Properties

Label 4788.2.a.t.1.6
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.56310016.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} + 14x^{2} - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.23277\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.51120 q^{5} -1.00000 q^{7} +0.779187 q^{11} -1.36794 q^{13} +6.75592 q^{17} -1.00000 q^{19} -5.71027 q^{23} +7.32850 q^{25} +4.29038 q^{29} +4.32850 q^{31} -3.51120 q^{35} -6.65699 q^{37} +8.70874 q^{41} -4.32850 q^{43} +7.66309 q^{47} +1.00000 q^{49} +7.53511 q^{53} +2.73588 q^{55} -6.65699 q^{61} -4.80310 q^{65} -0.960558 q^{67} -5.97674 q^{71} +11.9211 q^{73} -0.779187 q^{77} +8.96056 q^{79} -3.88542 q^{83} +23.7214 q^{85} +3.77767 q^{89} +1.36794 q^{91} -3.51120 q^{95} +12.4323 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{7} + 4 q^{13} - 6 q^{19} + 14 q^{25} - 4 q^{31} + 20 q^{37} + 4 q^{43} + 6 q^{49} - 8 q^{55} + 20 q^{61} + 12 q^{67} + 36 q^{73} + 36 q^{79} + 28 q^{85} - 4 q^{91} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.51120 1.57025 0.785127 0.619334i \(-0.212598\pi\)
0.785127 + 0.619334i \(0.212598\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.779187 0.234934 0.117467 0.993077i \(-0.462523\pi\)
0.117467 + 0.993077i \(0.462523\pi\)
\(12\) 0 0
\(13\) −1.36794 −0.379398 −0.189699 0.981842i \(-0.560751\pi\)
−0.189699 + 0.981842i \(0.560751\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.75592 1.63855 0.819276 0.573400i \(-0.194376\pi\)
0.819276 + 0.573400i \(0.194376\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.71027 −1.19067 −0.595336 0.803477i \(-0.702981\pi\)
−0.595336 + 0.803477i \(0.702981\pi\)
\(24\) 0 0
\(25\) 7.32850 1.46570
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.29038 0.796704 0.398352 0.917233i \(-0.369582\pi\)
0.398352 + 0.917233i \(0.369582\pi\)
\(30\) 0 0
\(31\) 4.32850 0.777421 0.388710 0.921360i \(-0.372921\pi\)
0.388710 + 0.921360i \(0.372921\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.51120 −0.593500
\(36\) 0 0
\(37\) −6.65699 −1.09440 −0.547201 0.837001i \(-0.684307\pi\)
−0.547201 + 0.837001i \(0.684307\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.70874 1.36008 0.680039 0.733176i \(-0.261963\pi\)
0.680039 + 0.733176i \(0.261963\pi\)
\(42\) 0 0
\(43\) −4.32850 −0.660089 −0.330045 0.943965i \(-0.607064\pi\)
−0.330045 + 0.943965i \(0.607064\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.66309 1.11778 0.558888 0.829243i \(-0.311228\pi\)
0.558888 + 0.829243i \(0.311228\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.53511 1.03503 0.517513 0.855675i \(-0.326858\pi\)
0.517513 + 0.855675i \(0.326858\pi\)
\(54\) 0 0
\(55\) 2.73588 0.368906
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −6.65699 −0.852340 −0.426170 0.904643i \(-0.640138\pi\)
−0.426170 + 0.904643i \(0.640138\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.80310 −0.595751
\(66\) 0 0
\(67\) −0.960558 −0.117351 −0.0586754 0.998277i \(-0.518688\pi\)
−0.0586754 + 0.998277i \(0.518688\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.97674 −0.709308 −0.354654 0.934998i \(-0.615401\pi\)
−0.354654 + 0.934998i \(0.615401\pi\)
\(72\) 0 0
\(73\) 11.9211 1.39526 0.697630 0.716458i \(-0.254238\pi\)
0.697630 + 0.716458i \(0.254238\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.779187 −0.0887965
\(78\) 0 0
\(79\) 8.96056 1.00814 0.504071 0.863662i \(-0.331835\pi\)
0.504071 + 0.863662i \(0.331835\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.88542 −0.426481 −0.213240 0.977000i \(-0.568402\pi\)
−0.213240 + 0.977000i \(0.568402\pi\)
\(84\) 0 0
\(85\) 23.7214 2.57294
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.77767 0.400432 0.200216 0.979752i \(-0.435836\pi\)
0.200216 + 0.979752i \(0.435836\pi\)
\(90\) 0 0
\(91\) 1.36794 0.143399
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.51120 −0.360241
\(96\) 0 0
\(97\) 12.4323 1.26231 0.631155 0.775657i \(-0.282581\pi\)
0.631155 + 0.775657i \(0.282581\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.82484 −0.181579 −0.0907893 0.995870i \(-0.528939\pi\)
−0.0907893 + 0.995870i \(0.528939\pi\)
\(102\) 0 0
\(103\) 9.92112 0.977557 0.488778 0.872408i \(-0.337443\pi\)
0.488778 + 0.872408i \(0.337443\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.75440 −0.942994 −0.471497 0.881868i \(-0.656286\pi\)
−0.471497 + 0.881868i \(0.656286\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.13015 −0.670748 −0.335374 0.942085i \(-0.608863\pi\)
−0.335374 + 0.942085i \(0.608863\pi\)
\(114\) 0 0
\(115\) −20.0499 −1.86966
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.75592 −0.619314
\(120\) 0 0
\(121\) −10.3929 −0.944806
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.17580 0.731266
\(126\) 0 0
\(127\) 10.4323 0.925718 0.462859 0.886432i \(-0.346824\pi\)
0.462859 + 0.886432i \(0.346824\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.06805 0.704909 0.352454 0.935829i \(-0.385347\pi\)
0.352454 + 0.935829i \(0.385347\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.37271 0.288150 0.144075 0.989567i \(-0.453979\pi\)
0.144075 + 0.989567i \(0.453979\pi\)
\(138\) 0 0
\(139\) −15.3929 −1.30561 −0.652803 0.757528i \(-0.726407\pi\)
−0.652803 + 0.757528i \(0.726407\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.06588 −0.0891333
\(144\) 0 0
\(145\) 15.0644 1.25103
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.9535 −0.979266 −0.489633 0.871928i \(-0.662869\pi\)
−0.489633 + 0.871928i \(0.662869\pi\)
\(150\) 0 0
\(151\) 22.4323 1.82552 0.912758 0.408501i \(-0.133948\pi\)
0.912758 + 0.408501i \(0.133948\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.1982 1.22075
\(156\) 0 0
\(157\) 11.9211 0.951409 0.475704 0.879605i \(-0.342193\pi\)
0.475704 + 0.879605i \(0.342193\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.71027 0.450032
\(162\) 0 0
\(163\) 19.7214 1.54470 0.772348 0.635199i \(-0.219082\pi\)
0.772348 + 0.635199i \(0.219082\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.4429 1.42716 0.713578 0.700576i \(-0.247073\pi\)
0.713578 + 0.700576i \(0.247073\pi\)
\(168\) 0 0
\(169\) −11.1287 −0.856057
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.77767 0.287211 0.143605 0.989635i \(-0.454130\pi\)
0.143605 + 0.989635i \(0.454130\pi\)
\(174\) 0 0
\(175\) −7.32850 −0.553982
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −18.3352 −1.37043 −0.685217 0.728339i \(-0.740293\pi\)
−0.685217 + 0.728339i \(0.740293\pi\)
\(180\) 0 0
\(181\) −17.0893 −1.27024 −0.635119 0.772414i \(-0.719049\pi\)
−0.635119 + 0.772414i \(0.719049\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −23.3740 −1.71849
\(186\) 0 0
\(187\) 5.26412 0.384951
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.40344 −0.246264 −0.123132 0.992390i \(-0.539294\pi\)
−0.123132 + 0.992390i \(0.539294\pi\)
\(192\) 0 0
\(193\) −11.3140 −0.814398 −0.407199 0.913339i \(-0.633495\pi\)
−0.407199 + 0.913339i \(0.633495\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.11675 0.222059 0.111029 0.993817i \(-0.464585\pi\)
0.111029 + 0.993817i \(0.464585\pi\)
\(198\) 0 0
\(199\) −17.3140 −1.22736 −0.613678 0.789556i \(-0.710311\pi\)
−0.613678 + 0.789556i \(0.710311\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.29038 −0.301126
\(204\) 0 0
\(205\) 30.5781 2.13567
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.779187 −0.0538975
\(210\) 0 0
\(211\) −14.4323 −0.993561 −0.496781 0.867876i \(-0.665485\pi\)
−0.496781 + 0.867876i \(0.665485\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.1982 −1.03651
\(216\) 0 0
\(217\) −4.32850 −0.293837
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −9.24168 −0.621663
\(222\) 0 0
\(223\) 20.9855 1.40529 0.702646 0.711540i \(-0.252002\pi\)
0.702646 + 0.711540i \(0.252002\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.83672 −0.586514 −0.293257 0.956034i \(-0.594739\pi\)
−0.293257 + 0.956034i \(0.594739\pi\)
\(228\) 0 0
\(229\) 16.7359 1.10594 0.552969 0.833202i \(-0.313495\pi\)
0.552969 + 0.833202i \(0.313495\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.6255 −1.48225 −0.741124 0.671368i \(-0.765707\pi\)
−0.741124 + 0.671368i \(0.765707\pi\)
\(234\) 0 0
\(235\) 26.9066 1.75519
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.17733 0.334893 0.167447 0.985881i \(-0.446448\pi\)
0.167447 + 0.985881i \(0.446448\pi\)
\(240\) 0 0
\(241\) −0.224681 −0.0144730 −0.00723649 0.999974i \(-0.502303\pi\)
−0.00723649 + 0.999974i \(0.502303\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.51120 0.224322
\(246\) 0 0
\(247\) 1.36794 0.0870398
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.68852 −0.548415 −0.274207 0.961671i \(-0.588415\pi\)
−0.274207 + 0.961671i \(0.588415\pi\)
\(252\) 0 0
\(253\) −4.44936 −0.279729
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.4063 1.27291 0.636454 0.771315i \(-0.280401\pi\)
0.636454 + 0.771315i \(0.280401\pi\)
\(258\) 0 0
\(259\) 6.65699 0.413645
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −26.7774 −1.65117 −0.825584 0.564279i \(-0.809154\pi\)
−0.825584 + 0.564279i \(0.809154\pi\)
\(264\) 0 0
\(265\) 26.4572 1.62526
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.61743 −0.403472 −0.201736 0.979440i \(-0.564658\pi\)
−0.201736 + 0.979440i \(0.564658\pi\)
\(270\) 0 0
\(271\) −11.3929 −0.692067 −0.346034 0.938222i \(-0.612472\pi\)
−0.346034 + 0.938222i \(0.612472\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.71027 0.344342
\(276\) 0 0
\(277\) 6.93563 0.416721 0.208361 0.978052i \(-0.433187\pi\)
0.208361 + 0.978052i \(0.433187\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.1128 1.31914 0.659570 0.751643i \(-0.270738\pi\)
0.659570 + 0.751643i \(0.270738\pi\)
\(282\) 0 0
\(283\) −3.34301 −0.198721 −0.0993606 0.995051i \(-0.531680\pi\)
−0.0993606 + 0.995051i \(0.531680\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.70874 −0.514061
\(288\) 0 0
\(289\) 28.6425 1.68485
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.8255 −0.690853 −0.345426 0.938446i \(-0.612266\pi\)
−0.345426 + 0.938446i \(0.612266\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.81129 0.451739
\(300\) 0 0
\(301\) 4.32850 0.249490
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −23.3740 −1.33839
\(306\) 0 0
\(307\) 3.51373 0.200539 0.100270 0.994960i \(-0.468029\pi\)
0.100270 + 0.994960i \(0.468029\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.04566 −0.0592937 −0.0296469 0.999560i \(-0.509438\pi\)
−0.0296469 + 0.999560i \(0.509438\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 29.7557 1.67125 0.835623 0.549303i \(-0.185107\pi\)
0.835623 + 0.549303i \(0.185107\pi\)
\(318\) 0 0
\(319\) 3.34301 0.187173
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.75592 −0.375910
\(324\) 0 0
\(325\) −10.0249 −0.556083
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.66309 −0.422480
\(330\) 0 0
\(331\) −13.6175 −0.748488 −0.374244 0.927330i \(-0.622098\pi\)
−0.374244 + 0.927330i \(0.622098\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.37271 −0.184271
\(336\) 0 0
\(337\) −3.92112 −0.213597 −0.106798 0.994281i \(-0.534060\pi\)
−0.106798 + 0.994281i \(0.534060\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.37271 0.182642
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.98725 −0.321412 −0.160706 0.987002i \(-0.551377\pi\)
−0.160706 + 0.987002i \(0.551377\pi\)
\(348\) 0 0
\(349\) 4.73588 0.253506 0.126753 0.991934i \(-0.459544\pi\)
0.126753 + 0.991934i \(0.459544\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −22.2311 −1.18324 −0.591621 0.806216i \(-0.701512\pi\)
−0.591621 + 0.806216i \(0.701512\pi\)
\(354\) 0 0
\(355\) −20.9855 −1.11379
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.3134 −1.12488 −0.562440 0.826838i \(-0.690137\pi\)
−0.562440 + 0.826838i \(0.690137\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 41.8574 2.19091
\(366\) 0 0
\(367\) 14.1287 0.737514 0.368757 0.929526i \(-0.379783\pi\)
0.368757 + 0.929526i \(0.379783\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.53511 −0.391203
\(372\) 0 0
\(373\) −29.2351 −1.51374 −0.756868 0.653568i \(-0.773271\pi\)
−0.756868 + 0.653568i \(0.773271\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.86898 −0.302268
\(378\) 0 0
\(379\) −10.4323 −0.535872 −0.267936 0.963437i \(-0.586342\pi\)
−0.267936 + 0.963437i \(0.586342\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 36.6703 1.87377 0.936883 0.349643i \(-0.113697\pi\)
0.936883 + 0.349643i \(0.113697\pi\)
\(384\) 0 0
\(385\) −2.73588 −0.139433
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.27835 −0.369027 −0.184514 0.982830i \(-0.559071\pi\)
−0.184514 + 0.982830i \(0.559071\pi\)
\(390\) 0 0
\(391\) −38.5781 −1.95098
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 31.4623 1.58304
\(396\) 0 0
\(397\) 26.8646 1.34830 0.674148 0.738596i \(-0.264511\pi\)
0.674148 + 0.738596i \(0.264511\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.9078 0.544710 0.272355 0.962197i \(-0.412197\pi\)
0.272355 + 0.962197i \(0.412197\pi\)
\(402\) 0 0
\(403\) −5.92112 −0.294952
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.18704 −0.257112
\(408\) 0 0
\(409\) 2.02493 0.100126 0.0500632 0.998746i \(-0.484058\pi\)
0.0500632 + 0.998746i \(0.484058\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −13.6425 −0.669683
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 23.7992 1.16267 0.581333 0.813666i \(-0.302531\pi\)
0.581333 + 0.813666i \(0.302531\pi\)
\(420\) 0 0
\(421\) 25.2351 1.22988 0.614942 0.788573i \(-0.289180\pi\)
0.614942 + 0.788573i \(0.289180\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 49.5107 2.40162
\(426\) 0 0
\(427\) 6.65699 0.322154
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.2469 −0.493576 −0.246788 0.969070i \(-0.579375\pi\)
−0.246788 + 0.969070i \(0.579375\pi\)
\(432\) 0 0
\(433\) −34.4033 −1.65332 −0.826658 0.562704i \(-0.809761\pi\)
−0.826658 + 0.562704i \(0.809761\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.71027 0.273159
\(438\) 0 0
\(439\) 36.3784 1.73624 0.868122 0.496351i \(-0.165327\pi\)
0.868122 + 0.496351i \(0.165327\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.80462 0.0857401 0.0428700 0.999081i \(-0.486350\pi\)
0.0428700 + 0.999081i \(0.486350\pi\)
\(444\) 0 0
\(445\) 13.2641 0.628780
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.28356 0.390925 0.195463 0.980711i \(-0.437379\pi\)
0.195463 + 0.980711i \(0.437379\pi\)
\(450\) 0 0
\(451\) 6.78574 0.319528
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.80310 0.225173
\(456\) 0 0
\(457\) 26.9855 1.26233 0.631164 0.775649i \(-0.282578\pi\)
0.631164 + 0.775649i \(0.282578\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −22.6150 −1.05329 −0.526644 0.850086i \(-0.676550\pi\)
−0.526644 + 0.850086i \(0.676550\pi\)
\(462\) 0 0
\(463\) −22.9435 −1.06628 −0.533138 0.846029i \(-0.678987\pi\)
−0.533138 + 0.846029i \(0.678987\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.3973 −0.805049 −0.402525 0.915409i \(-0.631867\pi\)
−0.402525 + 0.915409i \(0.631867\pi\)
\(468\) 0 0
\(469\) 0.960558 0.0443544
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.37271 −0.155077
\(474\) 0 0
\(475\) −7.32850 −0.336254
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.1271 0.599793 0.299896 0.953972i \(-0.403048\pi\)
0.299896 + 0.953972i \(0.403048\pi\)
\(480\) 0 0
\(481\) 9.10635 0.415214
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 43.6523 1.98215
\(486\) 0 0
\(487\) −3.69643 −0.167501 −0.0837507 0.996487i \(-0.526690\pi\)
−0.0837507 + 0.996487i \(0.526690\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 35.0812 1.58319 0.791597 0.611044i \(-0.209250\pi\)
0.791597 + 0.611044i \(0.209250\pi\)
\(492\) 0 0
\(493\) 28.9855 1.30544
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.97674 0.268093
\(498\) 0 0
\(499\) −8.00000 −0.358129 −0.179065 0.983837i \(-0.557307\pi\)
−0.179065 + 0.983837i \(0.557307\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19.7656 −0.881303 −0.440651 0.897678i \(-0.645252\pi\)
−0.440651 + 0.897678i \(0.645252\pi\)
\(504\) 0 0
\(505\) −6.40738 −0.285125
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 32.8927 1.45794 0.728971 0.684545i \(-0.239999\pi\)
0.728971 + 0.684545i \(0.239999\pi\)
\(510\) 0 0
\(511\) −11.9211 −0.527359
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 34.8350 1.53501
\(516\) 0 0
\(517\) 5.97098 0.262603
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −26.8957 −1.17832 −0.589161 0.808016i \(-0.700542\pi\)
−0.589161 + 0.808016i \(0.700542\pi\)
\(522\) 0 0
\(523\) 18.9066 0.826728 0.413364 0.910566i \(-0.364354\pi\)
0.413364 + 0.910566i \(0.364354\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29.2430 1.27384
\(528\) 0 0
\(529\) 9.60713 0.417701
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −11.9130 −0.516010
\(534\) 0 0
\(535\) −34.2496 −1.48074
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.779187 0.0335619
\(540\) 0 0
\(541\) 10.8148 0.464963 0.232481 0.972601i \(-0.425316\pi\)
0.232481 + 0.972601i \(0.425316\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 35.1120 1.50403
\(546\) 0 0
\(547\) 1.11833 0.0478162 0.0239081 0.999714i \(-0.492389\pi\)
0.0239081 + 0.999714i \(0.492389\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.29038 −0.182776
\(552\) 0 0
\(553\) −8.96056 −0.381042
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −17.9504 −0.760584 −0.380292 0.924866i \(-0.624177\pi\)
−0.380292 + 0.924866i \(0.624177\pi\)
\(558\) 0 0
\(559\) 5.92112 0.250436
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.77085 −0.327502 −0.163751 0.986502i \(-0.552359\pi\)
−0.163751 + 0.986502i \(0.552359\pi\)
\(564\) 0 0
\(565\) −25.0353 −1.05324
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.8359 −0.915406 −0.457703 0.889105i \(-0.651328\pi\)
−0.457703 + 0.889105i \(0.651328\pi\)
\(570\) 0 0
\(571\) 31.2351 1.30715 0.653574 0.756863i \(-0.273269\pi\)
0.653574 + 0.756863i \(0.273269\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −41.8477 −1.74517
\(576\) 0 0
\(577\) −36.6280 −1.52484 −0.762421 0.647081i \(-0.775989\pi\)
−0.762421 + 0.647081i \(0.775989\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.88542 0.161194
\(582\) 0 0
\(583\) 5.87126 0.243163
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.47301 0.349718 0.174859 0.984593i \(-0.444053\pi\)
0.174859 + 0.984593i \(0.444053\pi\)
\(588\) 0 0
\(589\) −4.32850 −0.178353
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.7416 0.646432 0.323216 0.946325i \(-0.395236\pi\)
0.323216 + 0.946325i \(0.395236\pi\)
\(594\) 0 0
\(595\) −23.7214 −0.972481
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.1314 −1.10856 −0.554280 0.832330i \(-0.687006\pi\)
−0.554280 + 0.832330i \(0.687006\pi\)
\(600\) 0 0
\(601\) −13.0394 −0.531890 −0.265945 0.963988i \(-0.585684\pi\)
−0.265945 + 0.963988i \(0.585684\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −36.4914 −1.48359
\(606\) 0 0
\(607\) −7.84223 −0.318306 −0.159153 0.987254i \(-0.550876\pi\)
−0.159153 + 0.987254i \(0.550876\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.4826 −0.424082
\(612\) 0 0
\(613\) 36.2496 1.46411 0.732054 0.681247i \(-0.238562\pi\)
0.732054 + 0.681247i \(0.238562\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17.1615 −0.690897 −0.345449 0.938438i \(-0.612273\pi\)
−0.345449 + 0.938438i \(0.612273\pi\)
\(618\) 0 0
\(619\) −14.0789 −0.565878 −0.282939 0.959138i \(-0.591309\pi\)
−0.282939 + 0.959138i \(0.591309\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.77767 −0.151349
\(624\) 0 0
\(625\) −7.93563 −0.317425
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −44.9741 −1.79324
\(630\) 0 0
\(631\) −22.4074 −0.892024 −0.446012 0.895027i \(-0.647156\pi\)
−0.446012 + 0.895027i \(0.647156\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 36.6299 1.45361
\(636\) 0 0
\(637\) −1.36794 −0.0541997
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.4818 0.927474 0.463737 0.885973i \(-0.346508\pi\)
0.463737 + 0.885973i \(0.346508\pi\)
\(642\) 0 0
\(643\) −3.34301 −0.131835 −0.0659177 0.997825i \(-0.520997\pi\)
−0.0659177 + 0.997825i \(0.520997\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 33.6209 1.32177 0.660887 0.750486i \(-0.270180\pi\)
0.660887 + 0.750486i \(0.270180\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.60620 −0.375920 −0.187960 0.982177i \(-0.560187\pi\)
−0.187960 + 0.982177i \(0.560187\pi\)
\(654\) 0 0
\(655\) 28.3285 1.10689
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.1594 0.395753 0.197876 0.980227i \(-0.436596\pi\)
0.197876 + 0.980227i \(0.436596\pi\)
\(660\) 0 0
\(661\) 35.9959 1.40008 0.700039 0.714104i \(-0.253166\pi\)
0.700039 + 0.714104i \(0.253166\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.51120 0.136158
\(666\) 0 0
\(667\) −24.4992 −0.948614
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.18704 −0.200243
\(672\) 0 0
\(673\) 4.07888 0.157229 0.0786147 0.996905i \(-0.474950\pi\)
0.0786147 + 0.996905i \(0.474950\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −34.9630 −1.34374 −0.671868 0.740671i \(-0.734508\pi\)
−0.671868 + 0.740671i \(0.734508\pi\)
\(678\) 0 0
\(679\) −12.4323 −0.477108
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 42.4576 1.62460 0.812298 0.583243i \(-0.198216\pi\)
0.812298 + 0.583243i \(0.198216\pi\)
\(684\) 0 0
\(685\) 11.8422 0.452468
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −10.3076 −0.392687
\(690\) 0 0
\(691\) −43.2351 −1.64474 −0.822370 0.568953i \(-0.807349\pi\)
−0.822370 + 0.568953i \(0.807349\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −54.0474 −2.05013
\(696\) 0 0
\(697\) 58.8356 2.22856
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9.60620 −0.362821 −0.181411 0.983407i \(-0.558066\pi\)
−0.181411 + 0.983407i \(0.558066\pi\)
\(702\) 0 0
\(703\) 6.65699 0.251073
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.82484 0.0686303
\(708\) 0 0
\(709\) −23.8002 −0.893837 −0.446919 0.894575i \(-0.647479\pi\)
−0.446919 + 0.894575i \(0.647479\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −24.7169 −0.925654
\(714\) 0 0
\(715\) −3.74251 −0.139962
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −49.3925 −1.84203 −0.921014 0.389529i \(-0.872638\pi\)
−0.921014 + 0.389529i \(0.872638\pi\)
\(720\) 0 0
\(721\) −9.92112 −0.369482
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 31.4420 1.16773
\(726\) 0 0
\(727\) −30.5781 −1.13408 −0.567040 0.823691i \(-0.691911\pi\)
−0.567040 + 0.823691i \(0.691911\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −29.2430 −1.08159
\(732\) 0 0
\(733\) −13.8422 −0.511274 −0.255637 0.966773i \(-0.582285\pi\)
−0.255637 + 0.966773i \(0.582285\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.748454 −0.0275696
\(738\) 0 0
\(739\) −26.4572 −0.973245 −0.486623 0.873612i \(-0.661771\pi\)
−0.486623 + 0.873612i \(0.661771\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.4295 −0.529368 −0.264684 0.964335i \(-0.585268\pi\)
−0.264684 + 0.964335i \(0.585268\pi\)
\(744\) 0 0
\(745\) −41.9710 −1.53770
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.75440 0.356418
\(750\) 0 0
\(751\) 17.6674 0.644693 0.322346 0.946622i \(-0.395528\pi\)
0.322346 + 0.946622i \(0.395528\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 78.7642 2.86652
\(756\) 0 0
\(757\) −31.5216 −1.14567 −0.572836 0.819670i \(-0.694157\pi\)
−0.572836 + 0.819670i \(0.694157\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.22980 −0.0808303 −0.0404151 0.999183i \(-0.512868\pi\)
−0.0404151 + 0.999183i \(0.512868\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −35.3140 −1.27345 −0.636727 0.771089i \(-0.719712\pi\)
−0.636727 + 0.771089i \(0.719712\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 27.6846 0.995746 0.497873 0.867250i \(-0.334115\pi\)
0.497873 + 0.867250i \(0.334115\pi\)
\(774\) 0 0
\(775\) 31.7214 1.13947
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.70874 −0.312023
\(780\) 0 0
\(781\) −4.65699 −0.166640
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 41.8574 1.49395
\(786\) 0 0
\(787\) −25.5926 −0.912278 −0.456139 0.889908i \(-0.650768\pi\)
−0.456139 + 0.889908i \(0.650768\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.13015 0.253519
\(792\) 0 0
\(793\) 9.10635 0.323376
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −46.4045 −1.64373 −0.821866 0.569681i \(-0.807067\pi\)
−0.821866 + 0.569681i \(0.807067\pi\)
\(798\) 0 0
\(799\) 51.7712 1.83153
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.28877 0.327794
\(804\) 0 0
\(805\) 20.0499 0.706665
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −36.3934 −1.27952 −0.639761 0.768574i \(-0.720967\pi\)
−0.639761 + 0.768574i \(0.720967\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 69.2456 2.42557
\(816\) 0 0
\(817\) 4.32850 0.151435
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.8845 0.589275 0.294637 0.955609i \(-0.404801\pi\)
0.294637 + 0.955609i \(0.404801\pi\)
\(822\) 0 0
\(823\) −2.85674 −0.0995798 −0.0497899 0.998760i \(-0.515855\pi\)
−0.0497899 + 0.998760i \(0.515855\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −45.4868 −1.58173 −0.790866 0.611989i \(-0.790370\pi\)
−0.790866 + 0.611989i \(0.790370\pi\)
\(828\) 0 0
\(829\) −32.2745 −1.12094 −0.560471 0.828174i \(-0.689380\pi\)
−0.560471 + 0.828174i \(0.689380\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.75592 0.234079
\(834\) 0 0
\(835\) 64.7567 2.24100
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 41.3244 1.42668 0.713339 0.700819i \(-0.247182\pi\)
0.713339 + 0.700819i \(0.247182\pi\)
\(840\) 0 0
\(841\) −10.5926 −0.365263
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −39.0752 −1.34423
\(846\) 0 0
\(847\) 10.3929 0.357103
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 38.0132 1.30308
\(852\) 0 0
\(853\) −18.6570 −0.638803 −0.319402 0.947619i \(-0.603482\pi\)
−0.319402 + 0.947619i \(0.603482\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.0051 −0.751679 −0.375840 0.926685i \(-0.622646\pi\)
−0.375840 + 0.926685i \(0.622646\pi\)
\(858\) 0 0
\(859\) −36.6570 −1.25072 −0.625360 0.780336i \(-0.715048\pi\)
−0.625360 + 0.780336i \(0.715048\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.94752 0.100335 0.0501674 0.998741i \(-0.484025\pi\)
0.0501674 + 0.998741i \(0.484025\pi\)
\(864\) 0 0
\(865\) 13.2641 0.450994
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.98195 0.236846
\(870\) 0 0
\(871\) 1.31398 0.0445226
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.17580 −0.276393
\(876\) 0 0
\(877\) −43.3140 −1.46261 −0.731305 0.682051i \(-0.761088\pi\)
−0.731305 + 0.682051i \(0.761088\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.90934 0.266472 0.133236 0.991084i \(-0.457463\pi\)
0.133236 + 0.991084i \(0.457463\pi\)
\(882\) 0 0
\(883\) −21.4718 −0.722582 −0.361291 0.932453i \(-0.617664\pi\)
−0.361291 + 0.932453i \(0.617664\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −22.8815 −0.768286 −0.384143 0.923274i \(-0.625503\pi\)
−0.384143 + 0.923274i \(0.625503\pi\)
\(888\) 0 0
\(889\) −10.4323 −0.349888
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.66309 −0.256435
\(894\) 0 0
\(895\) −64.3784 −2.15193
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 18.5709 0.619374
\(900\) 0 0
\(901\) 50.9066 1.69594
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −60.0039 −1.99460
\(906\) 0 0
\(907\) −3.53866 −0.117499 −0.0587497 0.998273i \(-0.518711\pi\)
−0.0587497 + 0.998273i \(0.518711\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.35248 0.111073 0.0555364 0.998457i \(-0.482313\pi\)
0.0555364 + 0.998457i \(0.482313\pi\)
\(912\) 0 0
\(913\) −3.02747 −0.100195
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8.06805 −0.266430
\(918\) 0 0
\(919\) 36.2575 1.19602 0.598012 0.801487i \(-0.295957\pi\)
0.598012 + 0.801487i \(0.295957\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.17580 0.269110
\(924\) 0 0
\(925\) −48.7857 −1.60407
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.1075 0.758134 0.379067 0.925369i \(-0.376245\pi\)
0.379067 + 0.925369i \(0.376245\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 18.4834 0.604471
\(936\) 0 0
\(937\) 10.7069 0.349778 0.174889 0.984588i \(-0.444043\pi\)
0.174889 + 0.984588i \(0.444043\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −42.7548 −1.39377 −0.696884 0.717184i \(-0.745431\pi\)
−0.696884 + 0.717184i \(0.745431\pi\)
\(942\) 0 0
\(943\) −49.7292 −1.61941
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.10103 −0.0682741 −0.0341371 0.999417i \(-0.510868\pi\)
−0.0341371 + 0.999417i \(0.510868\pi\)
\(948\) 0 0
\(949\) −16.3073 −0.529359
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −11.4408 −0.370602 −0.185301 0.982682i \(-0.559326\pi\)
−0.185301 + 0.982682i \(0.559326\pi\)
\(954\) 0 0
\(955\) −11.9501 −0.386697
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.37271 −0.108910
\(960\) 0 0
\(961\) −12.2641 −0.395617
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −39.7256 −1.27881
\(966\) 0 0
\(967\) −11.2221 −0.360880 −0.180440 0.983586i \(-0.557752\pi\)
−0.180440 + 0.983586i \(0.557752\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.29937 −0.234248 −0.117124 0.993117i \(-0.537367\pi\)
−0.117124 + 0.993117i \(0.537367\pi\)
\(972\) 0 0
\(973\) 15.3929 0.493473
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −36.3941 −1.16435 −0.582176 0.813063i \(-0.697799\pi\)
−0.582176 + 0.813063i \(0.697799\pi\)
\(978\) 0 0
\(979\) 2.94351 0.0940749
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −43.6313 −1.39162 −0.695810 0.718225i \(-0.744955\pi\)
−0.695810 + 0.718225i \(0.744955\pi\)
\(984\) 0 0
\(985\) 10.9435 0.348689
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.7169 0.785950
\(990\) 0 0
\(991\) −29.6175 −0.940832 −0.470416 0.882445i \(-0.655896\pi\)
−0.470416 + 0.882445i \(0.655896\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −60.7928 −1.92726
\(996\) 0 0
\(997\) 33.3929 1.05756 0.528781 0.848758i \(-0.322649\pi\)
0.528781 + 0.848758i \(0.322649\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.t.1.6 yes 6
3.2 odd 2 inner 4788.2.a.t.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4788.2.a.t.1.1 6 3.2 odd 2 inner
4788.2.a.t.1.6 yes 6 1.1 even 1 trivial