Properties

Label 4788.2.a.t.1.5
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.56310016.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} + 14x^{2} - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.608430\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.54053 q^{5} -1.00000 q^{7} -5.35744 q^{11} +6.80536 q^{13} -4.03378 q^{17} -1.00000 q^{19} +7.79116 q^{23} +1.45427 q^{25} -2.81692 q^{29} -1.54573 q^{31} -2.54053 q^{35} +5.09146 q^{37} +9.22163 q^{41} +1.54573 q^{43} +5.46425 q^{47} +1.00000 q^{49} -9.39122 q^{53} -13.6107 q^{55} +5.09146 q^{61} +17.2892 q^{65} -3.25963 q^{67} -1.32367 q^{71} +16.5193 q^{73} +5.35744 q^{77} +11.2596 q^{79} +6.19110 q^{83} -10.2479 q^{85} +11.6554 q^{89} -6.80536 q^{91} -2.54053 q^{95} -17.9618 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{7} + 4 q^{13} - 6 q^{19} + 14 q^{25} - 4 q^{31} + 20 q^{37} + 4 q^{43} + 6 q^{49} - 8 q^{55} + 20 q^{61} + 12 q^{67} + 36 q^{73} + 36 q^{79} + 28 q^{85} - 4 q^{91} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.54053 1.13616 0.568079 0.822974i \(-0.307687\pi\)
0.568079 + 0.822974i \(0.307687\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.35744 −1.61533 −0.807665 0.589642i \(-0.799269\pi\)
−0.807665 + 0.589642i \(0.799269\pi\)
\(12\) 0 0
\(13\) 6.80536 1.88747 0.943733 0.330707i \(-0.107287\pi\)
0.943733 + 0.330707i \(0.107287\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.03378 −0.978334 −0.489167 0.872190i \(-0.662699\pi\)
−0.489167 + 0.872190i \(0.662699\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.79116 1.62457 0.812285 0.583261i \(-0.198224\pi\)
0.812285 + 0.583261i \(0.198224\pi\)
\(24\) 0 0
\(25\) 1.45427 0.290854
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.81692 −0.523088 −0.261544 0.965192i \(-0.584232\pi\)
−0.261544 + 0.965192i \(0.584232\pi\)
\(30\) 0 0
\(31\) −1.54573 −0.277622 −0.138811 0.990319i \(-0.544328\pi\)
−0.138811 + 0.990319i \(0.544328\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.54053 −0.429427
\(36\) 0 0
\(37\) 5.09146 0.837031 0.418516 0.908210i \(-0.362551\pi\)
0.418516 + 0.908210i \(0.362551\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.22163 1.44018 0.720089 0.693882i \(-0.244101\pi\)
0.720089 + 0.693882i \(0.244101\pi\)
\(42\) 0 0
\(43\) 1.54573 0.235722 0.117861 0.993030i \(-0.462396\pi\)
0.117861 + 0.993030i \(0.462396\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.46425 0.797042 0.398521 0.917159i \(-0.369524\pi\)
0.398521 + 0.917159i \(0.369524\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.39122 −1.28998 −0.644991 0.764190i \(-0.723139\pi\)
−0.644991 + 0.764190i \(0.723139\pi\)
\(54\) 0 0
\(55\) −13.6107 −1.83527
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 5.09146 0.651895 0.325947 0.945388i \(-0.394317\pi\)
0.325947 + 0.945388i \(0.394317\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 17.2892 2.14446
\(66\) 0 0
\(67\) −3.25963 −0.398227 −0.199113 0.979976i \(-0.563806\pi\)
−0.199113 + 0.979976i \(0.563806\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.32367 −0.157090 −0.0785451 0.996911i \(-0.525027\pi\)
−0.0785451 + 0.996911i \(0.525027\pi\)
\(72\) 0 0
\(73\) 16.5193 1.93343 0.966716 0.255851i \(-0.0823557\pi\)
0.966716 + 0.255851i \(0.0823557\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.35744 0.610537
\(78\) 0 0
\(79\) 11.2596 1.26681 0.633403 0.773822i \(-0.281657\pi\)
0.633403 + 0.773822i \(0.281657\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.19110 0.679562 0.339781 0.940505i \(-0.389647\pi\)
0.339781 + 0.940505i \(0.389647\pi\)
\(84\) 0 0
\(85\) −10.2479 −1.11154
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.6554 1.23546 0.617732 0.786388i \(-0.288052\pi\)
0.617732 + 0.786388i \(0.288052\pi\)
\(90\) 0 0
\(91\) −6.80536 −0.713395
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.54053 −0.260652
\(96\) 0 0
\(97\) −17.9618 −1.82374 −0.911872 0.410474i \(-0.865363\pi\)
−0.911872 + 0.410474i \(0.865363\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.60006 0.159212 0.0796058 0.996826i \(-0.474634\pi\)
0.0796058 + 0.996826i \(0.474634\pi\)
\(102\) 0 0
\(103\) 14.5193 1.43062 0.715312 0.698805i \(-0.246284\pi\)
0.715312 + 0.698805i \(0.246284\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.9790 −1.25473 −0.627364 0.778726i \(-0.715866\pi\)
−0.627364 + 0.778726i \(0.715866\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.7654 1.20087 0.600434 0.799674i \(-0.294994\pi\)
0.600434 + 0.799674i \(0.294994\pi\)
\(114\) 0 0
\(115\) 19.7936 1.84577
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.03378 0.369776
\(120\) 0 0
\(121\) 17.7022 1.60929
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00802 −0.805702
\(126\) 0 0
\(127\) −19.9618 −1.77132 −0.885662 0.464331i \(-0.846295\pi\)
−0.885662 + 0.464331i \(0.846295\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.83844 0.772218 0.386109 0.922453i \(-0.373819\pi\)
0.386109 + 0.922453i \(0.373819\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.28116 0.707508 0.353754 0.935339i \(-0.384905\pi\)
0.353754 + 0.935339i \(0.384905\pi\)
\(138\) 0 0
\(139\) 12.7022 1.07738 0.538692 0.842503i \(-0.318919\pi\)
0.538692 + 0.842503i \(0.318919\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −36.4593 −3.04888
\(144\) 0 0
\(145\) −7.15645 −0.594311
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.64733 −0.216878 −0.108439 0.994103i \(-0.534585\pi\)
−0.108439 + 0.994103i \(0.534585\pi\)
\(150\) 0 0
\(151\) −7.96180 −0.647922 −0.323961 0.946070i \(-0.605015\pi\)
−0.323961 + 0.946070i \(0.605015\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.92697 −0.315422
\(156\) 0 0
\(157\) 16.5193 1.31838 0.659190 0.751976i \(-0.270899\pi\)
0.659190 + 0.751976i \(0.270899\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.79116 −0.614029
\(162\) 0 0
\(163\) −14.2479 −1.11598 −0.557991 0.829847i \(-0.688428\pi\)
−0.557991 + 0.829847i \(0.688428\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.5013 −0.812613 −0.406306 0.913737i \(-0.633183\pi\)
−0.406306 + 0.913737i \(0.633183\pi\)
\(168\) 0 0
\(169\) 33.3129 2.56253
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.6554 0.886140 0.443070 0.896487i \(-0.353889\pi\)
0.443070 + 0.896487i \(0.353889\pi\)
\(174\) 0 0
\(175\) −1.45427 −0.109932
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −7.34519 −0.549005 −0.274502 0.961586i \(-0.588513\pi\)
−0.274502 + 0.961586i \(0.588513\pi\)
\(180\) 0 0
\(181\) 25.0533 1.86219 0.931097 0.364771i \(-0.118853\pi\)
0.931097 + 0.364771i \(0.118853\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.9350 0.950999
\(186\) 0 0
\(187\) 21.6107 1.58033
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.3870 −1.47515 −0.737575 0.675265i \(-0.764029\pi\)
−0.737575 + 0.675265i \(0.764029\pi\)
\(192\) 0 0
\(193\) 12.1829 0.876946 0.438473 0.898744i \(-0.355519\pi\)
0.438473 + 0.898744i \(0.355519\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.4298 −1.52681 −0.763404 0.645922i \(-0.776473\pi\)
−0.763404 + 0.645922i \(0.776473\pi\)
\(198\) 0 0
\(199\) 6.18292 0.438296 0.219148 0.975692i \(-0.429672\pi\)
0.219148 + 0.975692i \(0.429672\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.81692 0.197709
\(204\) 0 0
\(205\) 23.4278 1.63627
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.35744 0.370582
\(210\) 0 0
\(211\) 15.9618 1.09886 0.549428 0.835541i \(-0.314846\pi\)
0.549428 + 0.835541i \(0.314846\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.92697 0.267817
\(216\) 0 0
\(217\) 1.54573 0.104931
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −27.4513 −1.84657
\(222\) 0 0
\(223\) 3.36281 0.225190 0.112595 0.993641i \(-0.464084\pi\)
0.112595 + 0.993641i \(0.464084\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −24.0771 −1.59805 −0.799027 0.601296i \(-0.794651\pi\)
−0.799027 + 0.601296i \(0.794651\pi\)
\(228\) 0 0
\(229\) 0.389285 0.0257247 0.0128623 0.999917i \(-0.495906\pi\)
0.0128623 + 0.999917i \(0.495906\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.52827 −0.296657 −0.148328 0.988938i \(-0.547389\pi\)
−0.148328 + 0.988938i \(0.547389\pi\)
\(234\) 0 0
\(235\) 13.8821 0.905566
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −26.0208 −1.68315 −0.841573 0.540143i \(-0.818370\pi\)
−0.841573 + 0.540143i \(0.818370\pi\)
\(240\) 0 0
\(241\) −18.8703 −1.21555 −0.607773 0.794111i \(-0.707937\pi\)
−0.607773 + 0.794111i \(0.707937\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.54053 0.162308
\(246\) 0 0
\(247\) −6.80536 −0.433015
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 23.4803 1.48206 0.741031 0.671470i \(-0.234337\pi\)
0.741031 + 0.671470i \(0.234337\pi\)
\(252\) 0 0
\(253\) −41.7407 −2.62421
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.8420 −1.11295 −0.556476 0.830864i \(-0.687847\pi\)
−0.556476 + 0.830864i \(0.687847\pi\)
\(258\) 0 0
\(259\) −5.09146 −0.316368
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.45199 −0.459509 −0.229755 0.973249i \(-0.573792\pi\)
−0.229755 + 0.973249i \(0.573792\pi\)
\(264\) 0 0
\(265\) −23.8586 −1.46562
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.70686 −0.104069 −0.0520346 0.998645i \(-0.516571\pi\)
−0.0520346 + 0.998645i \(0.516571\pi\)
\(270\) 0 0
\(271\) 16.7022 1.01459 0.507293 0.861774i \(-0.330646\pi\)
0.507293 + 0.861774i \(0.330646\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.79116 −0.469825
\(276\) 0 0
\(277\) 29.1564 1.75184 0.875921 0.482455i \(-0.160255\pi\)
0.875921 + 0.482455i \(0.160255\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 19.0005 1.13348 0.566738 0.823898i \(-0.308205\pi\)
0.566738 + 0.823898i \(0.308205\pi\)
\(282\) 0 0
\(283\) −15.0915 −0.897094 −0.448547 0.893759i \(-0.648058\pi\)
−0.448547 + 0.893759i \(0.648058\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.22163 −0.544336
\(288\) 0 0
\(289\) −0.728656 −0.0428621
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.2081 0.713207 0.356603 0.934256i \(-0.383935\pi\)
0.356603 + 0.934256i \(0.383935\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 53.0216 3.06632
\(300\) 0 0
\(301\) −1.54573 −0.0890945
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.9350 0.740655
\(306\) 0 0
\(307\) 18.5842 1.06066 0.530329 0.847792i \(-0.322068\pi\)
0.530329 + 0.847792i \(0.322068\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.75738 −0.213062 −0.106531 0.994309i \(-0.533974\pi\)
−0.106531 + 0.994309i \(0.533974\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.23714 −0.462644 −0.231322 0.972877i \(-0.574305\pi\)
−0.231322 + 0.972877i \(0.574305\pi\)
\(318\) 0 0
\(319\) 15.0915 0.844960
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.03378 0.224445
\(324\) 0 0
\(325\) 9.89682 0.548977
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.46425 −0.301254
\(330\) 0 0
\(331\) −4.16816 −0.229103 −0.114552 0.993417i \(-0.536543\pi\)
−0.114552 + 0.993417i \(0.536543\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.28116 −0.452448
\(336\) 0 0
\(337\) −8.51925 −0.464073 −0.232037 0.972707i \(-0.574539\pi\)
−0.232037 + 0.972707i \(0.574539\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.28116 0.448450
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 19.2724 1.03460 0.517299 0.855805i \(-0.326937\pi\)
0.517299 + 0.855805i \(0.326937\pi\)
\(348\) 0 0
\(349\) −11.6107 −0.621507 −0.310754 0.950490i \(-0.600581\pi\)
−0.310754 + 0.950490i \(0.600581\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 19.4420 1.03479 0.517397 0.855745i \(-0.326901\pi\)
0.517397 + 0.855745i \(0.326901\pi\)
\(354\) 0 0
\(355\) −3.36281 −0.178479
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.34394 0.440376 0.220188 0.975457i \(-0.429333\pi\)
0.220188 + 0.975457i \(0.429333\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 41.9676 2.19668
\(366\) 0 0
\(367\) −30.3129 −1.58232 −0.791160 0.611609i \(-0.790523\pi\)
−0.791160 + 0.611609i \(0.790523\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.39122 0.487568
\(372\) 0 0
\(373\) −10.3363 −0.535195 −0.267597 0.963531i \(-0.586230\pi\)
−0.267597 + 0.963531i \(0.586230\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −19.1701 −0.987311
\(378\) 0 0
\(379\) 19.9618 1.02537 0.512685 0.858577i \(-0.328651\pi\)
0.512685 + 0.858577i \(0.328651\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.6904 0.750643 0.375321 0.926895i \(-0.377532\pi\)
0.375321 + 0.926895i \(0.377532\pi\)
\(384\) 0 0
\(385\) 13.6107 0.693666
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −34.7920 −1.76402 −0.882012 0.471228i \(-0.843811\pi\)
−0.882012 + 0.471228i \(0.843811\pi\)
\(390\) 0 0
\(391\) −31.4278 −1.58937
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 28.6054 1.43929
\(396\) 0 0
\(397\) −33.9236 −1.70258 −0.851289 0.524698i \(-0.824178\pi\)
−0.851289 + 0.524698i \(0.824178\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.11005 −0.0554334 −0.0277167 0.999616i \(-0.508824\pi\)
−0.0277167 + 0.999616i \(0.508824\pi\)
\(402\) 0 0
\(403\) −10.5193 −0.524001
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −27.2772 −1.35208
\(408\) 0 0
\(409\) −17.8968 −0.884941 −0.442470 0.896783i \(-0.645898\pi\)
−0.442470 + 0.896783i \(0.645898\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 15.7287 0.772089
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 23.1411 1.13052 0.565259 0.824914i \(-0.308776\pi\)
0.565259 + 0.824914i \(0.308776\pi\)
\(420\) 0 0
\(421\) 6.33633 0.308814 0.154407 0.988007i \(-0.450653\pi\)
0.154407 + 0.988007i \(0.450653\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.86619 −0.284552
\(426\) 0 0
\(427\) −5.09146 −0.246393
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 34.1952 1.64712 0.823562 0.567227i \(-0.191984\pi\)
0.823562 + 0.567227i \(0.191984\pi\)
\(432\) 0 0
\(433\) 31.2362 1.50112 0.750558 0.660805i \(-0.229785\pi\)
0.750558 + 0.660805i \(0.229785\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.79116 −0.372702
\(438\) 0 0
\(439\) −9.33937 −0.445744 −0.222872 0.974848i \(-0.571543\pi\)
−0.222872 + 0.974848i \(0.571543\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −34.3020 −1.62974 −0.814868 0.579647i \(-0.803191\pi\)
−0.814868 + 0.579647i \(0.803191\pi\)
\(444\) 0 0
\(445\) 29.6107 1.40368
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −26.8545 −1.26734 −0.633671 0.773603i \(-0.718452\pi\)
−0.633671 + 0.773603i \(0.718452\pi\)
\(450\) 0 0
\(451\) −49.4044 −2.32636
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −17.2892 −0.810529
\(456\) 0 0
\(457\) 9.36281 0.437974 0.218987 0.975728i \(-0.429725\pi\)
0.218987 + 0.975728i \(0.429725\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.1244 −1.17016 −0.585079 0.810976i \(-0.698937\pi\)
−0.585079 + 0.810976i \(0.698937\pi\)
\(462\) 0 0
\(463\) 42.4429 1.97249 0.986244 0.165299i \(-0.0528589\pi\)
0.986244 + 0.165299i \(0.0528589\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.2587 0.659812 0.329906 0.944014i \(-0.392983\pi\)
0.329906 + 0.944014i \(0.392983\pi\)
\(468\) 0 0
\(469\) 3.25963 0.150516
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.28116 −0.380768
\(474\) 0 0
\(475\) −1.45427 −0.0667264
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 21.2602 0.971402 0.485701 0.874125i \(-0.338564\pi\)
0.485701 + 0.874125i \(0.338564\pi\)
\(480\) 0 0
\(481\) 34.6492 1.57987
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −45.6324 −2.07206
\(486\) 0 0
\(487\) 10.3511 0.469053 0.234526 0.972110i \(-0.424646\pi\)
0.234526 + 0.972110i \(0.424646\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.2994 0.600195 0.300098 0.953909i \(-0.402981\pi\)
0.300098 + 0.953909i \(0.402981\pi\)
\(492\) 0 0
\(493\) 11.3628 0.511755
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.32367 0.0593745
\(498\) 0 0
\(499\) −8.00000 −0.358129 −0.179065 0.983837i \(-0.557307\pi\)
−0.179065 + 0.983837i \(0.557307\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.2252 0.812620 0.406310 0.913735i \(-0.366815\pi\)
0.406310 + 0.913735i \(0.366815\pi\)
\(504\) 0 0
\(505\) 4.06498 0.180889
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.03502 0.134525 0.0672624 0.997735i \(-0.478574\pi\)
0.0672624 + 0.997735i \(0.478574\pi\)
\(510\) 0 0
\(511\) −16.5193 −0.730769
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 36.8865 1.62541
\(516\) 0 0
\(517\) −29.2744 −1.28749
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 30.9906 1.35772 0.678861 0.734267i \(-0.262474\pi\)
0.678861 + 0.734267i \(0.262474\pi\)
\(522\) 0 0
\(523\) 5.88206 0.257205 0.128602 0.991696i \(-0.458951\pi\)
0.128602 + 0.991696i \(0.458951\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.23513 0.271607
\(528\) 0 0
\(529\) 37.7022 1.63923
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 62.7565 2.71829
\(534\) 0 0
\(535\) −32.9735 −1.42557
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.35744 −0.230761
\(540\) 0 0
\(541\) −10.1300 −0.435521 −0.217761 0.976002i \(-0.569875\pi\)
−0.217761 + 0.976002i \(0.569875\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 25.4053 1.08824
\(546\) 0 0
\(547\) −5.77888 −0.247087 −0.123544 0.992339i \(-0.539426\pi\)
−0.123544 + 0.992339i \(0.539426\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.81692 0.120005
\(552\) 0 0
\(553\) −11.2596 −0.478808
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −36.6729 −1.55388 −0.776941 0.629574i \(-0.783230\pi\)
−0.776941 + 0.629574i \(0.783230\pi\)
\(558\) 0 0
\(559\) 10.5193 0.444917
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.3822 0.521848 0.260924 0.965359i \(-0.415973\pi\)
0.260924 + 0.965359i \(0.415973\pi\)
\(564\) 0 0
\(565\) 32.4308 1.36438
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −30.4818 −1.27786 −0.638932 0.769263i \(-0.720624\pi\)
−0.638932 + 0.769263i \(0.720624\pi\)
\(570\) 0 0
\(571\) 12.3363 0.516259 0.258130 0.966110i \(-0.416894\pi\)
0.258130 + 0.966110i \(0.416894\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 11.3304 0.472512
\(576\) 0 0
\(577\) 10.3658 0.431536 0.215768 0.976445i \(-0.430775\pi\)
0.215768 + 0.976445i \(0.430775\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.19110 −0.256850
\(582\) 0 0
\(583\) 50.3129 2.08375
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.2126 0.504069 0.252034 0.967718i \(-0.418900\pi\)
0.252034 + 0.967718i \(0.418900\pi\)
\(588\) 0 0
\(589\) 1.54573 0.0636907
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.29342 −0.258440 −0.129220 0.991616i \(-0.541247\pi\)
−0.129220 + 0.991616i \(0.541247\pi\)
\(594\) 0 0
\(595\) 10.2479 0.420123
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 33.9816 1.38845 0.694224 0.719759i \(-0.255748\pi\)
0.694224 + 0.719759i \(0.255748\pi\)
\(600\) 0 0
\(601\) −10.7404 −0.438109 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 44.9728 1.82841
\(606\) 0 0
\(607\) −17.0385 −0.691572 −0.345786 0.938313i \(-0.612388\pi\)
−0.345786 + 0.938313i \(0.612388\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 37.1862 1.50439
\(612\) 0 0
\(613\) 34.9735 1.41257 0.706284 0.707929i \(-0.250370\pi\)
0.706284 + 0.707929i \(0.250370\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.2677 0.453619 0.226810 0.973939i \(-0.427171\pi\)
0.226810 + 0.973939i \(0.427171\pi\)
\(618\) 0 0
\(619\) −9.48075 −0.381063 −0.190532 0.981681i \(-0.561021\pi\)
−0.190532 + 0.981681i \(0.561021\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.6554 −0.466962
\(624\) 0 0
\(625\) −30.1564 −1.20626
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −20.5378 −0.818896
\(630\) 0 0
\(631\) −11.9350 −0.475125 −0.237563 0.971372i \(-0.576349\pi\)
−0.237563 + 0.971372i \(0.576349\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −50.7135 −2.01250
\(636\) 0 0
\(637\) 6.80536 0.269638
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.7814 −1.21579 −0.607897 0.794016i \(-0.707987\pi\)
−0.607897 + 0.794016i \(0.707987\pi\)
\(642\) 0 0
\(643\) −15.0915 −0.595149 −0.297575 0.954699i \(-0.596178\pi\)
−0.297575 + 0.954699i \(0.596178\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −47.1302 −1.85288 −0.926439 0.376445i \(-0.877146\pi\)
−0.926439 + 0.376445i \(0.877146\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 34.5784 1.35316 0.676578 0.736371i \(-0.263462\pi\)
0.676578 + 0.736371i \(0.263462\pi\)
\(654\) 0 0
\(655\) 22.4543 0.877361
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.3532 0.637030 0.318515 0.947918i \(-0.396816\pi\)
0.318515 + 0.947918i \(0.396816\pi\)
\(660\) 0 0
\(661\) −19.1712 −0.745674 −0.372837 0.927897i \(-0.621615\pi\)
−0.372837 + 0.927897i \(0.621615\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.54053 0.0985173
\(666\) 0 0
\(667\) −21.9470 −0.849793
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −27.2772 −1.05303
\(672\) 0 0
\(673\) −0.519253 −0.0200157 −0.0100079 0.999950i \(-0.503186\pi\)
−0.0100079 + 0.999950i \(0.503186\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −51.7420 −1.98861 −0.994303 0.106589i \(-0.966007\pi\)
−0.994303 + 0.106589i \(0.966007\pi\)
\(678\) 0 0
\(679\) 17.9618 0.689311
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −23.0531 −0.882101 −0.441050 0.897482i \(-0.645394\pi\)
−0.441050 + 0.897482i \(0.645394\pi\)
\(684\) 0 0
\(685\) 21.0385 0.803840
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −63.9106 −2.43480
\(690\) 0 0
\(691\) −24.3363 −0.925798 −0.462899 0.886411i \(-0.653191\pi\)
−0.462899 + 0.886411i \(0.653191\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 32.2702 1.22408
\(696\) 0 0
\(697\) −37.1980 −1.40897
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 34.5784 1.30601 0.653003 0.757355i \(-0.273509\pi\)
0.653003 + 0.757355i \(0.273509\pi\)
\(702\) 0 0
\(703\) −5.09146 −0.192028
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.60006 −0.0601763
\(708\) 0 0
\(709\) 14.7672 0.554592 0.277296 0.960784i \(-0.410562\pi\)
0.277296 + 0.960784i \(0.410562\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.0430 −0.451015
\(714\) 0 0
\(715\) −92.6258 −3.46401
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −32.5764 −1.21489 −0.607447 0.794360i \(-0.707806\pi\)
−0.607447 + 0.794360i \(0.707806\pi\)
\(720\) 0 0
\(721\) −14.5193 −0.540725
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.09655 −0.152142
\(726\) 0 0
\(727\) −23.4278 −0.868889 −0.434444 0.900699i \(-0.643055\pi\)
−0.434444 + 0.900699i \(0.643055\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.23513 −0.230615
\(732\) 0 0
\(733\) −23.0385 −0.850947 −0.425473 0.904971i \(-0.639892\pi\)
−0.425473 + 0.904971i \(0.639892\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 17.4633 0.643267
\(738\) 0 0
\(739\) 23.8586 0.877654 0.438827 0.898572i \(-0.355394\pi\)
0.438827 + 0.898572i \(0.355394\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.1656 0.703119 0.351559 0.936166i \(-0.385652\pi\)
0.351559 + 0.936166i \(0.385652\pi\)
\(744\) 0 0
\(745\) −6.72561 −0.246407
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12.9790 0.474243
\(750\) 0 0
\(751\) −31.6255 −1.15403 −0.577015 0.816734i \(-0.695783\pi\)
−0.577015 + 0.816734i \(0.695783\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.2272 −0.736142
\(756\) 0 0
\(757\) 41.0151 1.49072 0.745359 0.666663i \(-0.232278\pi\)
0.745359 + 0.666663i \(0.232278\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.77413 −0.0643122 −0.0321561 0.999483i \(-0.510237\pi\)
−0.0321561 + 0.999483i \(0.510237\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −11.8171 −0.426135 −0.213067 0.977038i \(-0.568345\pi\)
−0.213067 + 0.977038i \(0.568345\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 16.9500 0.609650 0.304825 0.952408i \(-0.401402\pi\)
0.304825 + 0.952408i \(0.401402\pi\)
\(774\) 0 0
\(775\) −2.24791 −0.0807473
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.22163 −0.330399
\(780\) 0 0
\(781\) 7.09146 0.253752
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 41.9676 1.49789
\(786\) 0 0
\(787\) −36.0650 −1.28558 −0.642789 0.766043i \(-0.722223\pi\)
−0.642789 + 0.766043i \(0.722223\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.7654 −0.453886
\(792\) 0 0
\(793\) 34.6492 1.23043
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.03253 0.178261 0.0891307 0.996020i \(-0.471591\pi\)
0.0891307 + 0.996020i \(0.471591\pi\)
\(798\) 0 0
\(799\) −22.0415 −0.779774
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −88.5009 −3.12313
\(804\) 0 0
\(805\) −19.7936 −0.697634
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −26.1716 −0.920146 −0.460073 0.887881i \(-0.652177\pi\)
−0.460073 + 0.887881i \(0.652177\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −36.1972 −1.26793
\(816\) 0 0
\(817\) −1.54573 −0.0540783
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.213613 0.00745514 0.00372757 0.999993i \(-0.498813\pi\)
0.00372757 + 0.999993i \(0.498813\pi\)
\(822\) 0 0
\(823\) −29.6757 −1.03443 −0.517215 0.855856i \(-0.673031\pi\)
−0.517215 + 0.855856i \(0.673031\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −6.06555 −0.210920 −0.105460 0.994424i \(-0.533631\pi\)
−0.105460 + 0.994424i \(0.533631\pi\)
\(828\) 0 0
\(829\) −11.0767 −0.384710 −0.192355 0.981325i \(-0.561612\pi\)
−0.192355 + 0.981325i \(0.561612\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.03378 −0.139762
\(834\) 0 0
\(835\) −26.6787 −0.923256
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23.7379 0.819524 0.409762 0.912192i \(-0.365612\pi\)
0.409762 + 0.912192i \(0.365612\pi\)
\(840\) 0 0
\(841\) −21.0650 −0.726379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 84.6322 2.91144
\(846\) 0 0
\(847\) −17.7022 −0.608254
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 39.6684 1.35982
\(852\) 0 0
\(853\) −6.90854 −0.236544 −0.118272 0.992981i \(-0.537735\pi\)
−0.118272 + 0.992981i \(0.537735\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −36.8470 −1.25867 −0.629335 0.777134i \(-0.716672\pi\)
−0.629335 + 0.777134i \(0.716672\pi\)
\(858\) 0 0
\(859\) −24.9085 −0.849868 −0.424934 0.905224i \(-0.639703\pi\)
−0.424934 + 0.905224i \(0.639703\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −27.7949 −0.946151 −0.473075 0.881022i \(-0.656856\pi\)
−0.473075 + 0.881022i \(0.656856\pi\)
\(864\) 0 0
\(865\) 29.6107 1.00679
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −60.3228 −2.04631
\(870\) 0 0
\(871\) −22.1829 −0.751640
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9.00802 0.304527
\(876\) 0 0
\(877\) −19.8171 −0.669175 −0.334588 0.942365i \(-0.608597\pi\)
−0.334588 + 0.942365i \(0.608597\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.1228 −0.610574 −0.305287 0.952260i \(-0.598752\pi\)
−0.305287 + 0.952260i \(0.598752\pi\)
\(882\) 0 0
\(883\) 11.2214 0.377631 0.188816 0.982013i \(-0.439535\pi\)
0.188816 + 0.982013i \(0.439535\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −34.2392 −1.14964 −0.574820 0.818280i \(-0.694928\pi\)
−0.574820 + 0.818280i \(0.694928\pi\)
\(888\) 0 0
\(889\) 19.9618 0.669497
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.46425 −0.182854
\(894\) 0 0
\(895\) −18.6606 −0.623756
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.35419 0.145221
\(900\) 0 0
\(901\) 37.8821 1.26203
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 63.6485 2.11575
\(906\) 0 0
\(907\) 1.31258 0.0435836 0.0217918 0.999763i \(-0.493063\pi\)
0.0217918 + 0.999763i \(0.493063\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −24.4208 −0.809096 −0.404548 0.914517i \(-0.632571\pi\)
−0.404548 + 0.914517i \(0.632571\pi\)
\(912\) 0 0
\(913\) −33.1685 −1.09772
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8.83844 −0.291871
\(918\) 0 0
\(919\) −52.6258 −1.73596 −0.867982 0.496595i \(-0.834583\pi\)
−0.867982 + 0.496595i \(0.834583\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.00802 −0.296503
\(924\) 0 0
\(925\) 7.40436 0.243454
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22.0498 −0.723431 −0.361715 0.932289i \(-0.617809\pi\)
−0.361715 + 0.932289i \(0.617809\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 54.9026 1.79551
\(936\) 0 0
\(937\) −40.8851 −1.33566 −0.667829 0.744315i \(-0.732776\pi\)
−0.667829 + 0.744315i \(0.732776\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.83242 0.0597351 0.0298676 0.999554i \(-0.490491\pi\)
0.0298676 + 0.999554i \(0.490491\pi\)
\(942\) 0 0
\(943\) 71.8472 2.33967
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −60.8128 −1.97615 −0.988075 0.153973i \(-0.950793\pi\)
−0.988075 + 0.153973i \(0.950793\pi\)
\(948\) 0 0
\(949\) 112.419 3.64929
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −17.1196 −0.554558 −0.277279 0.960789i \(-0.589433\pi\)
−0.277279 + 0.960789i \(0.589433\pi\)
\(954\) 0 0
\(955\) −51.7936 −1.67600
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.28116 −0.267413
\(960\) 0 0
\(961\) −28.6107 −0.922926
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30.9510 0.996349
\(966\) 0 0
\(967\) 20.1950 0.649426 0.324713 0.945813i \(-0.394732\pi\)
0.324713 + 0.945813i \(0.394732\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.40023 0.205393 0.102697 0.994713i \(-0.467253\pi\)
0.102697 + 0.994713i \(0.467253\pi\)
\(972\) 0 0
\(973\) −12.7022 −0.407213
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 47.7225 1.52678 0.763389 0.645939i \(-0.223534\pi\)
0.763389 + 0.645939i \(0.223534\pi\)
\(978\) 0 0
\(979\) −62.4429 −1.99568
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.44021 0.141621 0.0708104 0.997490i \(-0.477441\pi\)
0.0708104 + 0.997490i \(0.477441\pi\)
\(984\) 0 0
\(985\) −54.4429 −1.73469
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.0430 0.382946
\(990\) 0 0
\(991\) −20.1682 −0.640663 −0.320331 0.947306i \(-0.603794\pi\)
−0.320331 + 0.947306i \(0.603794\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 15.7079 0.497973
\(996\) 0 0
\(997\) 5.29782 0.167784 0.0838919 0.996475i \(-0.473265\pi\)
0.0838919 + 0.996475i \(0.473265\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.t.1.5 yes 6
3.2 odd 2 inner 4788.2.a.t.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4788.2.a.t.1.2 6 3.2 odd 2 inner
4788.2.a.t.1.5 yes 6 1.1 even 1 trivial