0.202639 0.979254i \(-0.435048\pi\)
0.202639 + 0.979254i \(0.435048\pi\)
\(90\) 0 0
\(91\) −8.19405 + 8.10617i −0.858970 + 0.849758i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.62835 14.2058i 0.269663 1.45748i
\(96\) 0 0
\(97\) 9.44840 0.959339 0.479670 0.877449i \(-0.340756\pi\)
0.479670 + 0.877449i \(0.340756\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.2626i 1.61819i 0.587677 + 0.809095i \(0.300042\pi\)
−0.587677 + 0.809095i \(0.699958\pi\)
\(102\) 0 0
\(103\) 1.91272 0.188466 0.0942329 0.995550i \(-0.469960\pi\)
0.0942329 + 0.995550i \(0.469960\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.8661i 1.53383i 0.641748 + 0.766916i \(0.278210\pi\)
−0.641748 + 0.766916i \(0.721790\pi\)
\(108\) 0 0
\(109\) 12.6780i 1.21433i −0.794575 0.607166i \(-0.792306\pi\)
0.794575 0.607166i \(-0.207694\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.64600i 0.154843i −0.996998 0.0774213i \(-0.975331\pi\)
0.996998 0.0774213i \(-0.0246687\pi\)
\(114\) 0 0
\(115\) 17.3755i 1.62027i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.37626 + 7.45622i 0.676180 + 0.683510i
\(120\) 0 0
\(121\) 5.26749 0.478862
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.26407i 0.291947i
\(126\) 0 0
\(127\) 12.9730i 1.15117i 0.817742 + 0.575585i \(0.195225\pi\)
−0.817742 + 0.575585i \(0.804775\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17.8947i 1.56347i 0.623613 + 0.781733i \(0.285664\pi\)
−0.623613 + 0.781733i \(0.714336\pi\)
\(132\) 0 0
\(133\) −9.53736 + 6.48372i −0.826994 + 0.562210i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.9222 −1.01858 −0.509290 0.860595i \(-0.670092\pi\)
−0.509290 + 0.860595i \(0.670092\pi\)
\(138\) 0 0
\(139\) 5.84891i 0.496098i −0.968748 0.248049i \(-0.920211\pi\)
0.968748 0.248049i \(-0.0797894\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −17.5710 −1.46936
\(144\) 0 0
\(145\) 20.2606 1.68255
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.15913 0.586499 0.293250 0.956036i \(-0.405263\pi\)
0.293250 + 0.956036i \(0.405263\pi\)
\(150\) 0 0
\(151\) 23.1949i 1.88757i −0.330555 0.943787i \(-0.607236\pi\)
0.330555 0.943787i \(-0.392764\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 19.1423i 1.53755i
\(156\) 0 0
\(157\) 7.02849i 0.560934i −0.959864 0.280467i \(-0.909511\pi\)
0.959864 0.280467i \(-0.0904894\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.86058 + 9.75483i −0.777122 + 0.768788i
\(162\) 0 0
\(163\) 11.7954 0.923884 0.461942 0.886910i \(-0.347153\pi\)
0.461942 + 0.886910i \(0.347153\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.58195 0.664092 0.332046 0.943263i \(-0.392261\pi\)
0.332046 + 0.943263i \(0.392261\pi\)
\(168\) 0 0
\(169\) 5.97893 0.459918
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.2435 −1.00688 −0.503441 0.864030i \(-0.667933\pi\)
−0.503441 + 0.864030i \(0.667933\pi\)
\(174\) 0 0
\(175\) −11.2568 + 11.1361i −0.850934 + 0.841808i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.65878i 0.497700i −0.968542 0.248850i \(-0.919947\pi\)
0.968542 0.248850i \(-0.0800527\pi\)
\(180\) 0 0
\(181\) −16.0741 −1.19478 −0.597388 0.801952i \(-0.703795\pi\)
−0.597388 + 0.801952i \(0.703795\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 14.3683 1.05638
\(186\) 0 0
\(187\) 15.9888i 1.16922i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.3476 −1.18287 −0.591435 0.806353i \(-0.701438\pi\)
−0.591435 + 0.806353i \(0.701438\pi\)
\(192\) 0 0
\(193\) 21.3685i 1.53814i −0.639167 0.769068i \(-0.720721\pi\)
0.639167 0.769068i \(-0.279279\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.65959 0.331982 0.165991 0.986127i \(-0.446918\pi\)
0.165991 + 0.986127i \(0.446918\pi\)
\(198\) 0 0
\(199\) 17.3410i 1.22927i 0.788810 + 0.614637i \(0.210697\pi\)
−0.788810 + 0.614637i \(0.789303\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −11.3746 11.4979i −0.798341 0.806996i
\(204\) 0 0
\(205\) 22.0790i 1.54206i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −17.2873 3.19851i −1.19579 0.221245i
\(210\) 0 0
\(211\) 23.5438i 1.62082i −0.585861 0.810411i \(-0.699244\pi\)
0.585861 0.810411i \(-0.300756\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 23.1501i 1.57882i
\(216\) 0 0
\(217\) −10.8633 + 10.7468i −0.737448 + 0.729539i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 17.2700i 1.16170i
\(222\) 0 0
\(223\) −12.6528 −0.847294 −0.423647 0.905827i \(-0.639250\pi\)
−0.423647 + 0.905827i \(0.639250\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −23.5130 −1.56061 −0.780305 0.625399i \(-0.784936\pi\)
−0.780305 + 0.625399i \(0.784936\pi\)
\(228\) 0 0
\(229\) 4.17713i 0.276032i −0.990430 0.138016i \(-0.955927\pi\)
0.990430 0.138016i \(-0.0440726\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.25606 0.344336 0.172168 0.985068i \(-0.444923\pi\)
0.172168 + 0.985068i \(0.444923\pi\)
\(234\) 0 0
\(235\) 27.1473 1.77089
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.5845 −0.749341 −0.374671 0.927158i \(-0.622244\pi\)
−0.374671 + 0.927158i \(0.622244\pi\)
\(240\) 0 0
\(241\) 14.1321 0.910328 0.455164 0.890407i \(-0.349581\pi\)
0.455164 + 0.890407i \(0.349581\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 23.1990 + 0.250142i 1.48213 + 0.0159810i
\(246\) 0 0
\(247\) 18.6725 + 3.45480i 1.18811 + 0.219824i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.8508i 1.00050i −0.865882 0.500248i \(-0.833242\pi\)
0.865882 0.500248i \(-0.166758\pi\)
\(252\) 0 0
\(253\) −21.1446 −1.32935
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.4714 1.21459 0.607296 0.794475i \(-0.292254\pi\)
0.607296 + 0.794475i \(0.292254\pi\)
\(258\) 0 0
\(259\) −8.06659 8.15404i −0.501234 0.506667i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.1924 −0.936802 −0.468401 0.883516i \(-0.655170\pi\)
−0.468401 + 0.883516i \(0.655170\pi\)
\(264\) 0 0
\(265\) 5.06353 0.311050
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.35810 −0.204747 −0.102373 0.994746i \(-0.532644\pi\)
−0.102373 + 0.994746i \(0.532644\pi\)
\(270\) 0 0
\(271\) 11.2025i 0.680502i −0.940335 0.340251i \(-0.889488\pi\)
0.940335 0.340251i \(-0.110512\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −24.1386 −1.45561
\(276\) 0 0
\(277\) −24.0596 −1.44560 −0.722801 0.691056i \(-0.757146\pi\)
−0.722801 + 0.691056i \(0.757146\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.3703i 0.797604i −0.917037 0.398802i \(-0.869426\pi\)
0.917037 0.398802i \(-0.130574\pi\)
\(282\) 0 0
\(283\) 30.5046i 1.81331i 0.421874 + 0.906654i \(0.361372\pi\)
−0.421874 + 0.906654i \(0.638628\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.5298 + 12.3954i −0.739611 + 0.731680i
\(288\) 0 0
\(289\) 1.28509 0.0755936
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 26.8711 1.56982 0.784912 0.619607i \(-0.212708\pi\)
0.784912 + 0.619607i \(0.212708\pi\)
\(294\) 0 0
\(295\) 36.8716i 2.14675i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.8389 1.32081
\(300\) 0 0
\(301\) −13.1377 + 12.9968i −0.757243 + 0.749123i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.70400 0.326610
\(306\) 0 0
\(307\) 27.2887 1.55745 0.778725 0.627366i \(-0.215867\pi\)
0.778725 + 0.627366i \(0.215867\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.7715i 1.17784i −0.808191 0.588921i \(-0.799553\pi\)
0.808191 0.588921i \(-0.200447\pi\)
\(312\) 0 0
\(313\) 15.5300i 0.877806i −0.898534 0.438903i \(-0.855367\pi\)
0.898534 0.438903i \(-0.144633\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.94093i 0.165179i −0.996584 0.0825895i \(-0.973681\pi\)
0.996584 0.0825895i \(-0.0263190\pi\)
\(318\) 0 0
\(319\) 24.6557i 1.38045i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.14371 16.9912i 0.174921 0.945415i
\(324\) 0 0
\(325\) 26.0728 1.44626
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −15.2409 15.4061i −0.840256 0.849365i
\(330\) 0 0
\(331\) 26.0862i 1.43383i 0.697161 + 0.716914i \(0.254446\pi\)
−0.697161 + 0.716914i \(0.745554\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.3611 −0.566089
\(336\) 0 0
\(337\) 0.747263i 0.0407060i 0.999793 + 0.0203530i \(0.00647901\pi\)
−0.999793 + 0.0203530i \(0.993521\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −23.2948 −1.26148
\(342\) 0 0
\(343\) −12.8823 13.3059i −0.695579 0.718450i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.00561103 0.000301216 0.000150608 1.00000i \(-0.499952\pi\)
0.000150608 1.00000i \(0.499952\pi\)
\(348\) 0 0
\(349\) 6.05622i 0.324182i 0.986776 + 0.162091i \(0.0518238\pi\)
−0.986776 + 0.162091i \(0.948176\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.02908i 0.320895i −0.987044 0.160448i \(-0.948706\pi\)
0.987044 0.160448i \(-0.0512938\pi\)
\(354\) 0 0
\(355\) −38.1562 −2.02512
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.7208 −1.46305 −0.731525 0.681815i \(-0.761191\pi\)
−0.731525 + 0.681815i \(0.761191\pi\)
\(360\) 0 0
\(361\) 17.7422 + 6.79805i 0.933801 + 0.357792i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 25.1921 1.31861
\(366\) 0 0
\(367\) 16.2401i 0.847727i 0.905726 + 0.423863i \(0.139326\pi\)
−0.905726 + 0.423863i \(0.860674\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.84274 2.87356i −0.147588 0.149188i
\(372\) 0 0
\(373\) 32.2960i 1.67222i 0.548558 + 0.836112i \(0.315177\pi\)
−0.548558 + 0.836112i \(0.684823\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 26.6313i 1.37158i
\(378\) 0 0
\(379\) 21.1706i 1.08746i 0.839259 + 0.543732i \(0.182989\pi\)
−0.839259 + 0.543732i \(0.817011\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.68238 −0.290356 −0.145178 0.989406i \(-0.546375\pi\)
−0.145178 + 0.989406i \(0.546375\pi\)
\(384\) 0 0
\(385\) 24.8735 + 25.1432i 1.26767 + 1.28141i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.13814 −0.463322 −0.231661 0.972797i \(-0.574416\pi\)
−0.231661 + 0.972797i \(0.574416\pi\)
\(390\) 0 0
\(391\) 20.7824i 1.05101i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −33.7042 −1.69584
\(396\) 0 0
\(397\) 22.9841i 1.15354i 0.816906 + 0.576770i \(0.195687\pi\)
−0.816906 + 0.576770i \(0.804313\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.41910i 0.220679i −0.993894 0.110340i \(-0.964806\pi\)
0.993894 0.110340i \(-0.0351939\pi\)
\(402\) 0 0
\(403\) 25.1614 1.25338
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17.4852i 0.866709i
\(408\) 0 0
\(409\) −22.9984 −1.13720 −0.568598 0.822616i \(-0.692514\pi\)
−0.568598 + 0.822616i \(0.692514\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −20.9246 + 20.7002i −1.02963 + 1.01859i
\(414\) 0 0
\(415\) 8.33911 0.409351
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.4329i 0.656240i −0.944636 0.328120i \(-0.893585\pi\)
0.944636 0.328120i \(-0.106415\pi\)
\(420\) 0 0
\(421\) 11.0245i 0.537303i −0.963237 0.268652i \(-0.913422\pi\)
0.963237 0.268652i \(-0.0865780\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 23.7251i 1.15084i
\(426\) 0 0
\(427\) −3.20230 3.23702i −0.154970 0.156650i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 19.6845i 0.948167i −0.880480 0.474084i \(-0.842779\pi\)
0.880480 0.474084i \(-0.157221\pi\)
\(432\) 0 0
\(433\) −25.5912 −1.22984 −0.614918 0.788591i \(-0.710811\pi\)
−0.614918 + 0.788591i \(0.710811\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 22.4702 + 4.15744i 1.07490 + 0.198877i
\(438\) 0 0
\(439\) −5.60570 −0.267546 −0.133773 0.991012i \(-0.542709\pi\)
−0.133773 + 0.991012i \(0.542709\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −39.2207 −1.86343 −0.931716 0.363188i \(-0.881688\pi\)
−0.931716 + 0.363188i \(0.881688\pi\)
\(444\) 0 0
\(445\) 12.6720i 0.600709i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.4698i 1.29638i 0.761478 + 0.648191i \(0.224474\pi\)
−0.761478 + 0.648191i \(0.775526\pi\)
\(450\) 0 0
\(451\) −26.8684 −1.26518
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −26.8666 27.1578i −1.25953 1.27318i
\(456\) 0 0
\(457\) 32.0041 1.49709 0.748545 0.663084i \(-0.230753\pi\)
0.748545 + 0.663084i \(0.230753\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.9913i 0.605064i 0.953139 + 0.302532i \(0.0978319\pi\)
−0.953139 + 0.302532i \(0.902168\pi\)
\(462\) 0 0
\(463\) 10.9542 0.509084 0.254542 0.967062i \(-0.418075\pi\)
0.254542 + 0.967062i \(0.418075\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 31.1520i 1.44154i 0.693172 + 0.720772i \(0.256213\pi\)
−0.693172 + 0.720772i \(0.743787\pi\)
\(468\) 0 0
\(469\) 5.81688 + 5.87994i 0.268599 + 0.271510i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −28.1719 −1.29535
\(474\) 0 0
\(475\) 25.6519 + 4.74612i 1.17699 + 0.217767i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20.6941i 0.945535i −0.881187 0.472768i \(-0.843255\pi\)
0.881187 0.472768i \(-0.156745\pi\)
\(480\) 0 0
\(481\) 18.8863i 0.861139i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 31.3152i 1.42195i
\(486\) 0 0
\(487\) 9.43866i 0.427707i −0.976866 0.213853i \(-0.931399\pi\)
0.976866 0.213853i \(-0.0686015\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.7595 0.575830 0.287915 0.957656i \(-0.407038\pi\)
0.287915 + 0.957656i \(0.407038\pi\)
\(492\) 0 0
\(493\) 24.2333 1.09141
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 21.4215 + 21.6537i 0.960884 + 0.971300i
\(498\) 0 0
\(499\) 29.4787 1.31965 0.659824 0.751420i \(-0.270631\pi\)
0.659824 + 0.751420i \(0.270631\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.8223i 0.794659i 0.917676 + 0.397329i \(0.130063\pi\)
−0.917676 + 0.397329i \(0.869937\pi\)
\(504\) 0 0
\(505\) −53.8998 −2.39851
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.40660 0.372616 0.186308 0.982491i \(-0.440348\pi\)
0.186308 + 0.982491i \(0.440348\pi\)
\(510\) 0 0
\(511\) −14.1432 14.2965i −0.625658 0.632441i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.33940i 0.279347i
\(516\) 0 0
\(517\) 33.0362i 1.45293i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −26.3828 −1.15585 −0.577926 0.816089i \(-0.696138\pi\)
−0.577926 + 0.816089i \(0.696138\pi\)
\(522\) 0 0
\(523\) 2.13998 0.0935747 0.0467874 0.998905i \(-0.485102\pi\)
0.0467874 + 0.998905i \(0.485102\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.8957i 0.997353i
\(528\) 0 0
\(529\) 4.48394 0.194954
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 29.0213 1.25705
\(534\) 0 0
\(535\) −52.5855 −2.27347
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.304403 28.2314i 0.0131116 1.21601i
\(540\) 0 0
\(541\) 34.7311 1.49321 0.746604 0.665269i \(-0.231683\pi\)
0.746604 + 0.665269i \(0.231683\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 42.0191 1.79990
\(546\) 0 0
\(547\) 37.5317i 1.60474i 0.596827 + 0.802370i \(0.296428\pi\)
−0.596827 + 0.802370i \(0.703572\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.84778 + 26.2014i −0.206523 + 1.11622i
\(552\) 0 0
\(553\) 18.9220 + 19.1271i 0.804645 + 0.813368i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 25.2915 1.07163 0.535817 0.844334i \(-0.320004\pi\)
0.535817 + 0.844334i \(0.320004\pi\)
\(558\) 0 0
\(559\) 30.4293 1.28702
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.05337 0.255119 0.127560 0.991831i \(-0.459286\pi\)
0.127560 + 0.991831i \(0.459286\pi\)
\(564\) 0 0
\(565\) 5.45540 0.229510
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 35.3530i 1.48207i 0.671465 + 0.741036i \(0.265665\pi\)
−0.671465 + 0.741036i \(0.734335\pi\)
\(570\) 0 0
\(571\) −40.7930 −1.70713 −0.853566 0.520985i \(-0.825565\pi\)
−0.853566 + 0.520985i \(0.825565\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 31.3756 1.30845
\(576\) 0 0
\(577\) 39.0205i 1.62444i −0.583348 0.812222i \(-0.698258\pi\)
0.583348 0.812222i \(-0.301742\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.68169 4.73245i −0.194229 0.196335i
\(582\) 0 0
\(583\) 6.16194i 0.255201i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.4455i 0.761327i 0.924714 + 0.380663i \(0.124304\pi\)
−0.924714 + 0.380663i \(0.875696\pi\)
\(588\) 0 0
\(589\) 24.7552 + 4.58021i 1.02002 + 0.188724i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.9098i 0.571205i −0.958348 0.285603i \(-0.907806\pi\)
0.958348 0.285603i \(-0.0921938\pi\)
\(594\) 0 0
\(595\) −24.7124 + 24.4474i −1.01311 + 1.00225i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.26958i 0.133591i 0.997767 + 0.0667956i \(0.0212775\pi\)
−0.997767 + 0.0667956i \(0.978722\pi\)
\(600\) 0 0
\(601\) 18.1246 0.739319 0.369660 0.929167i \(-0.379474\pi\)
0.369660 + 0.929167i \(0.379474\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 17.4582i 0.709778i
\(606\) 0 0
\(607\) 10.1642 0.412553 0.206276 0.978494i \(-0.433865\pi\)
0.206276 + 0.978494i \(0.433865\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 35.6833i 1.44359i
\(612\) 0 0
\(613\) 26.1018 1.05424 0.527120 0.849791i \(-0.323272\pi\)
0.527120 + 0.849791i \(0.323272\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.8728 0.719533 0.359766 0.933042i \(-0.382856\pi\)
0.359766 + 0.933042i \(0.382856\pi\)
\(618\) 0 0
\(619\) 19.5703i 0.786598i 0.919411 + 0.393299i \(0.128666\pi\)
−0.919411 + 0.393299i \(0.871334\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.19134 7.11422i 0.288115 0.285025i
\(624\) 0 0
\(625\) −19.1059 −0.764237
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.1857 0.685237
\(630\) 0 0
\(631\) 13.4699 0.536227 0.268113 0.963387i \(-0.413600\pi\)
0.268113 + 0.963387i \(0.413600\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −42.9970 −1.70628
\(636\) 0 0
\(637\) −0.328795 + 30.4936i −0.0130273 + 1.20820i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 16.3001i 0.643814i 0.946771 + 0.321907i \(0.104324\pi\)
−0.946771 + 0.321907i \(0.895676\pi\)
\(642\) 0 0
\(643\) 44.9878i 1.77415i 0.461628 + 0.887074i \(0.347266\pi\)
−0.461628 + 0.887074i \(0.652734\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.57675i 0.0619884i −0.999520 0.0309942i \(-0.990133\pi\)
0.999520 0.0309942i \(-0.00986735\pi\)
\(648\) 0 0
\(649\) −44.8699 −1.76130
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −36.8857 −1.44345 −0.721725 0.692180i \(-0.756650\pi\)
−0.721725 + 0.692180i \(0.756650\pi\)
\(654\) 0 0
\(655\) −59.3090 −2.31740
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.6676i 0.649277i 0.945838 + 0.324639i \(0.105243\pi\)
−0.945838 + 0.324639i \(0.894757\pi\)
\(660\) 0 0
\(661\) −37.8693 −1.47295 −0.736473 0.676467i \(-0.763510\pi\)
−0.736473 + 0.676467i \(0.763510\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −21.4892 31.6100i −0.833317 1.22579i
\(666\) 0 0
\(667\) 32.0476i 1.24089i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.94133i 0.267967i
\(672\) 0 0
\(673\) 27.2338i 1.04979i 0.851168 + 0.524894i \(0.175895\pi\)
−0.851168 + 0.524894i \(0.824105\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.2186 0.469598 0.234799 0.972044i \(-0.424557\pi\)
0.234799 + 0.972044i \(0.424557\pi\)
\(678\) 0 0
\(679\) 17.7714 17.5808i 0.682003 0.674689i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 34.4046i 1.31646i −0.752818 0.658229i \(-0.771306\pi\)
0.752818 0.658229i \(-0.228694\pi\)
\(684\) 0 0
\(685\) 39.5141i 1.50976i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.65569i 0.253561i
\(690\) 0 0
\(691\) 17.0960i 0.650364i −0.945651 0.325182i \(-0.894574\pi\)
0.945651 0.325182i \(-0.105426\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.3853 0.735325
\(696\) 0 0
\(697\) 26.4081i 1.00028i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.24710 −0.235950 −0.117975 0.993017i \(-0.537640\pi\)
−0.117975 + 0.993017i \(0.537640\pi\)
\(702\) 0 0
\(703\) −3.43793 + 18.5814i −0.129664 + 0.700810i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 30.2601 + 30.5881i 1.13805 + 1.15039i
\(708\) 0 0
\(709\) −5.84304 −0.219440 −0.109720 0.993963i \(-0.534995\pi\)
−0.109720 + 0.993963i \(0.534995\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 30.2787 1.13395
\(714\) 0 0
\(715\) 58.2362i 2.17791i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.68298i 0.174646i 0.996180 + 0.0873228i \(0.0278312\pi\)
−0.996180 + 0.0873228i \(0.972169\pi\)
\(720\) 0 0
\(721\) 3.59761 3.55903i 0.133982 0.132545i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 36.5855i 1.35875i
\(726\) 0 0
\(727\) 50.2695i 1.86439i −0.361955 0.932196i \(-0.617890\pi\)
0.361955 0.932196i \(-0.382110\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 27.6893i 1.02413i
\(732\) 0 0
\(733\) 34.2636i 1.26555i −0.774334 0.632777i \(-0.781915\pi\)
0.774334 0.632777i \(-0.218085\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.6087i 0.464448i
\(738\) 0 0
\(739\) −25.4568 −0.936444 −0.468222 0.883611i \(-0.655105\pi\)
−0.468222 + 0.883611i \(0.655105\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 35.4359i 1.30002i −0.759926 0.650009i \(-0.774765\pi\)
0.759926 0.650009i \(-0.225235\pi\)
\(744\) 0 0
\(745\) 23.7278i 0.869319i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 29.5223 + 29.8423i 1.07872 + 1.09041i
\(750\) 0 0
\(751\) 53.8794i 1.96609i −0.183375 0.983043i \(-0.558702\pi\)
0.183375 0.983043i \(-0.441298\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 76.8757 2.79779
\(756\) 0 0
\(757\) −39.0592 −1.41963 −0.709815 0.704388i \(-0.751222\pi\)
−0.709815 + 0.704388i \(0.751222\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.555606i 0.0201407i −0.999949 0.0100704i \(-0.996794\pi\)
0.999949 0.0100704i \(-0.00320555\pi\)
\(762\) 0 0
\(763\) −23.5901 23.8459i −0.854021 0.863279i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 48.4653 1.74998
\(768\) 0 0
\(769\) 37.8868i 1.36623i 0.730310 + 0.683116i \(0.239376\pi\)
−0.730310 + 0.683116i \(0.760624\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25.1691 −0.905269 −0.452634 0.891696i \(-0.649516\pi\)
−0.452634 + 0.891696i \(0.649516\pi\)
\(774\) 0 0
\(775\) 34.5661 1.24165
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 28.5529 + 5.28285i 1.02301 + 0.189278i
\(780\) 0 0
\(781\) 46.4333i 1.66151i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.2948 0.831426
\(786\) 0 0
\(787\) −0.527575 −0.0188060 −0.00940301 0.999956i \(-0.502993\pi\)
−0.00940301 + 0.999956i \(0.502993\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.06274 3.09594i −0.108898 0.110079i
\(792\) 0 0
\(793\) 7.49753i 0.266245i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 34.4328 1.21967 0.609836 0.792528i \(-0.291235\pi\)
0.609836 + 0.792528i \(0.291235\pi\)
\(798\) 0 0
\(799\) 32.4702 1.14871
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\)