Properties

Label 4788.2.a.s.1.4
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.32448.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 10x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.93352\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.82172 q^{5} +1.00000 q^{7} +O(q^{10})\) \(q+3.82172 q^{5} +1.00000 q^{7} +5.86704 q^{11} -0.605551 q^{13} -2.04532 q^{17} +1.00000 q^{19} +5.86704 q^{23} +9.60555 q^{25} -2.04532 q^{29} -6.60555 q^{31} +3.82172 q^{35} +2.00000 q^{37} +5.86704 q^{41} -6.60555 q^{43} +2.04532 q^{47} +1.00000 q^{49} +3.82172 q^{53} +22.4222 q^{55} +11.7341 q^{59} +2.00000 q^{61} -2.31425 q^{65} -9.21110 q^{67} -15.5558 q^{71} +7.21110 q^{73} +5.86704 q^{77} -4.00000 q^{79} -3.82172 q^{83} -7.81665 q^{85} -9.41984 q^{89} -0.605551 q^{91} +3.82172 q^{95} -3.21110 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{7} + 12 q^{13} + 4 q^{19} + 24 q^{25} - 12 q^{31} + 8 q^{37} - 12 q^{43} + 4 q^{49} + 32 q^{55} + 8 q^{61} - 8 q^{67} - 16 q^{79} + 12 q^{85} + 12 q^{91} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.82172 1.70913 0.854563 0.519348i \(-0.173825\pi\)
0.854563 + 0.519348i \(0.173825\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.86704 1.76898 0.884490 0.466559i \(-0.154506\pi\)
0.884490 + 0.466559i \(0.154506\pi\)
\(12\) 0 0
\(13\) −0.605551 −0.167950 −0.0839749 0.996468i \(-0.526762\pi\)
−0.0839749 + 0.996468i \(0.526762\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.04532 −0.496064 −0.248032 0.968752i \(-0.579784\pi\)
−0.248032 + 0.968752i \(0.579784\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.86704 1.22336 0.611682 0.791104i \(-0.290493\pi\)
0.611682 + 0.791104i \(0.290493\pi\)
\(24\) 0 0
\(25\) 9.60555 1.92111
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.04532 −0.379807 −0.189903 0.981803i \(-0.560818\pi\)
−0.189903 + 0.981803i \(0.560818\pi\)
\(30\) 0 0
\(31\) −6.60555 −1.18639 −0.593196 0.805058i \(-0.702134\pi\)
−0.593196 + 0.805058i \(0.702134\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.82172 0.645989
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.86704 0.916278 0.458139 0.888880i \(-0.348516\pi\)
0.458139 + 0.888880i \(0.348516\pi\)
\(42\) 0 0
\(43\) −6.60555 −1.00734 −0.503669 0.863897i \(-0.668017\pi\)
−0.503669 + 0.863897i \(0.668017\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.04532 0.298341 0.149171 0.988811i \(-0.452340\pi\)
0.149171 + 0.988811i \(0.452340\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.82172 0.524954 0.262477 0.964938i \(-0.415461\pi\)
0.262477 + 0.964938i \(0.415461\pi\)
\(54\) 0 0
\(55\) 22.4222 3.02341
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.7341 1.52765 0.763824 0.645425i \(-0.223320\pi\)
0.763824 + 0.645425i \(0.223320\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.31425 −0.287047
\(66\) 0 0
\(67\) −9.21110 −1.12532 −0.562658 0.826690i \(-0.690221\pi\)
−0.562658 + 0.826690i \(0.690221\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −15.5558 −1.84613 −0.923067 0.384638i \(-0.874326\pi\)
−0.923067 + 0.384638i \(0.874326\pi\)
\(72\) 0 0
\(73\) 7.21110 0.843996 0.421998 0.906597i \(-0.361329\pi\)
0.421998 + 0.906597i \(0.361329\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.86704 0.668612
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.82172 −0.419488 −0.209744 0.977756i \(-0.567263\pi\)
−0.209744 + 0.977756i \(0.567263\pi\)
\(84\) 0 0
\(85\) −7.81665 −0.847835
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.41984 −0.998501 −0.499251 0.866458i \(-0.666391\pi\)
−0.499251 + 0.866458i \(0.666391\pi\)
\(90\) 0 0
\(91\) −0.605551 −0.0634790
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.82172 0.392100
\(96\) 0 0
\(97\) −3.21110 −0.326038 −0.163019 0.986623i \(-0.552123\pi\)
−0.163019 + 0.986623i \(0.552123\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.13597 −0.610552 −0.305276 0.952264i \(-0.598749\pi\)
−0.305276 + 0.952264i \(0.598749\pi\)
\(102\) 0 0
\(103\) 18.4222 1.81519 0.907597 0.419843i \(-0.137915\pi\)
0.907597 + 0.419843i \(0.137915\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.04532 −0.197729 −0.0988644 0.995101i \(-0.531521\pi\)
−0.0988644 + 0.995101i \(0.531521\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.7794 −1.29626 −0.648129 0.761531i \(-0.724448\pi\)
−0.648129 + 0.761531i \(0.724448\pi\)
\(114\) 0 0
\(115\) 22.4222 2.09088
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.04532 −0.187494
\(120\) 0 0
\(121\) 23.4222 2.12929
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 17.6011 1.57429
\(126\) 0 0
\(127\) 13.2111 1.17230 0.586148 0.810204i \(-0.300644\pi\)
0.586148 + 0.810204i \(0.300644\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −11.4652 −1.00172 −0.500858 0.865529i \(-0.666982\pi\)
−0.500858 + 0.865529i \(0.666982\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 2.78890 0.236551 0.118276 0.992981i \(-0.462263\pi\)
0.118276 + 0.992981i \(0.462263\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.55280 −0.297100
\(144\) 0 0
\(145\) −7.81665 −0.649138
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.64344 0.626175 0.313088 0.949724i \(-0.398637\pi\)
0.313088 + 0.949724i \(0.398637\pi\)
\(150\) 0 0
\(151\) −14.4222 −1.17366 −0.586831 0.809709i \(-0.699625\pi\)
−0.586831 + 0.809709i \(0.699625\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −25.2446 −2.02769
\(156\) 0 0
\(157\) 7.21110 0.575509 0.287754 0.957704i \(-0.407091\pi\)
0.287754 + 0.957704i \(0.407091\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.86704 0.462388
\(162\) 0 0
\(163\) −11.8167 −0.925552 −0.462776 0.886475i \(-0.653147\pi\)
−0.462776 + 0.886475i \(0.653147\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.1962 −0.866391 −0.433195 0.901300i \(-0.642614\pi\)
−0.433195 + 0.901300i \(0.642614\pi\)
\(168\) 0 0
\(169\) −12.6333 −0.971793
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.31425 0.175949 0.0879745 0.996123i \(-0.471961\pi\)
0.0879745 + 0.996123i \(0.471961\pi\)
\(174\) 0 0
\(175\) 9.60555 0.726111
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.04532 0.152875 0.0764373 0.997074i \(-0.475645\pi\)
0.0764373 + 0.997074i \(0.475645\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.64344 0.561957
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.86704 −0.424524 −0.212262 0.977213i \(-0.568083\pi\)
−0.212262 + 0.977213i \(0.568083\pi\)
\(192\) 0 0
\(193\) −15.2111 −1.09492 −0.547460 0.836832i \(-0.684405\pi\)
−0.547460 + 0.836832i \(0.684405\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.2869 −1.08915 −0.544573 0.838714i \(-0.683308\pi\)
−0.544573 + 0.838714i \(0.683308\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.04532 −0.143554
\(204\) 0 0
\(205\) 22.4222 1.56603
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.86704 0.405832
\(210\) 0 0
\(211\) 25.2111 1.73560 0.867802 0.496910i \(-0.165532\pi\)
0.867802 + 0.496910i \(0.165532\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −25.2446 −1.72167
\(216\) 0 0
\(217\) −6.60555 −0.448414
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.23855 0.0833138
\(222\) 0 0
\(223\) −22.2389 −1.48922 −0.744612 0.667497i \(-0.767365\pi\)
−0.744612 + 0.667497i \(0.767365\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.09065 −0.271506 −0.135753 0.990743i \(-0.543345\pi\)
−0.135753 + 0.990743i \(0.543345\pi\)
\(228\) 0 0
\(229\) −3.21110 −0.212196 −0.106098 0.994356i \(-0.533836\pi\)
−0.106098 + 0.994356i \(0.533836\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.5588 1.80544 0.902719 0.430230i \(-0.141568\pi\)
0.902719 + 0.430230i \(0.141568\pi\)
\(234\) 0 0
\(235\) 7.81665 0.509902
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.95769 0.644109 0.322055 0.946721i \(-0.395626\pi\)
0.322055 + 0.946721i \(0.395626\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.82172 0.244161
\(246\) 0 0
\(247\) −0.605551 −0.0385303
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.9756 −1.57645 −0.788224 0.615388i \(-0.788999\pi\)
−0.788224 + 0.615388i \(0.788999\pi\)
\(252\) 0 0
\(253\) 34.4222 2.16411
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.77640 −0.110809 −0.0554043 0.998464i \(-0.517645\pi\)
−0.0554043 + 0.998464i \(0.517645\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −13.5105 −0.833092 −0.416546 0.909115i \(-0.636760\pi\)
−0.416546 + 0.909115i \(0.636760\pi\)
\(264\) 0 0
\(265\) 14.6056 0.897212
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.40489 0.390513 0.195257 0.980752i \(-0.437446\pi\)
0.195257 + 0.980752i \(0.437446\pi\)
\(270\) 0 0
\(271\) 1.21110 0.0735692 0.0367846 0.999323i \(-0.488288\pi\)
0.0367846 + 0.999323i \(0.488288\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 56.3562 3.39841
\(276\) 0 0
\(277\) 27.0278 1.62394 0.811970 0.583699i \(-0.198395\pi\)
0.811970 + 0.583699i \(0.198395\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −22.6614 −1.35187 −0.675933 0.736963i \(-0.736259\pi\)
−0.675933 + 0.736963i \(0.736259\pi\)
\(282\) 0 0
\(283\) −19.6333 −1.16708 −0.583539 0.812085i \(-0.698333\pi\)
−0.583539 + 0.812085i \(0.698333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.86704 0.346321
\(288\) 0 0
\(289\) −12.8167 −0.753921
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 17.6011 1.02827 0.514135 0.857710i \(-0.328113\pi\)
0.514135 + 0.857710i \(0.328113\pi\)
\(294\) 0 0
\(295\) 44.8444 2.61094
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.55280 −0.205463
\(300\) 0 0
\(301\) −6.60555 −0.380738
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.64344 0.437662
\(306\) 0 0
\(307\) 21.0278 1.20012 0.600059 0.799956i \(-0.295144\pi\)
0.600059 + 0.799956i \(0.295144\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −27.8277 −1.57797 −0.788983 0.614415i \(-0.789392\pi\)
−0.788983 + 0.614415i \(0.789392\pi\)
\(312\) 0 0
\(313\) 19.2111 1.08588 0.542938 0.839773i \(-0.317312\pi\)
0.542938 + 0.839773i \(0.317312\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.59812 −0.314422 −0.157211 0.987565i \(-0.550250\pi\)
−0.157211 + 0.987565i \(0.550250\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.04532 −0.113805
\(324\) 0 0
\(325\) −5.81665 −0.322650
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.04532 0.112762
\(330\) 0 0
\(331\) −21.2111 −1.16587 −0.582934 0.812520i \(-0.698095\pi\)
−0.582934 + 0.812520i \(0.698095\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −35.2023 −1.92331
\(336\) 0 0
\(337\) 34.8444 1.89810 0.949048 0.315132i \(-0.102049\pi\)
0.949048 + 0.315132i \(0.102049\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −38.7551 −2.09870
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 32.3502 1.73665 0.868324 0.495998i \(-0.165197\pi\)
0.868324 + 0.495998i \(0.165197\pi\)
\(348\) 0 0
\(349\) 19.2111 1.02835 0.514173 0.857686i \(-0.328099\pi\)
0.514173 + 0.857686i \(0.328099\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 30.3048 1.61296 0.806482 0.591259i \(-0.201369\pi\)
0.806482 + 0.591259i \(0.201369\pi\)
\(354\) 0 0
\(355\) −59.4500 −3.15528
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.31425 0.122141 0.0610707 0.998133i \(-0.480548\pi\)
0.0610707 + 0.998133i \(0.480548\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 27.5588 1.44249
\(366\) 0 0
\(367\) 2.78890 0.145579 0.0727896 0.997347i \(-0.476810\pi\)
0.0727896 + 0.997347i \(0.476810\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.82172 0.198414
\(372\) 0 0
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.23855 0.0637885
\(378\) 0 0
\(379\) −36.8444 −1.89257 −0.946285 0.323333i \(-0.895196\pi\)
−0.946285 + 0.323333i \(0.895196\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −22.9303 −1.17168 −0.585842 0.810425i \(-0.699236\pi\)
−0.585842 + 0.810425i \(0.699236\pi\)
\(384\) 0 0
\(385\) 22.4222 1.14274
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 22.9303 1.16261 0.581307 0.813684i \(-0.302542\pi\)
0.581307 + 0.813684i \(0.302542\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −15.2869 −0.769167
\(396\) 0 0
\(397\) 24.4222 1.22572 0.612858 0.790193i \(-0.290020\pi\)
0.612858 + 0.790193i \(0.290020\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −16.0937 −0.803679 −0.401839 0.915710i \(-0.631629\pi\)
−0.401839 + 0.915710i \(0.631629\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 11.7341 0.581637
\(408\) 0 0
\(409\) 21.8167 1.07876 0.539382 0.842061i \(-0.318658\pi\)
0.539382 + 0.842061i \(0.318658\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.7341 0.577397
\(414\) 0 0
\(415\) −14.6056 −0.716958
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.50747 0.0736449 0.0368224 0.999322i \(-0.488276\pi\)
0.0368224 + 0.999322i \(0.488276\pi\)
\(420\) 0 0
\(421\) 19.2111 0.936292 0.468146 0.883651i \(-0.344922\pi\)
0.468146 + 0.883651i \(0.344922\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −19.6465 −0.952993
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −29.0663 −1.40007 −0.700037 0.714106i \(-0.746833\pi\)
−0.700037 + 0.714106i \(0.746833\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.86704 0.280659
\(438\) 0 0
\(439\) 33.0278 1.57633 0.788164 0.615465i \(-0.211032\pi\)
0.788164 + 0.615465i \(0.211032\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.88199 0.421996 0.210998 0.977486i \(-0.432329\pi\)
0.210998 + 0.977486i \(0.432329\pi\)
\(444\) 0 0
\(445\) −36.0000 −1.70656
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.82172 0.180358 0.0901791 0.995926i \(-0.471256\pi\)
0.0901791 + 0.995926i \(0.471256\pi\)
\(450\) 0 0
\(451\) 34.4222 1.62088
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.31425 −0.108494
\(456\) 0 0
\(457\) −35.0278 −1.63853 −0.819265 0.573416i \(-0.805618\pi\)
−0.819265 + 0.573416i \(0.805618\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 32.6191 1.51922 0.759611 0.650377i \(-0.225389\pi\)
0.759611 + 0.650377i \(0.225389\pi\)
\(462\) 0 0
\(463\) −38.4222 −1.78563 −0.892816 0.450422i \(-0.851273\pi\)
−0.892816 + 0.450422i \(0.851273\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.5558 0.719837 0.359918 0.932984i \(-0.382804\pi\)
0.359918 + 0.932984i \(0.382804\pi\)
\(468\) 0 0
\(469\) −9.21110 −0.425329
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −38.7551 −1.78196
\(474\) 0 0
\(475\) 9.60555 0.440733
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.13597 0.280360 0.140180 0.990126i \(-0.455232\pi\)
0.140180 + 0.990126i \(0.455232\pi\)
\(480\) 0 0
\(481\) −1.21110 −0.0552215
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.2719 −0.557240
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.88199 0.400839 0.200419 0.979710i \(-0.435770\pi\)
0.200419 + 0.979710i \(0.435770\pi\)
\(492\) 0 0
\(493\) 4.18335 0.188408
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.5558 −0.697773
\(498\) 0 0
\(499\) 18.4222 0.824691 0.412346 0.911028i \(-0.364710\pi\)
0.412346 + 0.911028i \(0.364710\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −15.0180 −0.669618 −0.334809 0.942286i \(-0.608672\pi\)
−0.334809 + 0.942286i \(0.608672\pi\)
\(504\) 0 0
\(505\) −23.4500 −1.04351
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −36.9787 −1.63905 −0.819525 0.573043i \(-0.805763\pi\)
−0.819525 + 0.573043i \(0.805763\pi\)
\(510\) 0 0
\(511\) 7.21110 0.319000
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 70.4045 3.10239
\(516\) 0 0
\(517\) 12.0000 0.527759
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.40489 −0.280604 −0.140302 0.990109i \(-0.544807\pi\)
−0.140302 + 0.990109i \(0.544807\pi\)
\(522\) 0 0
\(523\) −23.8167 −1.04143 −0.520715 0.853731i \(-0.674334\pi\)
−0.520715 + 0.853731i \(0.674334\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.5105 0.588526
\(528\) 0 0
\(529\) 11.4222 0.496618
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.55280 −0.153889
\(534\) 0 0
\(535\) −7.81665 −0.337943
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.86704 0.252711
\(540\) 0 0
\(541\) 8.78890 0.377864 0.188932 0.981990i \(-0.439497\pi\)
0.188932 + 0.981990i \(0.439497\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.64344 0.327409
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.04532 −0.0871337
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.5588 1.16770 0.583852 0.811860i \(-0.301545\pi\)
0.583852 + 0.811860i \(0.301545\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 31.1116 1.31120 0.655599 0.755109i \(-0.272416\pi\)
0.655599 + 0.755109i \(0.272416\pi\)
\(564\) 0 0
\(565\) −52.6611 −2.21547
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.91237 0.331704 0.165852 0.986151i \(-0.446963\pi\)
0.165852 + 0.986151i \(0.446963\pi\)
\(570\) 0 0
\(571\) −17.5778 −0.735608 −0.367804 0.929903i \(-0.619890\pi\)
−0.367804 + 0.929903i \(0.619890\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 56.3562 2.35022
\(576\) 0 0
\(577\) −1.63331 −0.0679955 −0.0339977 0.999422i \(-0.510824\pi\)
−0.0339977 + 0.999422i \(0.510824\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.82172 −0.158552
\(582\) 0 0
\(583\) 22.4222 0.928633
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −33.1569 −1.36853 −0.684267 0.729232i \(-0.739878\pi\)
−0.684267 + 0.729232i \(0.739878\pi\)
\(588\) 0 0
\(589\) −6.60555 −0.272177
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.28387 −0.134852 −0.0674262 0.997724i \(-0.521479\pi\)
−0.0674262 + 0.997724i \(0.521479\pi\)
\(594\) 0 0
\(595\) −7.81665 −0.320452
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24.4378 0.998501 0.499251 0.866458i \(-0.333609\pi\)
0.499251 + 0.866458i \(0.333609\pi\)
\(600\) 0 0
\(601\) 32.7889 1.33749 0.668744 0.743493i \(-0.266832\pi\)
0.668744 + 0.743493i \(0.266832\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 89.5131 3.63923
\(606\) 0 0
\(607\) 16.8444 0.683694 0.341847 0.939756i \(-0.388948\pi\)
0.341847 + 0.939756i \(0.388948\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.23855 −0.0501063
\(612\) 0 0
\(613\) −19.3944 −0.783334 −0.391667 0.920107i \(-0.628102\pi\)
−0.391667 + 0.920107i \(0.628102\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.55280 −0.143030 −0.0715151 0.997440i \(-0.522783\pi\)
−0.0715151 + 0.997440i \(0.522783\pi\)
\(618\) 0 0
\(619\) 37.2111 1.49564 0.747820 0.663901i \(-0.231100\pi\)
0.747820 + 0.663901i \(0.231100\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −9.41984 −0.377398
\(624\) 0 0
\(625\) 19.2389 0.769554
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.09065 −0.163105
\(630\) 0 0
\(631\) −18.6056 −0.740675 −0.370338 0.928897i \(-0.620758\pi\)
−0.370338 + 0.928897i \(0.620758\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 50.4891 2.00360
\(636\) 0 0
\(637\) −0.605551 −0.0239928
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.2266 0.403927 0.201964 0.979393i \(-0.435268\pi\)
0.201964 + 0.979393i \(0.435268\pi\)
\(642\) 0 0
\(643\) 46.0555 1.81625 0.908126 0.418697i \(-0.137513\pi\)
0.908126 + 0.418697i \(0.137513\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.04532 0.0804099 0.0402050 0.999191i \(-0.487199\pi\)
0.0402050 + 0.999191i \(0.487199\pi\)
\(648\) 0 0
\(649\) 68.8444 2.70238
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.8397 −0.737254 −0.368627 0.929577i \(-0.620172\pi\)
−0.368627 + 0.929577i \(0.620172\pi\)
\(654\) 0 0
\(655\) −43.8167 −1.71206
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.268925 0.0104758 0.00523792 0.999986i \(-0.498333\pi\)
0.00523792 + 0.999986i \(0.498333\pi\)
\(660\) 0 0
\(661\) −41.8167 −1.62648 −0.813240 0.581929i \(-0.802298\pi\)
−0.813240 + 0.581929i \(0.802298\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.82172 0.148200
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.7341 0.452989
\(672\) 0 0
\(673\) 5.63331 0.217148 0.108574 0.994088i \(-0.465372\pi\)
0.108574 + 0.994088i \(0.465372\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 36.9787 1.42121 0.710603 0.703593i \(-0.248422\pi\)
0.710603 + 0.703593i \(0.248422\pi\)
\(678\) 0 0
\(679\) −3.21110 −0.123231
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.04532 0.0782621 0.0391311 0.999234i \(-0.487541\pi\)
0.0391311 + 0.999234i \(0.487541\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.31425 −0.0881658
\(690\) 0 0
\(691\) −34.7889 −1.32343 −0.661716 0.749755i \(-0.730172\pi\)
−0.661716 + 0.749755i \(0.730172\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.6584 0.404296
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.18129 0.309003 0.154502 0.987993i \(-0.450623\pi\)
0.154502 + 0.987993i \(0.450623\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.13597 −0.230767
\(708\) 0 0
\(709\) −33.4500 −1.25624 −0.628120 0.778117i \(-0.716175\pi\)
−0.628120 + 0.778117i \(0.716175\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −38.7551 −1.45139
\(714\) 0 0
\(715\) −13.5778 −0.507781
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −39.0240 −1.45535 −0.727675 0.685923i \(-0.759399\pi\)
−0.727675 + 0.685923i \(0.759399\pi\)
\(720\) 0 0
\(721\) 18.4222 0.686079
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −19.6465 −0.729651
\(726\) 0 0
\(727\) −14.4222 −0.534890 −0.267445 0.963573i \(-0.586179\pi\)
−0.267445 + 0.963573i \(0.586179\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 13.5105 0.499703
\(732\) 0 0
\(733\) −28.7889 −1.06334 −0.531671 0.846951i \(-0.678436\pi\)
−0.531671 + 0.846951i \(0.678436\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −54.0419 −1.99066
\(738\) 0 0
\(739\) −46.2389 −1.70092 −0.850462 0.526037i \(-0.823678\pi\)
−0.850462 + 0.526037i \(0.823678\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9.68876 0.355446 0.177723 0.984081i \(-0.443127\pi\)
0.177723 + 0.984081i \(0.443127\pi\)
\(744\) 0 0
\(745\) 29.2111 1.07021
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.04532 −0.0747345
\(750\) 0 0
\(751\) −48.8444 −1.78236 −0.891179 0.453652i \(-0.850121\pi\)
−0.891179 + 0.453652i \(0.850121\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −55.1176 −2.00594
\(756\) 0 0
\(757\) 43.2111 1.57053 0.785267 0.619157i \(-0.212526\pi\)
0.785267 + 0.619157i \(0.212526\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.3048 −1.09855 −0.549275 0.835642i \(-0.685096\pi\)
−0.549275 + 0.835642i \(0.685096\pi\)
\(762\) 0 0
\(763\) 2.00000 0.0724049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.10559 −0.256568
\(768\) 0 0
\(769\) −15.2111 −0.548526 −0.274263 0.961655i \(-0.588434\pi\)
−0.274263 + 0.961655i \(0.588434\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −43.5464 −1.56626 −0.783128 0.621861i \(-0.786377\pi\)
−0.783128 + 0.621861i \(0.786377\pi\)
\(774\) 0 0
\(775\) −63.4500 −2.27919
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.86704 0.210209
\(780\) 0 0
\(781\) −91.2666 −3.26578
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 27.5588 0.983617
\(786\) 0 0
\(787\) −42.6056 −1.51872 −0.759362 0.650668i \(-0.774489\pi\)
−0.759362 + 0.650668i \(0.774489\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.7794 −0.489939
\(792\) 0 0
\(793\) −1.21110 −0.0430075
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32.8880 1.16495 0.582477 0.812847i \(-0.302084\pi\)
0.582477 + 0.812847i \(0.302084\pi\)
\(798\) 0 0
\(799\) −4.18335 −0.147996
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 42.3079 1.49301
\(804\) 0 0
\(805\) 22.4222 0.790279
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16.3626 −0.575278 −0.287639 0.957739i \(-0.592870\pi\)
−0.287639 + 0.957739i \(0.592870\pi\)
\(810\) 0 0
\(811\) −17.5778 −0.617240 −0.308620 0.951185i \(-0.599867\pi\)
−0.308620 + 0.951185i \(0.599867\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −45.1600 −1.58188
\(816\) 0 0
\(817\) −6.60555 −0.231099
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −49.9513 −1.74331 −0.871656 0.490118i \(-0.836954\pi\)
−0.871656 + 0.490118i \(0.836954\pi\)
\(822\) 0 0
\(823\) −8.18335 −0.285254 −0.142627 0.989777i \(-0.545555\pi\)
−0.142627 + 0.989777i \(0.545555\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.28387 0.114191 0.0570957 0.998369i \(-0.481816\pi\)
0.0570957 + 0.998369i \(0.481816\pi\)
\(828\) 0 0
\(829\) 29.6333 1.02921 0.514604 0.857428i \(-0.327939\pi\)
0.514604 + 0.857428i \(0.327939\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.04532 −0.0708662
\(834\) 0 0
\(835\) −42.7889 −1.48077
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37.6794 −1.30084 −0.650418 0.759576i \(-0.725406\pi\)
−0.650418 + 0.759576i \(0.725406\pi\)
\(840\) 0 0
\(841\) −24.8167 −0.855747
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −48.2810 −1.66092
\(846\) 0 0
\(847\) 23.4222 0.804796
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.7341 0.402239
\(852\) 0 0
\(853\) 53.6333 1.83637 0.918185 0.396152i \(-0.129655\pi\)
0.918185 + 0.396152i \(0.129655\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5.86704 −0.200414 −0.100207 0.994967i \(-0.531951\pi\)
−0.100207 + 0.994967i \(0.531951\pi\)
\(858\) 0 0
\(859\) 1.21110 0.0413223 0.0206611 0.999787i \(-0.493423\pi\)
0.0206611 + 0.999787i \(0.493423\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.68876 −0.329809 −0.164905 0.986310i \(-0.552732\pi\)
−0.164905 + 0.986310i \(0.552732\pi\)
\(864\) 0 0
\(865\) 8.84441 0.300719
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −23.4682 −0.796103
\(870\) 0 0
\(871\) 5.57779 0.188996
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 17.6011 0.595027
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.806775 0.0271809 0.0135905 0.999908i \(-0.495674\pi\)
0.0135905 + 0.999908i \(0.495674\pi\)
\(882\) 0 0
\(883\) 28.8444 0.970692 0.485346 0.874322i \(-0.338694\pi\)
0.485346 + 0.874322i \(0.338694\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.4532 0.686752 0.343376 0.939198i \(-0.388429\pi\)
0.343376 + 0.939198i \(0.388429\pi\)
\(888\) 0 0
\(889\) 13.2111 0.443086
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.04532 0.0684441
\(894\) 0 0
\(895\) 7.81665 0.261282
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.5105 0.450600
\(900\) 0 0
\(901\) −7.81665 −0.260410
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.64344 0.254077
\(906\) 0 0
\(907\) 51.2666 1.70228 0.851140 0.524939i \(-0.175912\pi\)
0.851140 + 0.524939i \(0.175912\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11.4652 −0.379858 −0.189929 0.981798i \(-0.560826\pi\)
−0.189929 + 0.981798i \(0.560826\pi\)
\(912\) 0 0
\(913\) −22.4222 −0.742067
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −11.4652 −0.378613
\(918\) 0 0
\(919\) 18.4222 0.607692 0.303846 0.952721i \(-0.401729\pi\)
0.303846 + 0.952721i \(0.401729\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.41984 0.310058
\(924\) 0 0
\(925\) 19.2111 0.631657
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −29.0663 −0.953634 −0.476817 0.879003i \(-0.658210\pi\)
−0.476817 + 0.879003i \(0.658210\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −45.8607 −1.49980
\(936\) 0 0
\(937\) 15.5778 0.508904 0.254452 0.967085i \(-0.418105\pi\)
0.254452 + 0.967085i \(0.418105\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −55.8183 −1.81963 −0.909813 0.415019i \(-0.863775\pi\)
−0.909813 + 0.415019i \(0.863775\pi\)
\(942\) 0 0
\(943\) 34.4222 1.12094
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.6011 −0.571960 −0.285980 0.958236i \(-0.592319\pi\)
−0.285980 + 0.958236i \(0.592319\pi\)
\(948\) 0 0
\(949\) −4.36669 −0.141749
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −43.1146 −1.39662 −0.698310 0.715796i \(-0.746064\pi\)
−0.698310 + 0.715796i \(0.746064\pi\)
\(954\) 0 0
\(955\) −22.4222 −0.725566
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.6333 0.407526
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −58.1326 −1.87135
\(966\) 0 0
\(967\) −20.6611 −0.664415 −0.332208 0.943206i \(-0.607793\pi\)
−0.332208 + 0.943206i \(0.607793\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 25.9453 0.832623 0.416312 0.909222i \(-0.363323\pi\)
0.416312 + 0.909222i \(0.363323\pi\)
\(972\) 0 0
\(973\) 2.78890 0.0894079
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −53.7730 −1.72035 −0.860176 0.509998i \(-0.829646\pi\)
−0.860176 + 0.509998i \(0.829646\pi\)
\(978\) 0 0
\(979\) −55.2666 −1.76633
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 51.5648 1.64466 0.822332 0.569009i \(-0.192673\pi\)
0.822332 + 0.569009i \(0.192673\pi\)
\(984\) 0 0
\(985\) −58.4222 −1.86149
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −38.7551 −1.23234
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 30.5738 0.969254
\(996\) 0 0
\(997\) −37.6333 −1.19186 −0.595929 0.803037i \(-0.703216\pi\)
−0.595929 + 0.803037i \(0.703216\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.s.1.4 yes 4
3.2 odd 2 inner 4788.2.a.s.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4788.2.a.s.1.1 4 3.2 odd 2 inner
4788.2.a.s.1.4 yes 4 1.1 even 1 trivial