Properties

Label 4788.2.i.d.3457.6
Level $4788$
Weight $2$
Character 4788.3457
Analytic conductor $38.232$
Analytic rank $0$
Dimension $8$
CM discriminant -19
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(3457,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.3457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2702336256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 3457.6
Root \(-0.656712 + 2.13746i\) of defining polynomial
Character \(\chi\) \(=\) 4788.3457
Dual form 4788.2.i.d.3457.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.27492i q^{5} +(-2.63746 + 0.209313i) q^{7} +O(q^{10})\) \(q+3.27492i q^{5} +(-2.63746 + 0.209313i) q^{7} -6.50958 q^{11} +7.27492i q^{17} +4.35890i q^{19} -8.71780 q^{23} -5.72508 q^{25} +(-0.685484 - 8.63746i) q^{35} +11.8248 q^{43} -2.72508i q^{47} +(6.91238 - 1.10411i) q^{49} -21.3183i q^{55} -10.8109i q^{61} +16.0646i q^{73} +(17.1687 - 1.36254i) q^{77} -16.0000i q^{83} -23.8248 q^{85} -14.2750 q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 6 q^{7} - 76 q^{25} + 4 q^{43} + 10 q^{49} - 100 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4788\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(1009\) \(2395\) \(4105\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.27492i 1.46459i 0.680989 + 0.732294i \(0.261550\pi\)
−0.680989 + 0.732294i \(0.738450\pi\)
\(6\) 0 0
\(7\) −2.63746 + 0.209313i −0.996866 + 0.0791130i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.50958 −1.96271 −0.981356 0.192201i \(-0.938437\pi\)
−0.981356 + 0.192201i \(0.938437\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.27492i 1.76443i 0.470850 + 0.882213i \(0.343947\pi\)
−0.470850 + 0.882213i \(0.656053\pi\)
\(18\) 0 0
\(19\) 4.35890i 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.71780 −1.81779 −0.908893 0.417029i \(-0.863071\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) −5.72508 −1.14502
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.685484 8.63746i −0.115868 1.46000i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 11.8248 1.80326 0.901629 0.432511i \(-0.142372\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.72508i 0.397494i −0.980051 0.198747i \(-0.936313\pi\)
0.980051 0.198747i \(-0.0636872\pi\)
\(48\) 0 0
\(49\) 6.91238 1.10411i 0.987482 0.157730i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 21.3183i 2.87456i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 10.8109i 1.38420i −0.721803 0.692099i \(-0.756686\pi\)
0.721803 0.692099i \(-0.243314\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 16.0646i 1.88022i 0.340868 + 0.940111i \(0.389279\pi\)
−0.340868 + 0.940111i \(0.610721\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 17.1687 1.36254i 1.95656 0.155276i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 16.0000i 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) 0 0
\(85\) −23.8248 −2.58416
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −14.2750 −1.46459
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.0000i 0.995037i 0.867453 + 0.497519i \(0.165755\pi\)
−0.867453 + 0.497519i \(0.834245\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 28.5501i 2.66231i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.52274 19.1873i −0.139589 1.75890i
\(120\) 0 0
\(121\) 31.3746 2.85224
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.37459i 0.212389i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 22.3746i 1.95488i 0.211221 + 0.977438i \(0.432256\pi\)
−0.211221 + 0.977438i \(0.567744\pi\)
\(132\) 0 0
\(133\) −0.912376 11.4964i −0.0791130 0.996866i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −17.7391 −1.51556 −0.757778 0.652512i \(-0.773715\pi\)
−0.757778 + 0.652512i \(0.773715\pi\)
\(138\) 0 0
\(139\) 18.6915i 1.58539i −0.609618 0.792695i \(-0.708677\pi\)
0.609618 0.792695i \(-0.291323\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.37097 −0.112314 −0.0561570 0.998422i \(-0.517885\pi\)
−0.0561570 + 0.998422i \(0.517885\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.4356i 1.39151i −0.718278 0.695756i \(-0.755069\pi\)
0.718278 0.695756i \(-0.244931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.9928 1.82475i 1.81209 0.143811i
\(162\) 0 0
\(163\) −24.0000 −1.87983 −0.939913 0.341415i \(-0.889094\pi\)
−0.939913 + 0.341415i \(0.889094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 15.0997 1.19834i 1.14143 0.0905857i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 47.3566i 3.46306i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 25.6197 1.85377 0.926887 0.375339i \(-0.122474\pi\)
0.926887 + 0.375339i \(0.122474\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.4356 1.24223 0.621117 0.783718i \(-0.286679\pi\)
0.621117 + 0.783718i \(0.286679\pi\)
\(198\) 0 0
\(199\) 15.1123i 1.07128i −0.844446 0.535641i \(-0.820070\pi\)
0.844446 0.535641i \(-0.179930\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 28.3746i 1.96271i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 38.7251i 2.64103i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 29.0838i 1.92191i 0.276704 + 0.960955i \(0.410758\pi\)
−0.276704 + 0.960955i \(0.589242\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.3901 0.942728 0.471364 0.881939i \(-0.343762\pi\)
0.471364 + 0.881939i \(0.343762\pi\)
\(234\) 0 0
\(235\) 8.92442 0.582165
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.9260 0.706745 0.353373 0.935483i \(-0.385035\pi\)
0.353373 + 0.935483i \(0.385035\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.61587 + 22.6375i 0.231010 + 1.44625i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 30.3746i 1.91723i 0.284711 + 0.958613i \(0.408102\pi\)
−0.284711 + 0.958613i \(0.591898\pi\)
\(252\) 0 0
\(253\) 56.7492 3.56779
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −24.7824 −1.52815 −0.764075 0.645128i \(-0.776804\pi\)
−0.764075 + 0.645128i \(0.776804\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 26.1534i 1.58871i −0.607457 0.794353i \(-0.707810\pi\)
0.607457 0.794353i \(-0.292190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 37.2679 2.24734
\(276\) 0 0
\(277\) 12.7251 0.764576 0.382288 0.924043i \(-0.375136\pi\)
0.382288 + 0.924043i \(0.375136\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 33.3851i 1.98454i 0.124096 + 0.992270i \(0.460397\pi\)
−0.124096 + 0.992270i \(0.539603\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −35.9244 −2.11320
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −31.1873 + 2.47508i −1.79761 + 0.142661i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 35.4049 2.02728
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 21.2749i 1.20639i −0.797594 0.603195i \(-0.793894\pi\)
0.797594 0.603195i \(-0.206106\pi\)
\(312\) 0 0
\(313\) 34.8712i 1.97104i −0.169570 0.985518i \(-0.554238\pi\)
0.169570 0.985518i \(-0.445762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −31.7106 −1.76443
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.570396 + 7.18729i 0.0314470 + 0.396248i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −18.0000 + 4.35890i −0.971909 + 0.235358i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −34.2224 −1.83715 −0.918577 0.395242i \(-0.870661\pi\)
−0.918577 + 0.395242i \(0.870661\pi\)
\(348\) 0 0
\(349\) 36.8492i 1.97249i −0.165277 0.986247i \(-0.552852\pi\)
0.165277 0.986247i \(-0.447148\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.0000i 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.9495 0.841785 0.420892 0.907111i \(-0.361717\pi\)
0.420892 + 0.907111i \(0.361717\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −52.6103 −2.75375
\(366\) 0 0
\(367\) 26.1534i 1.36520i 0.730794 + 0.682598i \(0.239150\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 4.46221 + 56.2262i 0.227415 + 2.86555i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.39449 −0.324213 −0.162107 0.986773i \(-0.551829\pi\)
−0.162107 + 0.986773i \(0.551829\pi\)
\(390\) 0 0
\(391\) 63.4213i 3.20735i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13.5529i 0.680199i 0.940389 + 0.340099i \(0.110461\pi\)
−0.940389 + 0.340099i \(0.889539\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 52.3987 2.57215
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 40.0000i 1.95413i −0.212946 0.977064i \(-0.568306\pi\)
0.212946 0.977064i \(-0.431694\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 41.6495i 2.02030i
\(426\) 0 0
\(427\) 2.26287 + 28.5134i 0.109508 + 1.37986i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 38.0000i 1.81779i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.85859 0.468396 0.234198 0.972189i \(-0.424754\pi\)
0.234198 + 0.972189i \(0.424754\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.4743 1.19164 0.595818 0.803120i \(-0.296828\pi\)
0.595818 + 0.803120i \(0.296828\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.374586i 0.0174462i 0.999962 + 0.00872311i \(0.00277669\pi\)
−0.999962 + 0.00872311i \(0.997223\pi\)
\(462\) 0 0
\(463\) −31.8248 −1.47902 −0.739511 0.673145i \(-0.764943\pi\)
−0.739511 + 0.673145i \(0.764943\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.2749i 1.16958i −0.811183 0.584792i \(-0.801176\pi\)
0.811183 0.584792i \(-0.198824\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −76.9741 −3.53927
\(474\) 0 0
\(475\) 24.9551i 1.14502i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.00000i 0.182765i −0.995816 0.0913823i \(-0.970871\pi\)
0.995816 0.0913823i \(-0.0291285\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −43.5890 −1.96714 −0.983572 0.180517i \(-0.942223\pi\)
−0.983572 + 0.180517i \(0.942223\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −38.3746 −1.71788 −0.858941 0.512074i \(-0.828877\pi\)
−0.858941 + 0.512074i \(0.828877\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 44.0000i 1.96186i 0.194354 + 0.980932i \(0.437739\pi\)
−0.194354 + 0.980932i \(0.562261\pi\)
\(504\) 0 0
\(505\) −32.7492 −1.45732
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −3.36254 42.3698i −0.148750 1.87433i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 17.7391i 0.780166i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 53.0000 2.30435
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −44.9966 + 7.18729i −1.93814 + 0.309579i
\(540\) 0 0
\(541\) −21.4743 −0.923250 −0.461625 0.887075i \(-0.652733\pi\)
−0.461625 + 0.887075i \(0.652733\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.5237 1.63230 0.816152 0.577838i \(-0.196103\pi\)
0.816152 + 0.577838i \(0.196103\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 49.9101 2.08140
\(576\) 0 0
\(577\) 26.5720i 1.10621i 0.833112 + 0.553104i \(0.186557\pi\)
−0.833112 + 0.553104i \(0.813443\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.34901 + 42.1993i 0.138941 + 1.75072i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 38.0241i 1.56942i 0.619862 + 0.784711i \(0.287189\pi\)
−0.619862 + 0.784711i \(0.712811\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 34.0000i 1.39621i −0.715994 0.698106i \(-0.754026\pi\)
0.715994 0.698106i \(-0.245974\pi\)
\(594\) 0 0
\(595\) 62.8368 4.98684i 2.57606 0.204440i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 102.749i 4.17735i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −6.92442 −0.279675 −0.139837 0.990174i \(-0.544658\pi\)
−0.139837 + 0.990174i \(0.544658\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −12.7156 −0.511911 −0.255956 0.966689i \(-0.582390\pi\)
−0.255956 + 0.966689i \(0.582390\pi\)
\(618\) 0 0
\(619\) 43.5890i 1.75199i 0.482321 + 0.875995i \(0.339794\pi\)
−0.482321 + 0.875995i \(0.660206\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.8488 −0.833954
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 34.0241 1.35448 0.677239 0.735763i \(-0.263176\pi\)
0.677239 + 0.735763i \(0.263176\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 35.8969i 1.41564i 0.706395 + 0.707818i \(0.250320\pi\)
−0.706395 + 0.707818i \(0.749680\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 50.0241i 1.96665i −0.181857 0.983325i \(-0.558211\pi\)
0.181857 0.983325i \(-0.441789\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −20.2509 −0.792479 −0.396239 0.918147i \(-0.629685\pi\)
−0.396239 + 0.918147i \(0.629685\pi\)
\(654\) 0 0
\(655\) −73.2749 −2.86309
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 37.6498 2.98796i 1.46000 0.115868i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 70.3746i 2.71678i
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 58.0942i 2.21967i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 10.6958i 0.406889i −0.979086 0.203445i \(-0.934786\pi\)
0.979086 0.203445i \(-0.0652137\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 61.2130 2.32194
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17.4356 −0.658533 −0.329267 0.944237i \(-0.606802\pi\)
−0.329267 + 0.944237i \(0.606802\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.09313 26.3746i −0.0787204 0.991918i
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.62541i 0.209793i 0.994483 + 0.104896i \(0.0334511\pi\)
−0.994483 + 0.104896i \(0.966549\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 51.6580i 1.91589i −0.286954 0.957944i \(-0.592643\pi\)
0.286954 0.957944i \(-0.407357\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 86.0241i 3.18172i
\(732\) 0 0
\(733\) 52.3068i 1.93200i 0.258551 + 0.965998i \(0.416755\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −48.9244 −1.79971 −0.899857 0.436185i \(-0.856329\pi\)
−0.899857 + 0.436185i \(0.856329\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 4.48981i 0.164494i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −28.0241 −1.01855 −0.509276 0.860603i \(-0.670087\pi\)
−0.509276 + 0.860603i \(0.670087\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 31.2749i 1.13371i −0.823816 0.566857i \(-0.808159\pi\)
0.823816 0.566857i \(-0.191841\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 33.2700i 1.19975i 0.800094 + 0.599874i \(0.204783\pi\)
−0.800094 + 0.599874i \(0.795217\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 57.1001 2.03799
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 19.8248 0.701349
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 104.574i 3.69033i
\(804\) 0 0
\(805\) 5.97591 + 75.2996i 0.210623 + 2.65396i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −32.6630