Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4788,2,Mod(3457,4788)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4788.3457");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4788.i (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(38.2323724878\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.2702336256.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{4} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
Embedding label | 3457.6 | ||
Root | \(-0.656712 + 2.13746i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 4788.3457 |
Dual form | 4788.2.i.d.3457.3 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4788\mathbb{Z}\right)^\times\).
\(n\) | \(533\) | \(1009\) | \(2395\) | \(4105\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 3.27492i | 1.46459i | 0.680989 | + | 0.732294i | \(0.261550\pi\) | ||||
−0.680989 | + | 0.732294i | \(0.738450\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −2.63746 | + | 0.209313i | −0.996866 | + | 0.0791130i | ||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −6.50958 | −1.96271 | −0.981356 | − | 0.192201i | \(-0.938437\pi\) | ||||
−0.981356 | + | 0.192201i | \(0.938437\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 7.27492i | 1.76443i | 0.470850 | + | 0.882213i | \(0.343947\pi\) | ||||
−0.470850 | + | 0.882213i | \(0.656053\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.35890i | 1.00000i | ||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −8.71780 | −1.81779 | −0.908893 | − | 0.417029i | \(-0.863071\pi\) | ||||
−0.908893 | + | 0.417029i | \(0.863071\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −5.72508 | −1.14502 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −0.685484 | − | 8.63746i | −0.115868 | − | 1.46000i | ||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 11.8248 | 1.80326 | 0.901629 | − | 0.432511i | \(-0.142372\pi\) | ||||
0.901629 | + | 0.432511i | \(0.142372\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − | 2.72508i | − | 0.397494i | −0.980051 | − | 0.198747i | \(-0.936313\pi\) | ||
0.980051 | − | 0.198747i | \(-0.0636872\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 6.91238 | − | 1.10411i | 0.987482 | − | 0.157730i | ||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | − | 21.3183i | − | 2.87456i | ||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | − | 10.8109i | − | 1.38420i | −0.721803 | − | 0.692099i | \(-0.756686\pi\) | ||
0.721803 | − | 0.692099i | \(-0.243314\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 16.0646i | 1.88022i | 0.340868 | + | 0.940111i | \(0.389279\pi\) | ||||
−0.340868 | + | 0.940111i | \(0.610721\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 17.1687 | − | 1.36254i | 1.95656 | − | 0.155276i | ||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − | 16.0000i | − | 1.75623i | −0.478451 | − | 0.878114i | \(-0.658802\pi\) | ||
0.478451 | − | 0.878114i | \(-0.341198\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −23.8248 | −2.58416 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −14.2750 | −1.46459 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 10.0000i | 0.995037i | 0.867453 | + | 0.497519i | \(0.165755\pi\) | ||||
−0.867453 | + | 0.497519i | \(0.834245\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | − | 28.5501i | − | 2.66231i | ||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −1.52274 | − | 19.1873i | −0.139589 | − | 1.75890i | ||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 31.3746 | 2.85224 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | − | 2.37459i | − | 0.212389i | ||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 22.3746i | 1.95488i | 0.211221 | + | 0.977438i | \(0.432256\pi\) | ||||
−0.211221 | + | 0.977438i | \(0.567744\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −0.912376 | − | 11.4964i | −0.0791130 | − | 0.996866i | ||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −17.7391 | −1.51556 | −0.757778 | − | 0.652512i | \(-0.773715\pi\) | ||||
−0.757778 | + | 0.652512i | \(0.773715\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − | 18.6915i | − | 1.58539i | −0.609618 | − | 0.792695i | \(-0.708677\pi\) | ||
0.609618 | − | 0.792695i | \(-0.291323\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −1.37097 | −0.112314 | −0.0561570 | − | 0.998422i | \(-0.517885\pi\) | ||||
−0.0561570 | + | 0.998422i | \(0.517885\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − | 17.4356i | − | 1.39151i | −0.718278 | − | 0.695756i | \(-0.755069\pi\) | ||
0.718278 | − | 0.695756i | \(-0.244931\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 22.9928 | − | 1.82475i | 1.81209 | − | 0.143811i | ||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −24.0000 | −1.87983 | −0.939913 | − | 0.341415i | \(-0.889094\pi\) | ||||
−0.939913 | + | 0.341415i | \(0.889094\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −13.0000 | −1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 15.0997 | − | 1.19834i | 1.14143 | − | 0.0905857i | ||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − | 47.3566i | − | 3.46306i | ||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 25.6197 | 1.85377 | 0.926887 | − | 0.375339i | \(-0.122474\pi\) | ||||
0.926887 | + | 0.375339i | \(0.122474\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 17.4356 | 1.24223 | 0.621117 | − | 0.783718i | \(-0.286679\pi\) | ||||
0.621117 | + | 0.783718i | \(0.286679\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | − | 15.1123i | − | 1.07128i | −0.844446 | − | 0.535641i | \(-0.820070\pi\) | ||
0.844446 | − | 0.535641i | \(-0.179930\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | − | 28.3746i | − | 1.96271i | ||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 38.7251i | 2.64103i | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 29.0838i | 1.92191i | 0.276704 | + | 0.960955i | \(0.410758\pi\) | ||||
−0.276704 | + | 0.960955i | \(0.589242\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 14.3901 | 0.942728 | 0.471364 | − | 0.881939i | \(-0.343762\pi\) | ||||
0.471364 | + | 0.881939i | \(0.343762\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 8.92442 | 0.582165 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 10.9260 | 0.706745 | 0.353373 | − | 0.935483i | \(-0.385035\pi\) | ||||
0.353373 | + | 0.935483i | \(0.385035\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 3.61587 | + | 22.6375i | 0.231010 | + | 1.44625i | ||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 30.3746i | 1.91723i | 0.284711 | + | 0.958613i | \(0.408102\pi\) | ||||
−0.284711 | + | 0.958613i | \(0.591898\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 56.7492 | 3.56779 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −24.7824 | −1.52815 | −0.764075 | − | 0.645128i | \(-0.776804\pi\) | ||||
−0.764075 | + | 0.645128i | \(0.776804\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | − | 26.1534i | − | 1.58871i | −0.607457 | − | 0.794353i | \(-0.707810\pi\) | ||
0.607457 | − | 0.794353i | \(-0.292190\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 37.2679 | 2.24734 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 12.7251 | 0.764576 | 0.382288 | − | 0.924043i | \(-0.375136\pi\) | ||||
0.382288 | + | 0.924043i | \(0.375136\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 33.3851i | 1.98454i | 0.124096 | + | 0.992270i | \(0.460397\pi\) | ||||
−0.124096 | + | 0.992270i | \(0.539603\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −35.9244 | −2.11320 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −31.1873 | + | 2.47508i | −1.79761 | + | 0.142661i | ||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 35.4049 | 2.02728 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | − | 21.2749i | − | 1.20639i | −0.797594 | − | 0.603195i | \(-0.793894\pi\) | ||
0.797594 | − | 0.603195i | \(-0.206106\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − | 34.8712i | − | 1.97104i | −0.169570 | − | 0.985518i | \(-0.554238\pi\) | ||
0.169570 | − | 0.985518i | \(-0.445762\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −31.7106 | −1.76443 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0.570396 | + | 7.18729i | 0.0314470 | + | 0.396248i | ||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −18.0000 | + | 4.35890i | −0.971909 | + | 0.235358i | ||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −34.2224 | −1.83715 | −0.918577 | − | 0.395242i | \(-0.870661\pi\) | ||||
−0.918577 | + | 0.395242i | \(0.870661\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | − | 36.8492i | − | 1.97249i | −0.165277 | − | 0.986247i | \(-0.552852\pi\) | ||
0.165277 | − | 0.986247i | \(-0.447148\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − | 14.0000i | − | 0.745145i | −0.928003 | − | 0.372572i | \(-0.878476\pi\) | ||
0.928003 | − | 0.372572i | \(-0.121524\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 15.9495 | 0.841785 | 0.420892 | − | 0.907111i | \(-0.361717\pi\) | ||||
0.420892 | + | 0.907111i | \(0.361717\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −52.6103 | −2.75375 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 26.1534i | 1.36520i | 0.730794 | + | 0.682598i | \(0.239150\pi\) | ||||
−0.730794 | + | 0.682598i | \(0.760850\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 4.46221 | + | 56.2262i | 0.227415 | + | 2.86555i | ||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −6.39449 | −0.324213 | −0.162107 | − | 0.986773i | \(-0.551829\pi\) | ||||
−0.162107 | + | 0.986773i | \(0.551829\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | − | 63.4213i | − | 3.20735i | ||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 13.5529i | 0.680199i | 0.940389 | + | 0.340099i | \(0.110461\pi\) | ||||
−0.940389 | + | 0.340099i | \(0.889539\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 52.3987 | 2.57215 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − | 40.0000i | − | 1.95413i | −0.212946 | − | 0.977064i | \(-0.568306\pi\) | ||
0.212946 | − | 0.977064i | \(-0.431694\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | − | 41.6495i | − | 2.02030i | ||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 2.26287 | + | 28.5134i | 0.109508 | + | 1.37986i | ||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − | 38.0000i | − | 1.81779i | ||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 9.85859 | 0.468396 | 0.234198 | − | 0.972189i | \(-0.424754\pi\) | ||||
0.234198 | + | 0.972189i | \(0.424754\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 25.4743 | 1.19164 | 0.595818 | − | 0.803120i | \(-0.296828\pi\) | ||||
0.595818 | + | 0.803120i | \(0.296828\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0.374586i | 0.0174462i | 0.999962 | + | 0.00872311i | \(0.00277669\pi\) | ||||
−0.999962 | + | 0.00872311i | \(0.997223\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −31.8248 | −1.47902 | −0.739511 | − | 0.673145i | \(-0.764943\pi\) | ||||
−0.739511 | + | 0.673145i | \(0.764943\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − | 25.2749i | − | 1.16958i | −0.811183 | − | 0.584792i | \(-0.801176\pi\) | ||
0.811183 | − | 0.584792i | \(-0.198824\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −76.9741 | −3.53927 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | − | 24.9551i | − | 1.14502i | ||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | − | 4.00000i | − | 0.182765i | −0.995816 | − | 0.0913823i | \(-0.970871\pi\) | ||
0.995816 | − | 0.0913823i | \(-0.0291285\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −43.5890 | −1.96714 | −0.983572 | − | 0.180517i | \(-0.942223\pi\) | ||||
−0.983572 | + | 0.180517i | \(0.942223\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −38.3746 | −1.71788 | −0.858941 | − | 0.512074i | \(-0.828877\pi\) | ||||
−0.858941 | + | 0.512074i | \(0.828877\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 44.0000i | 1.96186i | 0.194354 | + | 0.980932i | \(0.437739\pi\) | ||||
−0.194354 | + | 0.980932i | \(0.562261\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −32.7492 | −1.45732 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −3.36254 | − | 42.3698i | −0.148750 | − | 1.87433i | ||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 17.7391i | 0.780166i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 53.0000 | 2.30435 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −44.9966 | + | 7.18729i | −1.93814 | + | 0.309579i | ||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −21.4743 | −0.923250 | −0.461625 | − | 0.887075i | \(-0.652733\pi\) | ||||
−0.461625 | + | 0.887075i | \(0.652733\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 38.5237 | 1.63230 | 0.816152 | − | 0.577838i | \(-0.196103\pi\) | ||||
0.816152 | + | 0.577838i | \(0.196103\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 40.0000 | 1.67395 | 0.836974 | − | 0.547243i | \(-0.184323\pi\) | ||||
0.836974 | + | 0.547243i | \(0.184323\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 49.9101 | 2.08140 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 26.5720i | 1.10621i | 0.833112 | + | 0.553104i | \(0.186557\pi\) | ||||
−0.833112 | + | 0.553104i | \(0.813443\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 3.34901 | + | 42.1993i | 0.138941 | + | 1.75072i | ||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 38.0241i | 1.56942i | 0.619862 | + | 0.784711i | \(0.287189\pi\) | ||||
−0.619862 | + | 0.784711i | \(0.712811\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − | 34.0000i | − | 1.39621i | −0.715994 | − | 0.698106i | \(-0.754026\pi\) | ||
0.715994 | − | 0.698106i | \(-0.245974\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 62.8368 | − | 4.98684i | 2.57606 | − | 0.204440i | ||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 102.749i | 4.17735i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −6.92442 | −0.279675 | −0.139837 | − | 0.990174i | \(-0.544658\pi\) | ||||
−0.139837 | + | 0.990174i | \(0.544658\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −12.7156 | −0.511911 | −0.255956 | − | 0.966689i | \(-0.582390\pi\) | ||||
−0.255956 | + | 0.966689i | \(0.582390\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 43.5890i | 1.75199i | 0.482321 | + | 0.875995i | \(0.339794\pi\) | ||||
−0.482321 | + | 0.875995i | \(0.660206\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −20.8488 | −0.833954 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 34.0241 | 1.35448 | 0.677239 | − | 0.735763i | \(-0.263176\pi\) | ||||
0.677239 | + | 0.735763i | \(0.263176\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 35.8969i | 1.41564i | 0.706395 | + | 0.707818i | \(0.250320\pi\) | ||||
−0.706395 | + | 0.707818i | \(0.749680\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − | 50.0241i | − | 1.96665i | −0.181857 | − | 0.983325i | \(-0.558211\pi\) | ||
0.181857 | − | 0.983325i | \(-0.441789\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −20.2509 | −0.792479 | −0.396239 | − | 0.918147i | \(-0.629685\pi\) | ||||
−0.396239 | + | 0.918147i | \(0.629685\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −73.2749 | −2.86309 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 37.6498 | − | 2.98796i | 1.46000 | − | 0.115868i | ||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 70.3746i | 2.71678i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | − | 58.0942i | − | 2.21967i | ||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − | 10.6958i | − | 0.406889i | −0.979086 | − | 0.203445i | \(-0.934786\pi\) | ||
0.979086 | − | 0.203445i | \(-0.0652137\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 61.2130 | 2.32194 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −17.4356 | −0.658533 | −0.329267 | − | 0.944237i | \(-0.606802\pi\) | ||||
−0.329267 | + | 0.944237i | \(0.606802\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −2.09313 | − | 26.3746i | −0.0787204 | − | 0.991918i | ||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 10.0000 | 0.375558 | 0.187779 | − | 0.982211i | \(-0.439871\pi\) | ||||
0.187779 | + | 0.982211i | \(0.439871\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 5.62541i | 0.209793i | 0.994483 | + | 0.104896i | \(0.0334511\pi\) | ||||
−0.994483 | + | 0.104896i | \(0.966549\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − | 51.6580i | − | 1.91589i | −0.286954 | − | 0.957944i | \(-0.592643\pi\) | ||
0.286954 | − | 0.957944i | \(-0.407357\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 86.0241i | 3.18172i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 52.3068i | 1.93200i | 0.258551 | + | 0.965998i | \(0.416755\pi\) | ||||
−0.258551 | + | 0.965998i | \(0.583245\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −48.9244 | −1.79971 | −0.899857 | − | 0.436185i | \(-0.856329\pi\) | ||||
−0.899857 | + | 0.436185i | \(0.856329\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | − | 4.48981i | − | 0.164494i | ||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −28.0241 | −1.01855 | −0.509276 | − | 0.860603i | \(-0.670087\pi\) | ||||
−0.509276 | + | 0.860603i | \(0.670087\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | − | 31.2749i | − | 1.13371i | −0.823816 | − | 0.566857i | \(-0.808159\pi\) | ||
0.823816 | − | 0.566857i | \(-0.191841\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 33.2700i | 1.19975i | 0.800094 | + | 0.599874i | \(0.204783\pi\) | ||||
−0.800094 | + | 0.599874i | \(0.795217\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 57.1001 | 2.03799 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 19.8248 | 0.701349 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − | 104.574i | − | 3.69033i | ||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 5.97591 | + | 75.2996i | 0.210623 | + | 2.65396i | ||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −32.6630 |