Properties

Label 4788.2.a.t.1.3
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.56310016.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} + 14x^{2} - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.66648\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.79367 q^{5} -1.00000 q^{7} -3.83284 q^{11} -3.43742 q^{13} -0.293558 q^{17} -1.00000 q^{19} -6.83306 q^{23} -1.78276 q^{25} -5.62651 q^{29} -4.78276 q^{31} +1.79367 q^{35} +11.5655 q^{37} +5.57846 q^{41} +4.78276 q^{43} +12.7051 q^{47} +1.00000 q^{49} -4.12640 q^{53} +6.87484 q^{55} +11.5655 q^{61} +6.16558 q^{65} +10.2202 q^{67} -3.53929 q^{71} -10.4404 q^{73} +3.83284 q^{77} -2.22018 q^{79} -17.7925 q^{83} +0.526544 q^{85} -5.08744 q^{89} +3.43742 q^{91} +1.79367 q^{95} +9.52949 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{7} + 4 q^{13} - 6 q^{19} + 14 q^{25} - 4 q^{31} + 20 q^{37} + 4 q^{43} + 6 q^{49} - 8 q^{55} + 20 q^{61} + 12 q^{67} + 36 q^{73} + 36 q^{79} + 28 q^{85} - 4 q^{91} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.79367 −0.802152 −0.401076 0.916045i \(-0.631364\pi\)
−0.401076 + 0.916045i \(0.631364\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.83284 −1.15565 −0.577823 0.816162i \(-0.696098\pi\)
−0.577823 + 0.816162i \(0.696098\pi\)
\(12\) 0 0
\(13\) −3.43742 −0.953369 −0.476684 0.879075i \(-0.658162\pi\)
−0.476684 + 0.879075i \(0.658162\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.293558 −0.0711982 −0.0355991 0.999366i \(-0.511334\pi\)
−0.0355991 + 0.999366i \(0.511334\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.83306 −1.42479 −0.712396 0.701778i \(-0.752390\pi\)
−0.712396 + 0.701778i \(0.752390\pi\)
\(24\) 0 0
\(25\) −1.78276 −0.356553
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.62651 −1.04482 −0.522408 0.852696i \(-0.674966\pi\)
−0.522408 + 0.852696i \(0.674966\pi\)
\(30\) 0 0
\(31\) −4.78276 −0.859010 −0.429505 0.903065i \(-0.641312\pi\)
−0.429505 + 0.903065i \(0.641312\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.79367 0.303185
\(36\) 0 0
\(37\) 11.5655 1.90136 0.950681 0.310171i \(-0.100386\pi\)
0.950681 + 0.310171i \(0.100386\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.57846 0.871210 0.435605 0.900138i \(-0.356535\pi\)
0.435605 + 0.900138i \(0.356535\pi\)
\(42\) 0 0
\(43\) 4.78276 0.729365 0.364682 0.931132i \(-0.381178\pi\)
0.364682 + 0.931132i \(0.381178\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.7051 1.85323 0.926613 0.376016i \(-0.122706\pi\)
0.926613 + 0.376016i \(0.122706\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.12640 −0.566805 −0.283402 0.959001i \(-0.591463\pi\)
−0.283402 + 0.959001i \(0.591463\pi\)
\(54\) 0 0
\(55\) 6.87484 0.927003
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 11.5655 1.48081 0.740407 0.672159i \(-0.234633\pi\)
0.740407 + 0.672159i \(0.234633\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.16558 0.764746
\(66\) 0 0
\(67\) 10.2202 1.24859 0.624297 0.781187i \(-0.285385\pi\)
0.624297 + 0.781187i \(0.285385\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.53929 −0.420036 −0.210018 0.977698i \(-0.567352\pi\)
−0.210018 + 0.977698i \(0.567352\pi\)
\(72\) 0 0
\(73\) −10.4404 −1.22195 −0.610976 0.791649i \(-0.709223\pi\)
−0.610976 + 0.791649i \(0.709223\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.83284 0.436793
\(78\) 0 0
\(79\) −2.22018 −0.249790 −0.124895 0.992170i \(-0.539859\pi\)
−0.124895 + 0.992170i \(0.539859\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −17.7925 −1.95298 −0.976491 0.215557i \(-0.930843\pi\)
−0.976491 + 0.215557i \(0.930843\pi\)
\(84\) 0 0
\(85\) 0.526544 0.0571118
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.08744 −0.539267 −0.269634 0.962963i \(-0.586903\pi\)
−0.269634 + 0.962963i \(0.586903\pi\)
\(90\) 0 0
\(91\) 3.43742 0.360339
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.79367 0.184026
\(96\) 0 0
\(97\) 9.52949 0.967573 0.483787 0.875186i \(-0.339261\pi\)
0.483787 + 0.875186i \(0.339261\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.9595 1.09051 0.545254 0.838271i \(-0.316433\pi\)
0.545254 + 0.838271i \(0.316433\pi\)
\(102\) 0 0
\(103\) −12.4404 −1.22579 −0.612893 0.790166i \(-0.709994\pi\)
−0.612893 + 0.790166i \(0.709994\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.54815 0.149666 0.0748328 0.997196i \(-0.476158\pi\)
0.0748328 + 0.997196i \(0.476158\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −19.2926 −1.81490 −0.907449 0.420163i \(-0.861973\pi\)
−0.907449 + 0.420163i \(0.861973\pi\)
\(114\) 0 0
\(115\) 12.2562 1.14290
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.293558 0.0269104
\(120\) 0 0
\(121\) 3.69069 0.335517
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1660 1.08816
\(126\) 0 0
\(127\) 7.52949 0.668134 0.334067 0.942549i \(-0.391579\pi\)
0.334067 + 0.942549i \(0.391579\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.7139 −0.936082 −0.468041 0.883707i \(-0.655040\pi\)
−0.468041 + 0.883707i \(0.655040\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.3316 1.56617 0.783087 0.621913i \(-0.213644\pi\)
0.783087 + 0.621913i \(0.213644\pi\)
\(138\) 0 0
\(139\) −1.30931 −0.111054 −0.0555271 0.998457i \(-0.517684\pi\)
−0.0555271 + 0.998457i \(0.517684\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 13.1751 1.10176
\(144\) 0 0
\(145\) 10.0921 0.838101
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.07857 −0.579899 −0.289950 0.957042i \(-0.593639\pi\)
−0.289950 + 0.957042i \(0.593639\pi\)
\(150\) 0 0
\(151\) 19.5295 1.58929 0.794644 0.607076i \(-0.207658\pi\)
0.794644 + 0.607076i \(0.207658\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.57868 0.689056
\(156\) 0 0
\(157\) −10.4404 −0.833232 −0.416616 0.909083i \(-0.636784\pi\)
−0.416616 + 0.909083i \(0.636784\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.83306 0.538520
\(162\) 0 0
\(163\) −3.47346 −0.272062 −0.136031 0.990705i \(-0.543435\pi\)
−0.136031 + 0.990705i \(0.543435\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.0788 0.779920 0.389960 0.920832i \(-0.372489\pi\)
0.389960 + 0.920832i \(0.372489\pi\)
\(168\) 0 0
\(169\) −1.18415 −0.0910883
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.08744 −0.386791 −0.193395 0.981121i \(-0.561950\pi\)
−0.193395 + 0.981121i \(0.561950\pi\)
\(174\) 0 0
\(175\) 1.78276 0.134764
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.8012 0.956804 0.478402 0.878141i \(-0.341216\pi\)
0.478402 + 0.878141i \(0.341216\pi\)
\(180\) 0 0
\(181\) 4.03604 0.299996 0.149998 0.988686i \(-0.452073\pi\)
0.149998 + 0.988686i \(0.452073\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −20.7447 −1.52518
\(186\) 0 0
\(187\) 1.12516 0.0822799
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.6736 1.78532 0.892660 0.450730i \(-0.148836\pi\)
0.892660 + 0.450730i \(0.148836\pi\)
\(192\) 0 0
\(193\) 25.1311 1.80897 0.904487 0.426502i \(-0.140254\pi\)
0.904487 + 0.426502i \(0.140254\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.3314 −1.09232 −0.546158 0.837682i \(-0.683910\pi\)
−0.546158 + 0.837682i \(0.683910\pi\)
\(198\) 0 0
\(199\) 19.1311 1.35616 0.678082 0.734986i \(-0.262811\pi\)
0.678082 + 0.734986i \(0.262811\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.62651 0.394904
\(204\) 0 0
\(205\) −10.0059 −0.698842
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.83284 0.265123
\(210\) 0 0
\(211\) −11.5295 −0.793723 −0.396862 0.917878i \(-0.629901\pi\)
−0.396862 + 0.917878i \(0.629901\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.57868 −0.585061
\(216\) 0 0
\(217\) 4.78276 0.324675
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.00908 0.0678782
\(222\) 0 0
\(223\) −6.34829 −0.425113 −0.212557 0.977149i \(-0.568179\pi\)
−0.212557 + 0.977149i \(0.568179\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −22.4099 −1.48740 −0.743700 0.668513i \(-0.766931\pi\)
−0.743700 + 0.668513i \(0.766931\pi\)
\(228\) 0 0
\(229\) 20.8748 1.37945 0.689724 0.724072i \(-0.257732\pi\)
0.689724 + 0.724072i \(0.257732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.4277 1.20724 0.603619 0.797273i \(-0.293725\pi\)
0.603619 + 0.797273i \(0.293725\pi\)
\(234\) 0 0
\(235\) −22.7887 −1.48657
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.4206 0.868107 0.434053 0.900887i \(-0.357083\pi\)
0.434053 + 0.900887i \(0.357083\pi\)
\(240\) 0 0
\(241\) 15.0950 0.972356 0.486178 0.873860i \(-0.338391\pi\)
0.486178 + 0.873860i \(0.338391\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.79367 −0.114593
\(246\) 0 0
\(247\) 3.43742 0.218718
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.6269 −0.733886 −0.366943 0.930243i \(-0.619596\pi\)
−0.366943 + 0.930243i \(0.619596\pi\)
\(252\) 0 0
\(253\) 26.1900 1.64655
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −21.0059 −1.31031 −0.655157 0.755493i \(-0.727397\pi\)
−0.655157 + 0.755493i \(0.727397\pi\)
\(258\) 0 0
\(259\) −11.5655 −0.718647
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.92893 0.242268 0.121134 0.992636i \(-0.461347\pi\)
0.121134 + 0.992636i \(0.461347\pi\)
\(264\) 0 0
\(265\) 7.40138 0.454663
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −19.8317 −1.20916 −0.604580 0.796544i \(-0.706659\pi\)
−0.604580 + 0.796544i \(0.706659\pi\)
\(270\) 0 0
\(271\) 2.69069 0.163448 0.0817239 0.996655i \(-0.473957\pi\)
0.0817239 + 0.996655i \(0.473957\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.83306 0.412049
\(276\) 0 0
\(277\) 11.9079 0.715478 0.357739 0.933822i \(-0.383548\pi\)
0.357739 + 0.933822i \(0.383548\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −17.8886 −1.06714 −0.533572 0.845754i \(-0.679151\pi\)
−0.533572 + 0.845754i \(0.679151\pi\)
\(282\) 0 0
\(283\) −21.5655 −1.28194 −0.640969 0.767567i \(-0.721467\pi\)
−0.640969 + 0.767567i \(0.721467\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.57846 −0.329286
\(288\) 0 0
\(289\) −16.9138 −0.994931
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.75291 0.569771 0.284886 0.958562i \(-0.408044\pi\)
0.284886 + 0.958562i \(0.408044\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 23.4881 1.35835
\(300\) 0 0
\(301\) −4.78276 −0.275674
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −20.7447 −1.18784
\(306\) 0 0
\(307\) −32.0980 −1.83193 −0.915964 0.401260i \(-0.868572\pi\)
−0.915964 + 0.401260i \(0.868572\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.12662 0.404113 0.202057 0.979374i \(-0.435237\pi\)
0.202057 + 0.979374i \(0.435237\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.864947 0.0485803 0.0242901 0.999705i \(-0.492267\pi\)
0.0242901 + 0.999705i \(0.492267\pi\)
\(318\) 0 0
\(319\) 21.5655 1.20744
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.293558 0.0163340
\(324\) 0 0
\(325\) 6.12811 0.339926
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.7051 −0.700454
\(330\) 0 0
\(331\) 15.7857 0.867661 0.433831 0.900994i \(-0.357162\pi\)
0.433831 + 0.900994i \(0.357162\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −18.3316 −1.00156
\(336\) 0 0
\(337\) 18.4404 1.00451 0.502255 0.864719i \(-0.332504\pi\)
0.502255 + 0.864719i \(0.332504\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 18.3316 0.992711
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 33.4175 1.79394 0.896971 0.442089i \(-0.145762\pi\)
0.896971 + 0.442089i \(0.145762\pi\)
\(348\) 0 0
\(349\) 8.87484 0.475059 0.237530 0.971380i \(-0.423662\pi\)
0.237530 + 0.971380i \(0.423662\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 31.9654 1.70135 0.850673 0.525695i \(-0.176195\pi\)
0.850673 + 0.525695i \(0.176195\pi\)
\(354\) 0 0
\(355\) 6.34829 0.336932
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.00729 0.422609 0.211304 0.977420i \(-0.432229\pi\)
0.211304 + 0.977420i \(0.432229\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 18.7265 0.980191
\(366\) 0 0
\(367\) 4.18415 0.218411 0.109205 0.994019i \(-0.465169\pi\)
0.109205 + 0.994019i \(0.465169\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.12640 0.214232
\(372\) 0 0
\(373\) 29.5714 1.53115 0.765575 0.643346i \(-0.222454\pi\)
0.765575 + 0.643346i \(0.222454\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.3407 0.996095
\(378\) 0 0
\(379\) −7.52949 −0.386764 −0.193382 0.981124i \(-0.561946\pi\)
−0.193382 + 0.981124i \(0.561946\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −25.6023 −1.30822 −0.654109 0.756400i \(-0.726956\pi\)
−0.654109 + 0.756400i \(0.726956\pi\)
\(384\) 0 0
\(385\) −6.87484 −0.350374
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −30.0756 −1.52490 −0.762448 0.647050i \(-0.776002\pi\)
−0.762448 + 0.647050i \(0.776002\pi\)
\(390\) 0 0
\(391\) 2.00590 0.101443
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.98227 0.200370
\(396\) 0 0
\(397\) 21.0590 1.05692 0.528460 0.848958i \(-0.322770\pi\)
0.528460 + 0.848958i \(0.322770\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.2052 0.709373 0.354687 0.934985i \(-0.384588\pi\)
0.354687 + 0.934985i \(0.384588\pi\)
\(402\) 0 0
\(403\) 16.4404 0.818953
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −44.3289 −2.19730
\(408\) 0 0
\(409\) −14.1281 −0.698590 −0.349295 0.937013i \(-0.613579\pi\)
−0.349295 + 0.937013i \(0.613579\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 31.9138 1.56659
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.72281 −0.426137 −0.213069 0.977037i \(-0.568346\pi\)
−0.213069 + 0.977037i \(0.568346\pi\)
\(420\) 0 0
\(421\) −33.5714 −1.63617 −0.818086 0.575096i \(-0.804965\pi\)
−0.818086 + 0.575096i \(0.804965\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.523345 0.0253859
\(426\) 0 0
\(427\) −11.5655 −0.559695
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.96125 −0.190807 −0.0954034 0.995439i \(-0.530414\pi\)
−0.0954034 + 0.995439i \(0.530414\pi\)
\(432\) 0 0
\(433\) 23.1671 1.11334 0.556670 0.830734i \(-0.312079\pi\)
0.556670 + 0.830734i \(0.312079\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.83306 0.326870
\(438\) 0 0
\(439\) −5.03899 −0.240498 −0.120249 0.992744i \(-0.538369\pi\)
−0.120249 + 0.992744i \(0.538369\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.91099 −0.233328 −0.116664 0.993171i \(-0.537220\pi\)
−0.116664 + 0.993171i \(0.537220\pi\)
\(444\) 0 0
\(445\) 9.12516 0.432574
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 35.0460 1.65392 0.826961 0.562260i \(-0.190068\pi\)
0.826961 + 0.562260i \(0.190068\pi\)
\(450\) 0 0
\(451\) −21.3814 −1.00681
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.16558 −0.289047
\(456\) 0 0
\(457\) −0.348294 −0.0162925 −0.00814626 0.999967i \(-0.502593\pi\)
−0.00814626 + 0.999967i \(0.502593\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.5291 −0.862984 −0.431492 0.902117i \(-0.642013\pi\)
−0.431492 + 0.902117i \(0.642013\pi\)
\(462\) 0 0
\(463\) −39.4994 −1.83569 −0.917845 0.396938i \(-0.870073\pi\)
−0.917845 + 0.396938i \(0.870073\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.2054 −0.796171 −0.398086 0.917348i \(-0.630325\pi\)
−0.398086 + 0.917348i \(0.630325\pi\)
\(468\) 0 0
\(469\) −10.2202 −0.471924
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −18.3316 −0.842887
\(474\) 0 0
\(475\) 1.78276 0.0817989
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 16.7834 0.766855 0.383427 0.923571i \(-0.374744\pi\)
0.383427 + 0.923571i \(0.374744\pi\)
\(480\) 0 0
\(481\) −39.7556 −1.81270
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.0927 −0.776141
\(486\) 0 0
\(487\) 3.34535 0.151592 0.0757960 0.997123i \(-0.475850\pi\)
0.0757960 + 0.997123i \(0.475850\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 25.0686 1.13133 0.565664 0.824636i \(-0.308620\pi\)
0.565664 + 0.824636i \(0.308620\pi\)
\(492\) 0 0
\(493\) 1.65171 0.0743891
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.53929 0.158759
\(498\) 0 0
\(499\) −8.00000 −0.358129 −0.179065 0.983837i \(-0.557307\pi\)
−0.179065 + 0.983837i \(0.557307\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 37.2983 1.66305 0.831525 0.555487i \(-0.187468\pi\)
0.831525 + 0.555487i \(0.187468\pi\)
\(504\) 0 0
\(505\) −19.6576 −0.874752
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20.5149 −0.909307 −0.454654 0.890668i \(-0.650237\pi\)
−0.454654 + 0.890668i \(0.650237\pi\)
\(510\) 0 0
\(511\) 10.4404 0.461855
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 22.3139 0.983266
\(516\) 0 0
\(517\) −48.6966 −2.14167
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.0057 0.788845 0.394422 0.918929i \(-0.370945\pi\)
0.394422 + 0.918929i \(0.370945\pi\)
\(522\) 0 0
\(523\) −30.7887 −1.34629 −0.673147 0.739509i \(-0.735058\pi\)
−0.673147 + 0.739509i \(0.735058\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.40402 0.0611600
\(528\) 0 0
\(529\) 23.6907 1.03003
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −19.1755 −0.830584
\(534\) 0 0
\(535\) −2.77687 −0.120054
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.83284 −0.165092
\(540\) 0 0
\(541\) 37.3152 1.60431 0.802153 0.597119i \(-0.203688\pi\)
0.802153 + 0.597119i \(0.203688\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −17.9367 −0.768322
\(546\) 0 0
\(547\) 34.6606 1.48198 0.740989 0.671517i \(-0.234357\pi\)
0.740989 + 0.671517i \(0.234357\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.62651 0.239697
\(552\) 0 0
\(553\) 2.22018 0.0944118
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.56938 −0.193611 −0.0968055 0.995303i \(-0.530862\pi\)
−0.0968055 + 0.995303i \(0.530862\pi\)
\(558\) 0 0
\(559\) −16.4404 −0.695353
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −35.5850 −1.49973 −0.749865 0.661591i \(-0.769882\pi\)
−0.749865 + 0.661591i \(0.769882\pi\)
\(564\) 0 0
\(565\) 34.6045 1.45582
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.3619 −0.937460 −0.468730 0.883342i \(-0.655288\pi\)
−0.468730 + 0.883342i \(0.655288\pi\)
\(570\) 0 0
\(571\) −27.5714 −1.15383 −0.576914 0.816805i \(-0.695743\pi\)
−0.576914 + 0.816805i \(0.695743\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.1817 0.508014
\(576\) 0 0
\(577\) 36.2621 1.50961 0.754806 0.655948i \(-0.227731\pi\)
0.754806 + 0.655948i \(0.227731\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 17.7925 0.738158
\(582\) 0 0
\(583\) 15.8159 0.655026
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −34.1330 −1.40882 −0.704409 0.709794i \(-0.748788\pi\)
−0.704409 + 0.709794i \(0.748788\pi\)
\(588\) 0 0
\(589\) 4.78276 0.197070
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −34.9656 −1.43587 −0.717933 0.696113i \(-0.754911\pi\)
−0.717933 + 0.696113i \(0.754911\pi\)
\(594\) 0 0
\(595\) −0.526544 −0.0215862
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.7057 −0.886872 −0.443436 0.896306i \(-0.646241\pi\)
−0.443436 + 0.896306i \(0.646241\pi\)
\(600\) 0 0
\(601\) −24.2202 −0.987962 −0.493981 0.869473i \(-0.664459\pi\)
−0.493981 + 0.869473i \(0.664459\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.61986 −0.269136
\(606\) 0 0
\(607\) 36.8807 1.49694 0.748471 0.663167i \(-0.230788\pi\)
0.748471 + 0.663167i \(0.230788\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −43.6727 −1.76681
\(612\) 0 0
\(613\) 4.77687 0.192936 0.0964679 0.995336i \(-0.469245\pi\)
0.0964679 + 0.995336i \(0.469245\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.5060 0.906059 0.453029 0.891496i \(-0.350343\pi\)
0.453029 + 0.891496i \(0.350343\pi\)
\(618\) 0 0
\(619\) −36.4404 −1.46466 −0.732331 0.680949i \(-0.761568\pi\)
−0.732331 + 0.680949i \(0.761568\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.08744 0.203824
\(624\) 0 0
\(625\) −12.9079 −0.516317
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.39515 −0.135374
\(630\) 0 0
\(631\) −35.6576 −1.41951 −0.709753 0.704450i \(-0.751194\pi\)
−0.709753 + 0.704450i \(0.751194\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −13.5054 −0.535945
\(636\) 0 0
\(637\) −3.43742 −0.136196
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 43.6246 1.72307 0.861535 0.507698i \(-0.169504\pi\)
0.861535 + 0.507698i \(0.169504\pi\)
\(642\) 0 0
\(643\) −21.5655 −0.850461 −0.425231 0.905085i \(-0.639807\pi\)
−0.425231 + 0.905085i \(0.639807\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.7059 0.971291 0.485645 0.874156i \(-0.338585\pi\)
0.485645 + 0.874156i \(0.338585\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.3312 0.482556 0.241278 0.970456i \(-0.422434\pi\)
0.241278 + 0.970456i \(0.422434\pi\)
\(654\) 0 0
\(655\) 19.2172 0.750880
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.9672 −0.972583 −0.486292 0.873797i \(-0.661651\pi\)
−0.486292 + 0.873797i \(0.661651\pi\)
\(660\) 0 0
\(661\) −34.8247 −1.35452 −0.677262 0.735742i \(-0.736834\pi\)
−0.677262 + 0.735742i \(0.736834\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.79367 −0.0695554
\(666\) 0 0
\(667\) 38.4463 1.48865
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −44.3289 −1.71130
\(672\) 0 0
\(673\) 26.4404 1.01920 0.509601 0.860411i \(-0.329793\pi\)
0.509601 + 0.860411i \(0.329793\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −39.1453 −1.50448 −0.752239 0.658891i \(-0.771026\pi\)
−0.752239 + 0.658891i \(0.771026\pi\)
\(678\) 0 0
\(679\) −9.52949 −0.365708
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 47.1159 1.80284 0.901420 0.432946i \(-0.142526\pi\)
0.901420 + 0.432946i \(0.142526\pi\)
\(684\) 0 0
\(685\) −32.8807 −1.25631
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.1842 0.540374
\(690\) 0 0
\(691\) 15.5714 0.592365 0.296183 0.955131i \(-0.404286\pi\)
0.296183 + 0.955131i \(0.404286\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.34846 0.0890823
\(696\) 0 0
\(697\) −1.63760 −0.0620286
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.3312 0.465741 0.232871 0.972508i \(-0.425188\pi\)
0.232871 + 0.972508i \(0.425188\pi\)
\(702\) 0 0
\(703\) −11.5655 −0.436202
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.9595 −0.412173
\(708\) 0 0
\(709\) −22.9669 −0.862541 −0.431270 0.902223i \(-0.641934\pi\)
−0.431270 + 0.902223i \(0.641934\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.6809 1.22391
\(714\) 0 0
\(715\) −23.6317 −0.883776
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −14.6001 −0.544493 −0.272246 0.962228i \(-0.587767\pi\)
−0.272246 + 0.962228i \(0.587767\pi\)
\(720\) 0 0
\(721\) 12.4404 0.463304
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.0307 0.372532
\(726\) 0 0
\(727\) 10.0059 0.371098 0.185549 0.982635i \(-0.440594\pi\)
0.185549 + 0.982635i \(0.440594\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.40402 −0.0519295
\(732\) 0 0
\(733\) 30.8807 1.14061 0.570303 0.821434i \(-0.306826\pi\)
0.570303 + 0.821434i \(0.306826\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −39.1724 −1.44293
\(738\) 0 0
\(739\) −7.40138 −0.272264 −0.136132 0.990691i \(-0.543467\pi\)
−0.136132 + 0.990691i \(0.543467\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.5452 0.900477 0.450238 0.892908i \(-0.351339\pi\)
0.450238 + 0.892908i \(0.351339\pi\)
\(744\) 0 0
\(745\) 12.6966 0.465167
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.54815 −0.0565683
\(750\) 0 0
\(751\) −44.0419 −1.60711 −0.803556 0.595228i \(-0.797062\pi\)
−0.803556 + 0.595228i \(0.797062\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −35.0294 −1.27485
\(756\) 0 0
\(757\) −7.49346 −0.272354 −0.136177 0.990685i \(-0.543482\pi\)
−0.136177 + 0.990685i \(0.543482\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.3785 1.24622 0.623110 0.782135i \(-0.285869\pi\)
0.623110 + 0.782135i \(0.285869\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1.13106 0.0407870 0.0203935 0.999792i \(-0.493508\pi\)
0.0203935 + 0.999792i \(0.493508\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.06971 0.326215 0.163107 0.986608i \(-0.447848\pi\)
0.163107 + 0.986608i \(0.447848\pi\)
\(774\) 0 0
\(775\) 8.52654 0.306283
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.57846 −0.199869
\(780\) 0 0
\(781\) 13.5655 0.485413
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 18.7265 0.668378
\(786\) 0 0
\(787\) −12.3424 −0.439959 −0.219979 0.975505i \(-0.570599\pi\)
−0.219979 + 0.975505i \(0.570599\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 19.2926 0.685967
\(792\) 0 0
\(793\) −39.7556 −1.41176
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.1020 0.747472 0.373736 0.927535i \(-0.378077\pi\)
0.373736 + 0.927535i \(0.378077\pi\)
\(798\) 0 0
\(799\) −3.72968 −0.131946
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 40.0163 1.41214
\(804\) 0 0
\(805\) −12.2562 −0.431975
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −14.6482 −0.515002 −0.257501 0.966278i \(-0.582899\pi\)
−0.257501 + 0.966278i \(0.582899\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.23022 0.218235
\(816\) 0 0
\(817\) −4.78276 −0.167328
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 17.7445 0.619286 0.309643 0.950853i \(-0.399790\pi\)
0.309643 + 0.950853i \(0.399790\pi\)
\(822\) 0 0
\(823\) 14.5324 0.506569 0.253285 0.967392i \(-0.418489\pi\)
0.253285 + 0.967392i \(0.418489\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.85608 −0.0993157 −0.0496578 0.998766i \(-0.515813\pi\)
−0.0496578 + 0.998766i \(0.515813\pi\)
\(828\) 0 0
\(829\) 15.3512 0.533171 0.266585 0.963811i \(-0.414105\pi\)
0.266585 + 0.963811i \(0.414105\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.293558 −0.0101712
\(834\) 0 0
\(835\) −18.0780 −0.625614
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 25.3141 0.873939 0.436969 0.899476i \(-0.356052\pi\)
0.436969 + 0.899476i \(0.356052\pi\)
\(840\) 0 0
\(841\) 2.65760 0.0916415
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.12397 0.0730666
\(846\) 0 0
\(847\) −3.69069 −0.126814
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −79.0279 −2.70904
\(852\) 0 0
\(853\) −0.434470 −0.0148760 −0.00743799 0.999972i \(-0.502368\pi\)
−0.00743799 + 0.999972i \(0.502368\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.7686 1.39263 0.696314 0.717737i \(-0.254822\pi\)
0.696314 + 0.717737i \(0.254822\pi\)
\(858\) 0 0
\(859\) −18.4345 −0.628976 −0.314488 0.949261i \(-0.601833\pi\)
−0.314488 + 0.949261i \(0.601833\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 47.7991 1.62710 0.813550 0.581495i \(-0.197532\pi\)
0.813550 + 0.581495i \(0.197532\pi\)
\(864\) 0 0
\(865\) 9.12516 0.310265
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 8.50962 0.288669
\(870\) 0 0
\(871\) −35.1311 −1.19037
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −12.1660 −0.411286
\(876\) 0 0
\(877\) −6.86894 −0.231948 −0.115974 0.993252i \(-0.536999\pi\)
−0.115974 + 0.993252i \(0.536999\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.4598 0.520853 0.260427 0.965494i \(-0.416137\pi\)
0.260427 + 0.965494i \(0.416137\pi\)
\(882\) 0 0
\(883\) −29.7497 −1.00116 −0.500578 0.865691i \(-0.666879\pi\)
−0.500578 + 0.865691i \(0.666879\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15.2353 −0.511551 −0.255775 0.966736i \(-0.582331\pi\)
−0.255775 + 0.966736i \(0.582331\pi\)
\(888\) 0 0
\(889\) −7.52949 −0.252531
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.7051 −0.425159
\(894\) 0 0
\(895\) −22.9610 −0.767502
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 26.9103 0.897508
\(900\) 0 0
\(901\) 1.21134 0.0403555
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.23930 −0.240642
\(906\) 0 0
\(907\) 48.2261 1.60132 0.800660 0.599118i \(-0.204482\pi\)
0.800660 + 0.599118i \(0.204482\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 24.3801 0.807748 0.403874 0.914815i \(-0.367663\pi\)
0.403874 + 0.914815i \(0.367663\pi\)
\(912\) 0 0
\(913\) 68.1959 2.25696
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10.7139 0.353806
\(918\) 0 0
\(919\) 16.3683 0.539940 0.269970 0.962869i \(-0.412986\pi\)
0.269970 + 0.962869i \(0.412986\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.1660 0.400449
\(924\) 0 0
\(925\) −20.6186 −0.677936
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 24.0385 0.788676 0.394338 0.918965i \(-0.370974\pi\)
0.394338 + 0.918965i \(0.370974\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.01816 −0.0660010
\(936\) 0 0
\(937\) −39.8217 −1.30092 −0.650460 0.759541i \(-0.725424\pi\)
−0.650460 + 0.759541i \(0.725424\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.816902 −0.0266303 −0.0133151 0.999911i \(-0.504238\pi\)
−0.0133151 + 0.999911i \(0.504238\pi\)
\(942\) 0 0
\(943\) −38.1180 −1.24129
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.6550 −0.541216 −0.270608 0.962690i \(-0.587225\pi\)
−0.270608 + 0.962690i \(0.587225\pi\)
\(948\) 0 0
\(949\) 35.8879 1.16497
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −7.61764 −0.246760 −0.123380 0.992360i \(-0.539373\pi\)
−0.123380 + 0.992360i \(0.539373\pi\)
\(954\) 0 0
\(955\) −44.2562 −1.43210
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18.3316 −0.591958
\(960\) 0 0
\(961\) −8.12516 −0.262102
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −45.0767 −1.45107
\(966\) 0 0
\(967\) −50.9728 −1.63918 −0.819588 0.572954i \(-0.805797\pi\)
−0.819588 + 0.572954i \(0.805797\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 43.8378 1.40682 0.703412 0.710783i \(-0.251659\pi\)
0.703412 + 0.710783i \(0.251659\pi\)
\(972\) 0 0
\(973\) 1.30931 0.0419745
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 53.2168 1.70256 0.851279 0.524714i \(-0.175828\pi\)
0.851279 + 0.524714i \(0.175828\pi\)
\(978\) 0 0
\(979\) 19.4994 0.623202
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −56.8208 −1.81230 −0.906150 0.422956i \(-0.860993\pi\)
−0.906150 + 0.422956i \(0.860993\pi\)
\(984\) 0 0
\(985\) 27.4994 0.876202
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.6809 −1.03919
\(990\) 0 0
\(991\) −0.214286 −0.00680703 −0.00340351 0.999994i \(-0.501083\pi\)
−0.00340351 + 0.999994i \(0.501083\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −34.3147 −1.08785
\(996\) 0 0
\(997\) 19.3093 0.611532 0.305766 0.952107i \(-0.401087\pi\)
0.305766 + 0.952107i \(0.401087\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.t.1.3 6
3.2 odd 2 inner 4788.2.a.t.1.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4788.2.a.t.1.3 6 1.1 even 1 trivial
4788.2.a.t.1.4 yes 6 3.2 odd 2 inner