Properties

Label 4788.2.a.t
Level $4788$
Weight $2$
Character orbit 4788.a
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.56310016.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} + 14x^{2} - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{5} - q^{7} + \beta_{5} q^{11} + ( - \beta_{3} + 1) q^{13} + (\beta_{5} + \beta_{4} - \beta_1) q^{17} - q^{19} + ( - \beta_{5} + 2 \beta_1) q^{23} + ( - \beta_{2} + 2) q^{25} + (\beta_{5} + \beta_{4}) q^{29}+ \cdots + (3 \beta_{3} - \beta_{2}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{7} + 4 q^{13} - 6 q^{19} + 14 q^{25} - 4 q^{31} + 20 q^{37} + 4 q^{43} + 6 q^{49} - 8 q^{55} + 20 q^{61} + 12 q^{67} + 36 q^{73} + 36 q^{79} + 28 q^{85} - 4 q^{91} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 9x^{4} + 14x^{2} - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 7\nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{4} + 9\nu^{2} - 9 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 8\nu^{3} + 7\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{5} + 9\nu^{3} - 12\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{5} + 2\beta_{4} + 5\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 7\beta_{3} + 9\beta_{2} + 36 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 16\beta_{5} + 18\beta_{4} + 33\beta_1 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.23277
−0.608430
−2.66648
2.66648
0.608430
−1.23277
0 0 0 −3.51120 0 −1.00000 0 0 0
1.2 0 0 0 −2.54053 0 −1.00000 0 0 0
1.3 0 0 0 −1.79367 0 −1.00000 0 0 0
1.4 0 0 0 1.79367 0 −1.00000 0 0 0
1.5 0 0 0 2.54053 0 −1.00000 0 0 0
1.6 0 0 0 3.51120 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)
\(19\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4788.2.a.t 6
3.b odd 2 1 inner 4788.2.a.t 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4788.2.a.t 6 1.a even 1 1 trivial
4788.2.a.t 6 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4788))\):

\( T_{5}^{6} - 22T_{5}^{4} + 140T_{5}^{2} - 256 \) Copy content Toggle raw display
\( T_{11}^{6} - 44T_{11}^{4} + 448T_{11}^{2} - 256 \) Copy content Toggle raw display
\( T_{13}^{3} - 2T_{13}^{2} - 28T_{13} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 22 T^{4} + \cdots - 256 \) Copy content Toggle raw display
$7$ \( (T + 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 44 T^{4} + \cdots - 256 \) Copy content Toggle raw display
$13$ \( (T^{3} - 2 T^{2} - 28 T - 32)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} - 62 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$19$ \( (T + 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 140 T^{4} + \cdots - 92416 \) Copy content Toggle raw display
$29$ \( T^{6} - 58 T^{4} + \cdots - 4624 \) Copy content Toggle raw display
$31$ \( (T^{3} + 2 T^{2} - 20 T - 32)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} - 10 T^{2} + \cdots + 392)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 192 T^{4} + \cdots - 200704 \) Copy content Toggle raw display
$43$ \( (T^{3} - 2 T^{2} - 20 T + 32)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} - 250 T^{4} + \cdots - 283024 \) Copy content Toggle raw display
$53$ \( T^{6} - 162 T^{4} + \cdots - 85264 \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( (T^{3} - 10 T^{2} + \cdots + 392)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} - 6 T^{2} - 40 T - 32)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} - 50 T^{4} + \cdots - 784 \) Copy content Toggle raw display
$73$ \( (T^{3} - 18 T^{2} + \cdots + 2056)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 18 T^{2} + \cdots + 224)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} - 370 T^{4} + \cdots - 183184 \) Copy content Toggle raw display
$89$ \( T^{6} - 176 T^{4} + \cdots - 50176 \) Copy content Toggle raw display
$97$ \( (T^{3} - 4 T^{2} + \cdots + 2128)^{2} \) Copy content Toggle raw display
show more
show less