Properties

Label 4788.2.a.s.1.3
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.32448.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 10x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.18087\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.71927 q^{5} +1.00000 q^{7} -2.36174 q^{11} +6.60555 q^{13} +5.08101 q^{17} +1.00000 q^{19} -2.36174 q^{23} +2.39445 q^{25} +5.08101 q^{29} +0.605551 q^{31} +2.71927 q^{35} +2.00000 q^{37} -2.36174 q^{41} +0.605551 q^{43} -5.08101 q^{47} +1.00000 q^{49} +2.71927 q^{53} -6.42221 q^{55} -4.72347 q^{59} +2.00000 q^{61} +17.9623 q^{65} +5.21110 q^{67} +2.00420 q^{71} -7.21110 q^{73} -2.36174 q^{77} -4.00000 q^{79} -2.71927 q^{83} +13.8167 q^{85} -13.2388 q^{89} +6.60555 q^{91} +2.71927 q^{95} +11.2111 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} + 12 q^{13} + 4 q^{19} + 24 q^{25} - 12 q^{31} + 8 q^{37} - 12 q^{43} + 4 q^{49} + 32 q^{55} + 8 q^{61} - 8 q^{67} - 16 q^{79} + 12 q^{85} + 12 q^{91} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.71927 1.21610 0.608048 0.793900i \(-0.291953\pi\)
0.608048 + 0.793900i \(0.291953\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.36174 −0.712090 −0.356045 0.934469i \(-0.615875\pi\)
−0.356045 + 0.934469i \(0.615875\pi\)
\(12\) 0 0
\(13\) 6.60555 1.83205 0.916025 0.401121i \(-0.131379\pi\)
0.916025 + 0.401121i \(0.131379\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.08101 1.23233 0.616163 0.787619i \(-0.288686\pi\)
0.616163 + 0.787619i \(0.288686\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.36174 −0.492456 −0.246228 0.969212i \(-0.579191\pi\)
−0.246228 + 0.969212i \(0.579191\pi\)
\(24\) 0 0
\(25\) 2.39445 0.478890
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.08101 0.943520 0.471760 0.881727i \(-0.343619\pi\)
0.471760 + 0.881727i \(0.343619\pi\)
\(30\) 0 0
\(31\) 0.605551 0.108760 0.0543801 0.998520i \(-0.482682\pi\)
0.0543801 + 0.998520i \(0.482682\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.71927 0.459641
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.36174 −0.368841 −0.184421 0.982847i \(-0.559041\pi\)
−0.184421 + 0.982847i \(0.559041\pi\)
\(42\) 0 0
\(43\) 0.605551 0.0923457 0.0461729 0.998933i \(-0.485297\pi\)
0.0461729 + 0.998933i \(0.485297\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.08101 −0.741141 −0.370571 0.928804i \(-0.620838\pi\)
−0.370571 + 0.928804i \(0.620838\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.71927 0.373521 0.186760 0.982405i \(-0.440201\pi\)
0.186760 + 0.982405i \(0.440201\pi\)
\(54\) 0 0
\(55\) −6.42221 −0.865970
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.72347 −0.614944 −0.307472 0.951557i \(-0.599483\pi\)
−0.307472 + 0.951557i \(0.599483\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 17.9623 2.22795
\(66\) 0 0
\(67\) 5.21110 0.636638 0.318319 0.947984i \(-0.396882\pi\)
0.318319 + 0.947984i \(0.396882\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.00420 0.237854 0.118927 0.992903i \(-0.462054\pi\)
0.118927 + 0.992903i \(0.462054\pi\)
\(72\) 0 0
\(73\) −7.21110 −0.843996 −0.421998 0.906597i \(-0.638671\pi\)
−0.421998 + 0.906597i \(0.638671\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.36174 −0.269145
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.71927 −0.298479 −0.149240 0.988801i \(-0.547683\pi\)
−0.149240 + 0.988801i \(0.547683\pi\)
\(84\) 0 0
\(85\) 13.8167 1.49863
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.2388 −1.40331 −0.701657 0.712515i \(-0.747556\pi\)
−0.701657 + 0.712515i \(0.747556\pi\)
\(90\) 0 0
\(91\) 6.60555 0.692450
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.71927 0.278992
\(96\) 0 0
\(97\) 11.2111 1.13831 0.569157 0.822229i \(-0.307269\pi\)
0.569157 + 0.822229i \(0.307269\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.2430 1.51674 0.758369 0.651826i \(-0.225997\pi\)
0.758369 + 0.651826i \(0.225997\pi\)
\(102\) 0 0
\(103\) −10.4222 −1.02693 −0.513465 0.858110i \(-0.671638\pi\)
−0.513465 + 0.858110i \(0.671638\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.08101 0.491200 0.245600 0.969371i \(-0.421015\pi\)
0.245600 + 0.969371i \(0.421015\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.80448 0.922328 0.461164 0.887315i \(-0.347432\pi\)
0.461164 + 0.887315i \(0.347432\pi\)
\(114\) 0 0
\(115\) −6.42221 −0.598874
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.08101 0.465775
\(120\) 0 0
\(121\) −5.42221 −0.492928
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.08521 −0.633720
\(126\) 0 0
\(127\) −1.21110 −0.107468 −0.0537340 0.998555i \(-0.517112\pi\)
−0.0537340 + 0.998555i \(0.517112\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.15782 −0.712752 −0.356376 0.934343i \(-0.615988\pi\)
−0.356376 + 0.934343i \(0.615988\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 17.2111 1.45983 0.729913 0.683540i \(-0.239560\pi\)
0.729913 + 0.683540i \(0.239560\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −15.6006 −1.30458
\(144\) 0 0
\(145\) 13.8167 1.14741
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.43855 0.445543 0.222772 0.974871i \(-0.428490\pi\)
0.222772 + 0.974871i \(0.428490\pi\)
\(150\) 0 0
\(151\) 14.4222 1.17366 0.586831 0.809709i \(-0.300375\pi\)
0.586831 + 0.809709i \(0.300375\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.64666 0.132263
\(156\) 0 0
\(157\) −7.21110 −0.575509 −0.287754 0.957704i \(-0.592909\pi\)
−0.287754 + 0.957704i \(0.592909\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.36174 −0.186131
\(162\) 0 0
\(163\) 9.81665 0.768900 0.384450 0.923146i \(-0.374391\pi\)
0.384450 + 0.923146i \(0.374391\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.0391 −1.62806 −0.814028 0.580826i \(-0.802730\pi\)
−0.814028 + 0.580826i \(0.802730\pi\)
\(168\) 0 0
\(169\) 30.6333 2.35641
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −17.9623 −1.36565 −0.682824 0.730583i \(-0.739249\pi\)
−0.682824 + 0.730583i \(0.739249\pi\)
\(174\) 0 0
\(175\) 2.39445 0.181003
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.08101 −0.379772 −0.189886 0.981806i \(-0.560812\pi\)
−0.189886 + 0.981806i \(0.560812\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.43855 0.399850
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.36174 0.170889 0.0854446 0.996343i \(-0.472769\pi\)
0.0854446 + 0.996343i \(0.472769\pi\)
\(192\) 0 0
\(193\) −0.788897 −0.0567861 −0.0283930 0.999597i \(-0.509039\pi\)
−0.0283930 + 0.999597i \(0.509039\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.8771 −0.774961 −0.387480 0.921878i \(-0.626655\pi\)
−0.387480 + 0.921878i \(0.626655\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.08101 0.356617
\(204\) 0 0
\(205\) −6.42221 −0.448546
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.36174 −0.163365
\(210\) 0 0
\(211\) 10.7889 0.742738 0.371369 0.928485i \(-0.378888\pi\)
0.371369 + 0.928485i \(0.378888\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.64666 0.112301
\(216\) 0 0
\(217\) 0.605551 0.0411075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 33.5629 2.25768
\(222\) 0 0
\(223\) 28.2389 1.89101 0.945507 0.325602i \(-0.105567\pi\)
0.945507 + 0.325602i \(0.105567\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.1620 0.674477 0.337238 0.941419i \(-0.390507\pi\)
0.337238 + 0.941419i \(0.390507\pi\)
\(228\) 0 0
\(229\) 11.2111 0.740851 0.370425 0.928862i \(-0.379212\pi\)
0.370425 + 0.928862i \(0.379212\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.6090 −1.28463 −0.642313 0.766443i \(-0.722025\pi\)
−0.642313 + 0.766443i \(0.722025\pi\)
\(234\) 0 0
\(235\) −13.8167 −0.901299
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.5238 −0.810094 −0.405047 0.914296i \(-0.632745\pi\)
−0.405047 + 0.914296i \(0.632745\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.71927 0.173728
\(246\) 0 0
\(247\) 6.60555 0.420301
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.2346 −0.709124 −0.354562 0.935033i \(-0.615370\pi\)
−0.354562 + 0.935033i \(0.615370\pi\)
\(252\) 0 0
\(253\) 5.57779 0.350673
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.80028 −0.486568 −0.243284 0.969955i \(-0.578225\pi\)
−0.243284 + 0.969955i \(0.578225\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.07681 −0.189724 −0.0948622 0.995490i \(-0.530241\pi\)
−0.0948622 + 0.995490i \(0.530241\pi\)
\(264\) 0 0
\(265\) 7.39445 0.454237
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −28.1243 −1.71477 −0.857385 0.514676i \(-0.827912\pi\)
−0.857385 + 0.514676i \(0.827912\pi\)
\(270\) 0 0
\(271\) −13.2111 −0.802517 −0.401259 0.915965i \(-0.631427\pi\)
−0.401259 + 0.915965i \(0.631427\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.65505 −0.341013
\(276\) 0 0
\(277\) −9.02776 −0.542425 −0.271213 0.962519i \(-0.587425\pi\)
−0.271213 + 0.962519i \(0.587425\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −29.1969 −1.74174 −0.870872 0.491511i \(-0.836445\pi\)
−0.870872 + 0.491511i \(0.836445\pi\)
\(282\) 0 0
\(283\) 23.6333 1.40485 0.702427 0.711756i \(-0.252100\pi\)
0.702427 + 0.711756i \(0.252100\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.36174 −0.139409
\(288\) 0 0
\(289\) 8.81665 0.518627
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.08521 −0.413922 −0.206961 0.978349i \(-0.566357\pi\)
−0.206961 + 0.978349i \(0.566357\pi\)
\(294\) 0 0
\(295\) −12.8444 −0.747830
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −15.6006 −0.902204
\(300\) 0 0
\(301\) 0.605551 0.0349034
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.43855 0.311410
\(306\) 0 0
\(307\) −15.0278 −0.857679 −0.428840 0.903381i \(-0.641077\pi\)
−0.428840 + 0.903381i \(0.641077\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 32.4903 1.84235 0.921177 0.389145i \(-0.127229\pi\)
0.921177 + 0.389145i \(0.127229\pi\)
\(312\) 0 0
\(313\) 4.78890 0.270684 0.135342 0.990799i \(-0.456787\pi\)
0.135342 + 0.990799i \(0.456787\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.5196 −0.590837 −0.295419 0.955368i \(-0.595459\pi\)
−0.295419 + 0.955368i \(0.595459\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.08101 0.282715
\(324\) 0 0
\(325\) 15.8167 0.877350
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.08101 −0.280125
\(330\) 0 0
\(331\) −6.78890 −0.373152 −0.186576 0.982441i \(-0.559739\pi\)
−0.186576 + 0.982441i \(0.559739\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 14.1704 0.774212
\(336\) 0 0
\(337\) −22.8444 −1.24441 −0.622207 0.782853i \(-0.713764\pi\)
−0.622207 + 0.782853i \(0.713764\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.43015 −0.0774471
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 29.5545 1.58657 0.793284 0.608852i \(-0.208370\pi\)
0.793284 + 0.608852i \(0.208370\pi\)
\(348\) 0 0
\(349\) 4.78890 0.256344 0.128172 0.991752i \(-0.459089\pi\)
0.128172 + 0.991752i \(0.459089\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 34.6355 1.84346 0.921730 0.387831i \(-0.126776\pi\)
0.921730 + 0.387831i \(0.126776\pi\)
\(354\) 0 0
\(355\) 5.44996 0.289254
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −17.9623 −0.948014 −0.474007 0.880521i \(-0.657193\pi\)
−0.474007 + 0.880521i \(0.657193\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −19.6090 −1.02638
\(366\) 0 0
\(367\) 17.2111 0.898412 0.449206 0.893428i \(-0.351707\pi\)
0.449206 + 0.893428i \(0.351707\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.71927 0.141178
\(372\) 0 0
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 33.5629 1.72858
\(378\) 0 0
\(379\) 20.8444 1.07071 0.535353 0.844629i \(-0.320179\pi\)
0.535353 + 0.844629i \(0.320179\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −16.3156 −0.833690 −0.416845 0.908978i \(-0.636864\pi\)
−0.416845 + 0.908978i \(0.636864\pi\)
\(384\) 0 0
\(385\) −6.42221 −0.327306
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.3156 0.827236 0.413618 0.910451i \(-0.364265\pi\)
0.413618 + 0.910451i \(0.364265\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.8771 −0.547286
\(396\) 0 0
\(397\) −4.42221 −0.221944 −0.110972 0.993824i \(-0.535396\pi\)
−0.110972 + 0.993824i \(0.535396\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.7668 1.38661 0.693303 0.720646i \(-0.256155\pi\)
0.693303 + 0.720646i \(0.256155\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.72347 −0.234134
\(408\) 0 0
\(409\) 0.183346 0.00906588 0.00453294 0.999990i \(-0.498557\pi\)
0.00453294 + 0.999990i \(0.498557\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.72347 −0.232427
\(414\) 0 0
\(415\) −7.39445 −0.362979
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.6816 1.01036 0.505181 0.863014i \(-0.331426\pi\)
0.505181 + 0.863014i \(0.331426\pi\)
\(420\) 0 0
\(421\) 4.78890 0.233397 0.116698 0.993167i \(-0.462769\pi\)
0.116698 + 0.993167i \(0.462769\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.1662 0.590148
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.07261 −0.0516660 −0.0258330 0.999666i \(-0.508224\pi\)
−0.0258330 + 0.999666i \(0.508224\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.36174 −0.112977
\(438\) 0 0
\(439\) −3.02776 −0.144507 −0.0722535 0.997386i \(-0.523019\pi\)
−0.0722535 + 0.997386i \(0.523019\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 39.0014 1.85301 0.926507 0.376279i \(-0.122796\pi\)
0.926507 + 0.376279i \(0.122796\pi\)
\(444\) 0 0
\(445\) −36.0000 −1.70656
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.71927 0.128330 0.0641652 0.997939i \(-0.479562\pi\)
0.0641652 + 0.997939i \(0.479562\pi\)
\(450\) 0 0
\(451\) 5.57779 0.262648
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 17.9623 0.842086
\(456\) 0 0
\(457\) 1.02776 0.0480764 0.0240382 0.999711i \(-0.492348\pi\)
0.0240382 + 0.999711i \(0.492348\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.6732 0.776547 0.388274 0.921544i \(-0.373072\pi\)
0.388274 + 0.921544i \(0.373072\pi\)
\(462\) 0 0
\(463\) −9.57779 −0.445118 −0.222559 0.974919i \(-0.571441\pi\)
−0.222559 + 0.974919i \(0.571441\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.00420 −0.0927432 −0.0463716 0.998924i \(-0.514766\pi\)
−0.0463716 + 0.998924i \(0.514766\pi\)
\(468\) 0 0
\(469\) 5.21110 0.240626
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.43015 −0.0657585
\(474\) 0 0
\(475\) 2.39445 0.109865
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.2430 −0.696472 −0.348236 0.937407i \(-0.613219\pi\)
−0.348236 + 0.937407i \(0.613219\pi\)
\(480\) 0 0
\(481\) 13.2111 0.602374
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 30.4861 1.38430
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 39.0014 1.76011 0.880055 0.474873i \(-0.157506\pi\)
0.880055 + 0.474873i \(0.157506\pi\)
\(492\) 0 0
\(493\) 25.8167 1.16272
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.00420 0.0899005
\(498\) 0 0
\(499\) −10.4222 −0.466562 −0.233281 0.972409i \(-0.574946\pi\)
−0.233281 + 0.972409i \(0.574946\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −23.7584 −1.05933 −0.529667 0.848206i \(-0.677683\pi\)
−0.529667 + 0.848206i \(0.677683\pi\)
\(504\) 0 0
\(505\) 41.4500 1.84450
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.37013 0.282351 0.141176 0.989985i \(-0.454912\pi\)
0.141176 + 0.989985i \(0.454912\pi\)
\(510\) 0 0
\(511\) −7.21110 −0.319000
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −28.3408 −1.24885
\(516\) 0 0
\(517\) 12.0000 0.527759
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.1243 1.23215 0.616074 0.787688i \(-0.288722\pi\)
0.616074 + 0.787688i \(0.288722\pi\)
\(522\) 0 0
\(523\) −2.18335 −0.0954711 −0.0477355 0.998860i \(-0.515200\pi\)
−0.0477355 + 0.998860i \(0.515200\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.07681 0.134028
\(528\) 0 0
\(529\) −17.4222 −0.757487
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −15.6006 −0.675735
\(534\) 0 0
\(535\) 13.8167 0.597346
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.36174 −0.101727
\(540\) 0 0
\(541\) 23.2111 0.997923 0.498962 0.866624i \(-0.333715\pi\)
0.498962 + 0.866624i \(0.333715\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.43855 0.232962
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.08101 0.216458
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −19.6090 −0.830858 −0.415429 0.909626i \(-0.636369\pi\)
−0.415429 + 0.909626i \(0.636369\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.00840 −0.168934 −0.0844669 0.996426i \(-0.526919\pi\)
−0.0844669 + 0.996426i \(0.526919\pi\)
\(564\) 0 0
\(565\) 26.6611 1.12164
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.44274 −0.312016 −0.156008 0.987756i \(-0.549863\pi\)
−0.156008 + 0.987756i \(0.549863\pi\)
\(570\) 0 0
\(571\) −46.4222 −1.94271 −0.971354 0.237635i \(-0.923628\pi\)
−0.971354 + 0.237635i \(0.923628\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.65505 −0.235832
\(576\) 0 0
\(577\) 41.6333 1.73322 0.866609 0.498988i \(-0.166295\pi\)
0.866609 + 0.498988i \(0.166295\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.71927 −0.112814
\(582\) 0 0
\(583\) −6.42221 −0.265981
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.08940 0.375160 0.187580 0.982249i \(-0.439936\pi\)
0.187580 + 0.982249i \(0.439936\pi\)
\(588\) 0 0
\(589\) 0.605551 0.0249513
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −28.4819 −1.16961 −0.584805 0.811174i \(-0.698829\pi\)
−0.584805 + 0.811174i \(0.698829\pi\)
\(594\) 0 0
\(595\) 13.8167 0.566428
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 36.9972 1.51167 0.755833 0.654765i \(-0.227232\pi\)
0.755833 + 0.654765i \(0.227232\pi\)
\(600\) 0 0
\(601\) 47.2111 1.92578 0.962891 0.269892i \(-0.0869881\pi\)
0.962891 + 0.269892i \(0.0869881\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.7445 −0.599448
\(606\) 0 0
\(607\) −40.8444 −1.65782 −0.828912 0.559379i \(-0.811039\pi\)
−0.828912 + 0.559379i \(0.811039\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −33.5629 −1.35781
\(612\) 0 0
\(613\) −26.6056 −1.07459 −0.537294 0.843395i \(-0.680553\pi\)
−0.537294 + 0.843395i \(0.680553\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.6006 −0.628055 −0.314028 0.949414i \(-0.601678\pi\)
−0.314028 + 0.949414i \(0.601678\pi\)
\(618\) 0 0
\(619\) 22.7889 0.915963 0.457982 0.888962i \(-0.348573\pi\)
0.457982 + 0.888962i \(0.348573\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −13.2388 −0.530403
\(624\) 0 0
\(625\) −31.2389 −1.24955
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.1620 0.405186
\(630\) 0 0
\(631\) −11.3944 −0.453606 −0.226803 0.973941i \(-0.572827\pi\)
−0.226803 + 0.973941i \(0.572827\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.29332 −0.130691
\(636\) 0 0
\(637\) 6.60555 0.261721
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −25.4050 −1.00344 −0.501719 0.865030i \(-0.667299\pi\)
−0.501719 + 0.865030i \(0.667299\pi\)
\(642\) 0 0
\(643\) −26.0555 −1.02753 −0.513765 0.857931i \(-0.671750\pi\)
−0.513765 + 0.857931i \(0.671750\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.08101 −0.199755 −0.0998775 0.995000i \(-0.531845\pi\)
−0.0998775 + 0.995000i \(0.531845\pi\)
\(648\) 0 0
\(649\) 11.1556 0.437895
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −26.4777 −1.03615 −0.518075 0.855335i \(-0.673351\pi\)
−0.518075 + 0.855335i \(0.673351\pi\)
\(654\) 0 0
\(655\) −22.1833 −0.866775
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.8813 −0.501784 −0.250892 0.968015i \(-0.580724\pi\)
−0.250892 + 0.968015i \(0.580724\pi\)
\(660\) 0 0
\(661\) −20.1833 −0.785041 −0.392521 0.919743i \(-0.628397\pi\)
−0.392521 + 0.919743i \(0.628397\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.71927 0.105449
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.72347 −0.182348
\(672\) 0 0
\(673\) −37.6333 −1.45066 −0.725329 0.688403i \(-0.758312\pi\)
−0.725329 + 0.688403i \(0.758312\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.37013 −0.244824 −0.122412 0.992479i \(-0.539063\pi\)
−0.122412 + 0.992479i \(0.539063\pi\)
\(678\) 0 0
\(679\) 11.2111 0.430243
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −5.08101 −0.194419 −0.0972097 0.995264i \(-0.530992\pi\)
−0.0972097 + 0.995264i \(0.530992\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 17.9623 0.684309
\(690\) 0 0
\(691\) −49.2111 −1.87208 −0.936039 0.351896i \(-0.885537\pi\)
−0.936039 + 0.351896i \(0.885537\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 46.8017 1.77529
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −20.3240 −0.767628 −0.383814 0.923410i \(-0.625390\pi\)
−0.383814 + 0.923410i \(0.625390\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.2430 0.573273
\(708\) 0 0
\(709\) 31.4500 1.18113 0.590564 0.806991i \(-0.298905\pi\)
0.590564 + 0.806991i \(0.298905\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.43015 −0.0535596
\(714\) 0 0
\(715\) −42.4222 −1.58650
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11.4511 0.427055 0.213528 0.976937i \(-0.431505\pi\)
0.213528 + 0.976937i \(0.431505\pi\)
\(720\) 0 0
\(721\) −10.4222 −0.388143
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12.1662 0.451842
\(726\) 0 0
\(727\) 14.4222 0.534890 0.267445 0.963573i \(-0.413821\pi\)
0.267445 + 0.963573i \(0.413821\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.07681 0.113800
\(732\) 0 0
\(733\) −43.2111 −1.59604 −0.798019 0.602632i \(-0.794119\pi\)
−0.798019 + 0.602632i \(0.794119\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.3072 −0.453343
\(738\) 0 0
\(739\) 4.23886 0.155929 0.0779645 0.996956i \(-0.475158\pi\)
0.0779645 + 0.996956i \(0.475158\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.357538 0.0131168 0.00655840 0.999978i \(-0.497912\pi\)
0.00655840 + 0.999978i \(0.497912\pi\)
\(744\) 0 0
\(745\) 14.7889 0.541823
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.08101 0.185656
\(750\) 0 0
\(751\) 8.84441 0.322737 0.161369 0.986894i \(-0.448409\pi\)
0.161369 + 0.986894i \(0.448409\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 39.2179 1.42729
\(756\) 0 0
\(757\) 28.7889 1.04635 0.523175 0.852225i \(-0.324747\pi\)
0.523175 + 0.852225i \(0.324747\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −34.6355 −1.25554 −0.627768 0.778401i \(-0.716031\pi\)
−0.627768 + 0.778401i \(0.716031\pi\)
\(762\) 0 0
\(763\) 2.00000 0.0724049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −31.2011 −1.12661
\(768\) 0 0
\(769\) −0.788897 −0.0284484 −0.0142242 0.999899i \(-0.504528\pi\)
−0.0142242 + 0.999899i \(0.504528\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −50.5936 −1.81972 −0.909862 0.414910i \(-0.863813\pi\)
−0.909862 + 0.414910i \(0.863813\pi\)
\(774\) 0 0
\(775\) 1.44996 0.0520842
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.36174 −0.0846180
\(780\) 0 0
\(781\) −4.73338 −0.169374
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −19.6090 −0.699874
\(786\) 0 0
\(787\) −35.3944 −1.26168 −0.630838 0.775915i \(-0.717289\pi\)
−0.630838 + 0.775915i \(0.717289\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.80448 0.348607
\(792\) 0 0
\(793\) 13.2111 0.469140
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.79189 0.134316 0.0671578 0.997742i \(-0.478607\pi\)
0.0671578 + 0.997742i \(0.478607\pi\)
\(798\) 0 0
\(799\) −25.8167 −0.913328
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 17.0307 0.601001
\(804\) 0 0
\(805\) −6.42221 −0.226353
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40.6481 1.42911 0.714555 0.699579i \(-0.246629\pi\)
0.714555 + 0.699579i \(0.246629\pi\)
\(810\) 0 0
\(811\) −46.4222 −1.63010 −0.815052 0.579388i \(-0.803292\pi\)
−0.815052 + 0.579388i \(0.803292\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 26.6942 0.935056
\(816\) 0 0
\(817\) 0.605551 0.0211856
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.4693 −0.784183 −0.392091 0.919926i \(-0.628248\pi\)
−0.392091 + 0.919926i \(0.628248\pi\)
\(822\) 0 0
\(823\) −29.8167 −1.03934 −0.519672 0.854366i \(-0.673946\pi\)
−0.519672 + 0.854366i \(0.673946\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.4819 0.990411 0.495206 0.868776i \(-0.335093\pi\)
0.495206 + 0.868776i \(0.335093\pi\)
\(828\) 0 0
\(829\) −13.6333 −0.473504 −0.236752 0.971570i \(-0.576083\pi\)
−0.236752 + 0.971570i \(0.576083\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.08101 0.176047
\(834\) 0 0
\(835\) −57.2111 −1.97987
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −52.9553 −1.82822 −0.914110 0.405466i \(-0.867109\pi\)
−0.914110 + 0.405466i \(0.867109\pi\)
\(840\) 0 0
\(841\) −3.18335 −0.109771
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 83.3003 2.86562
\(846\) 0 0
\(847\) −5.42221 −0.186309
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.72347 −0.161919
\(852\) 0 0
\(853\) 10.3667 0.354949 0.177474 0.984125i \(-0.443207\pi\)
0.177474 + 0.984125i \(0.443207\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.36174 0.0806754 0.0403377 0.999186i \(-0.487157\pi\)
0.0403377 + 0.999186i \(0.487157\pi\)
\(858\) 0 0
\(859\) −13.2111 −0.450757 −0.225379 0.974271i \(-0.572362\pi\)
−0.225379 + 0.974271i \(0.572362\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.357538 −0.0121707 −0.00608537 0.999981i \(-0.501937\pi\)
−0.00608537 + 0.999981i \(0.501937\pi\)
\(864\) 0 0
\(865\) −48.8444 −1.66076
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.44694 0.320466
\(870\) 0 0
\(871\) 34.4222 1.16635
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −7.08521 −0.239524
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −38.6439 −1.30195 −0.650973 0.759101i \(-0.725639\pi\)
−0.650973 + 0.759101i \(0.725639\pi\)
\(882\) 0 0
\(883\) −28.8444 −0.970692 −0.485346 0.874322i \(-0.661306\pi\)
−0.485346 + 0.874322i \(0.661306\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −50.8101 −1.70604 −0.853018 0.521882i \(-0.825230\pi\)
−0.853018 + 0.521882i \(0.825230\pi\)
\(888\) 0 0
\(889\) −1.21110 −0.0406191
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.08101 −0.170029
\(894\) 0 0
\(895\) −13.8167 −0.461840
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.07681 0.102617
\(900\) 0 0
\(901\) 13.8167 0.460299
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.43855 0.180783
\(906\) 0 0
\(907\) −35.2666 −1.17101 −0.585504 0.810669i \(-0.699103\pi\)
−0.585504 + 0.810669i \(0.699103\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8.15782 −0.270281 −0.135140 0.990826i \(-0.543149\pi\)
−0.135140 + 0.990826i \(0.543149\pi\)
\(912\) 0 0
\(913\) 6.42221 0.212544
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8.15782 −0.269395
\(918\) 0 0
\(919\) −10.4222 −0.343797 −0.171898 0.985115i \(-0.554990\pi\)
−0.171898 + 0.985115i \(0.554990\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.2388 0.435761
\(924\) 0 0
\(925\) 4.78890 0.157458
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.07261 −0.0351913 −0.0175957 0.999845i \(-0.505601\pi\)
−0.0175957 + 0.999845i \(0.505601\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −32.6313 −1.06716
\(936\) 0 0
\(937\) 44.4222 1.45121 0.725605 0.688111i \(-0.241560\pi\)
0.725605 + 0.688111i \(0.241560\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20.1075 −0.655487 −0.327743 0.944767i \(-0.606288\pi\)
−0.327743 + 0.944767i \(0.606288\pi\)
\(942\) 0 0
\(943\) 5.57779 0.181638
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.08521 0.230238 0.115119 0.993352i \(-0.463275\pi\)
0.115119 + 0.993352i \(0.463275\pi\)
\(948\) 0 0
\(949\) −47.6333 −1.54624
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.6132 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(954\) 0 0
\(955\) 6.42221 0.207818
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.6333 −0.988171
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.14523 −0.0690573
\(966\) 0 0
\(967\) 58.6611 1.88641 0.943206 0.332208i \(-0.107793\pi\)
0.943206 + 0.332208i \(0.107793\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 57.6788 1.85100 0.925500 0.378747i \(-0.123645\pi\)
0.925500 + 0.378747i \(0.123645\pi\)
\(972\) 0 0
\(973\) 17.2111 0.551763
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25.1885 −0.805853 −0.402926 0.915232i \(-0.632007\pi\)
−0.402926 + 0.915232i \(0.632007\pi\)
\(978\) 0 0
\(979\) 31.2666 0.999285
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −54.8185 −1.74844 −0.874219 0.485532i \(-0.838626\pi\)
−0.874219 + 0.485532i \(0.838626\pi\)
\(984\) 0 0
\(985\) −29.5778 −0.942427
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.43015 −0.0454762
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 21.7542 0.689654
\(996\) 0 0
\(997\) 5.63331 0.178409 0.0892043 0.996013i \(-0.471568\pi\)
0.0892043 + 0.996013i \(0.471568\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.s.1.3 yes 4
3.2 odd 2 inner 4788.2.a.s.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4788.2.a.s.1.2 4 3.2 odd 2 inner
4788.2.a.s.1.3 yes 4 1.1 even 1 trivial