Properties

Label 4788.2.a.r.1.2
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.874032\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.540182 q^{5} +1.00000 q^{7} -1.74806 q^{11} -0.763932 q^{13} -2.28825 q^{17} -1.00000 q^{19} +7.40492 q^{23} -4.70820 q^{25} +7.94510 q^{29} -2.76393 q^{31} -0.540182 q^{35} -6.00000 q^{37} -1.74806 q^{41} -10.1803 q^{43} +5.78437 q^{47} +1.00000 q^{49} +6.19704 q^{53} +0.944272 q^{55} -12.6491 q^{59} +6.94427 q^{61} +0.412662 q^{65} -2.47214 q^{67} -9.69316 q^{71} -3.52786 q^{73} -1.74806 q^{77} +4.94427 q^{79} -7.27740 q^{83} +1.23607 q^{85} -1.74806 q^{89} -0.763932 q^{91} +0.540182 q^{95} -17.4164 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} - 12 q^{13} - 4 q^{19} + 8 q^{25} - 20 q^{31} - 24 q^{37} + 4 q^{43} + 4 q^{49} - 32 q^{55} - 8 q^{61} + 8 q^{67} - 32 q^{73} - 16 q^{79} - 4 q^{85} - 12 q^{91} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.540182 −0.241577 −0.120788 0.992678i \(-0.538542\pi\)
−0.120788 + 0.992678i \(0.538542\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.74806 −0.527061 −0.263531 0.964651i \(-0.584887\pi\)
−0.263531 + 0.964651i \(0.584887\pi\)
\(12\) 0 0
\(13\) −0.763932 −0.211877 −0.105938 0.994373i \(-0.533785\pi\)
−0.105938 + 0.994373i \(0.533785\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.28825 −0.554981 −0.277491 0.960728i \(-0.589503\pi\)
−0.277491 + 0.960728i \(0.589503\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.40492 1.54403 0.772016 0.635603i \(-0.219248\pi\)
0.772016 + 0.635603i \(0.219248\pi\)
\(24\) 0 0
\(25\) −4.70820 −0.941641
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.94510 1.47537 0.737684 0.675146i \(-0.235919\pi\)
0.737684 + 0.675146i \(0.235919\pi\)
\(30\) 0 0
\(31\) −2.76393 −0.496417 −0.248208 0.968707i \(-0.579842\pi\)
−0.248208 + 0.968707i \(0.579842\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.540182 −0.0913073
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.74806 −0.273002 −0.136501 0.990640i \(-0.543586\pi\)
−0.136501 + 0.990640i \(0.543586\pi\)
\(42\) 0 0
\(43\) −10.1803 −1.55249 −0.776244 0.630433i \(-0.782877\pi\)
−0.776244 + 0.630433i \(0.782877\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.78437 0.843738 0.421869 0.906657i \(-0.361374\pi\)
0.421869 + 0.906657i \(0.361374\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.19704 0.851228 0.425614 0.904905i \(-0.360058\pi\)
0.425614 + 0.904905i \(0.360058\pi\)
\(54\) 0 0
\(55\) 0.944272 0.127326
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.6491 −1.64677 −0.823387 0.567480i \(-0.807918\pi\)
−0.823387 + 0.567480i \(0.807918\pi\)
\(60\) 0 0
\(61\) 6.94427 0.889123 0.444561 0.895748i \(-0.353360\pi\)
0.444561 + 0.895748i \(0.353360\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.412662 0.0511844
\(66\) 0 0
\(67\) −2.47214 −0.302019 −0.151010 0.988532i \(-0.548252\pi\)
−0.151010 + 0.988532i \(0.548252\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.69316 −1.15037 −0.575183 0.818024i \(-0.695069\pi\)
−0.575183 + 0.818024i \(0.695069\pi\)
\(72\) 0 0
\(73\) −3.52786 −0.412905 −0.206453 0.978457i \(-0.566192\pi\)
−0.206453 + 0.978457i \(0.566192\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.74806 −0.199210
\(78\) 0 0
\(79\) 4.94427 0.556274 0.278137 0.960541i \(-0.410283\pi\)
0.278137 + 0.960541i \(0.410283\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.27740 −0.798798 −0.399399 0.916777i \(-0.630781\pi\)
−0.399399 + 0.916777i \(0.630781\pi\)
\(84\) 0 0
\(85\) 1.23607 0.134070
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.74806 −0.185294 −0.0926472 0.995699i \(-0.529533\pi\)
−0.0926472 + 0.995699i \(0.529533\pi\)
\(90\) 0 0
\(91\) −0.763932 −0.0800818
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.540182 0.0554215
\(96\) 0 0
\(97\) −17.4164 −1.76837 −0.884184 0.467139i \(-0.845285\pi\)
−0.884184 + 0.467139i \(0.845285\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.44897 0.442689 0.221345 0.975196i \(-0.428955\pi\)
0.221345 + 0.975196i \(0.428955\pi\)
\(102\) 0 0
\(103\) −12.9443 −1.27544 −0.637719 0.770270i \(-0.720122\pi\)
−0.637719 + 0.770270i \(0.720122\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.9374 1.44405 0.722024 0.691868i \(-0.243212\pi\)
0.722024 + 0.691868i \(0.243212\pi\)
\(108\) 0 0
\(109\) 6.94427 0.665141 0.332570 0.943078i \(-0.392084\pi\)
0.332570 + 0.943078i \(0.392084\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.1784 −1.71008 −0.855042 0.518559i \(-0.826469\pi\)
−0.855042 + 0.518559i \(0.826469\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.28825 −0.209763
\(120\) 0 0
\(121\) −7.94427 −0.722207
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.24419 0.469055
\(126\) 0 0
\(127\) −9.52786 −0.845461 −0.422731 0.906255i \(-0.638928\pi\)
−0.422731 + 0.906255i \(0.638928\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.19704 −0.541438 −0.270719 0.962658i \(-0.587261\pi\)
−0.270719 + 0.962658i \(0.587261\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.99226 −0.597389 −0.298694 0.954349i \(-0.596551\pi\)
−0.298694 + 0.954349i \(0.596551\pi\)
\(138\) 0 0
\(139\) 10.4721 0.888235 0.444117 0.895969i \(-0.353517\pi\)
0.444117 + 0.895969i \(0.353517\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.33540 0.111672
\(144\) 0 0
\(145\) −4.29180 −0.356414
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.08036 −0.0885068 −0.0442534 0.999020i \(-0.514091\pi\)
−0.0442534 + 0.999020i \(0.514091\pi\)
\(150\) 0 0
\(151\) 4.94427 0.402359 0.201180 0.979554i \(-0.435523\pi\)
0.201180 + 0.979554i \(0.435523\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.49302 0.119923
\(156\) 0 0
\(157\) −8.47214 −0.676150 −0.338075 0.941119i \(-0.609776\pi\)
−0.338075 + 0.941119i \(0.609776\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.40492 0.583589
\(162\) 0 0
\(163\) 5.23607 0.410120 0.205060 0.978749i \(-0.434261\pi\)
0.205060 + 0.978749i \(0.434261\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 25.0432 1.93790 0.968950 0.247257i \(-0.0795294\pi\)
0.968950 + 0.247257i \(0.0795294\pi\)
\(168\) 0 0
\(169\) −12.4164 −0.955108
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.56564 −0.727262 −0.363631 0.931543i \(-0.618463\pi\)
−0.363631 + 0.931543i \(0.618463\pi\)
\(174\) 0 0
\(175\) −4.70820 −0.355907
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.952843 −0.0712189 −0.0356094 0.999366i \(-0.511337\pi\)
−0.0356094 + 0.999366i \(0.511337\pi\)
\(180\) 0 0
\(181\) −19.8885 −1.47830 −0.739152 0.673539i \(-0.764773\pi\)
−0.739152 + 0.673539i \(0.764773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.24109 0.238290
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.74806 0.126485 0.0632427 0.997998i \(-0.479856\pi\)
0.0632427 + 0.997998i \(0.479856\pi\)
\(192\) 0 0
\(193\) 21.4164 1.54159 0.770793 0.637085i \(-0.219860\pi\)
0.770793 + 0.637085i \(0.219860\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.3060 1.30425 0.652123 0.758113i \(-0.273879\pi\)
0.652123 + 0.758113i \(0.273879\pi\)
\(198\) 0 0
\(199\) −20.9443 −1.48470 −0.742350 0.670012i \(-0.766289\pi\)
−0.742350 + 0.670012i \(0.766289\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.94510 0.557637
\(204\) 0 0
\(205\) 0.944272 0.0659508
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.74806 0.120916
\(210\) 0 0
\(211\) 15.4164 1.06131 0.530655 0.847588i \(-0.321946\pi\)
0.530655 + 0.847588i \(0.321946\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.49923 0.375044
\(216\) 0 0
\(217\) −2.76393 −0.187628
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.74806 0.117588
\(222\) 0 0
\(223\) −5.23607 −0.350633 −0.175317 0.984512i \(-0.556095\pi\)
−0.175317 + 0.984512i \(0.556095\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.41577 0.160340 0.0801700 0.996781i \(-0.474454\pi\)
0.0801700 + 0.996781i \(0.474454\pi\)
\(228\) 0 0
\(229\) −18.3607 −1.21331 −0.606654 0.794966i \(-0.707489\pi\)
−0.606654 + 0.794966i \(0.707489\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −27.2039 −1.78219 −0.891094 0.453819i \(-0.850061\pi\)
−0.891094 + 0.453819i \(0.850061\pi\)
\(234\) 0 0
\(235\) −3.12461 −0.203827
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.6460 −0.688633 −0.344316 0.938854i \(-0.611889\pi\)
−0.344316 + 0.938854i \(0.611889\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.540182 −0.0345109
\(246\) 0 0
\(247\) 0.763932 0.0486078
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −25.1707 −1.58876 −0.794380 0.607421i \(-0.792204\pi\)
−0.794380 + 0.607421i \(0.792204\pi\)
\(252\) 0 0
\(253\) −12.9443 −0.813799
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.16383 0.259733 0.129866 0.991532i \(-0.458545\pi\)
0.129866 + 0.991532i \(0.458545\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.4775 −0.954386 −0.477193 0.878799i \(-0.658346\pi\)
−0.477193 + 0.878799i \(0.658346\pi\)
\(264\) 0 0
\(265\) −3.34752 −0.205637
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.6305 1.50175 0.750875 0.660445i \(-0.229632\pi\)
0.750875 + 0.660445i \(0.229632\pi\)
\(270\) 0 0
\(271\) 11.4164 0.693497 0.346749 0.937958i \(-0.387286\pi\)
0.346749 + 0.937958i \(0.387286\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.23024 0.496302
\(276\) 0 0
\(277\) −8.76393 −0.526574 −0.263287 0.964718i \(-0.584807\pi\)
−0.263287 + 0.964718i \(0.584807\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.70091 −0.161123 −0.0805613 0.996750i \(-0.525671\pi\)
−0.0805613 + 0.996750i \(0.525671\pi\)
\(282\) 0 0
\(283\) 6.47214 0.384729 0.192364 0.981324i \(-0.438384\pi\)
0.192364 + 0.981324i \(0.438384\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.74806 −0.103185
\(288\) 0 0
\(289\) −11.7639 −0.691996
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −16.5579 −0.967323 −0.483661 0.875255i \(-0.660693\pi\)
−0.483661 + 0.875255i \(0.660693\pi\)
\(294\) 0 0
\(295\) 6.83282 0.397822
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.65685 −0.327144
\(300\) 0 0
\(301\) −10.1803 −0.586785
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.75117 −0.214791
\(306\) 0 0
\(307\) −14.1803 −0.809315 −0.404657 0.914468i \(-0.632609\pi\)
−0.404657 + 0.914468i \(0.632609\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −20.1815 −1.14439 −0.572195 0.820117i \(-0.693908\pi\)
−0.572195 + 0.820117i \(0.693908\pi\)
\(312\) 0 0
\(313\) 10.3607 0.585620 0.292810 0.956171i \(-0.405410\pi\)
0.292810 + 0.956171i \(0.405410\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −23.0100 −1.29237 −0.646184 0.763181i \(-0.723636\pi\)
−0.646184 + 0.763181i \(0.723636\pi\)
\(318\) 0 0
\(319\) −13.8885 −0.777609
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.28825 0.127321
\(324\) 0 0
\(325\) 3.59675 0.199512
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.78437 0.318903
\(330\) 0 0
\(331\) −11.4164 −0.627503 −0.313751 0.949505i \(-0.601586\pi\)
−0.313751 + 0.949505i \(0.601586\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.33540 0.0729608
\(336\) 0 0
\(337\) −0.111456 −0.00607140 −0.00303570 0.999995i \(-0.500966\pi\)
−0.00303570 + 0.999995i \(0.500966\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.83153 0.261642
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.9737 1.01856 0.509280 0.860601i \(-0.329912\pi\)
0.509280 + 0.860601i \(0.329912\pi\)
\(348\) 0 0
\(349\) 13.4164 0.718164 0.359082 0.933306i \(-0.383090\pi\)
0.359082 + 0.933306i \(0.383090\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 35.8167 1.90633 0.953166 0.302449i \(-0.0978042\pi\)
0.953166 + 0.302449i \(0.0978042\pi\)
\(354\) 0 0
\(355\) 5.23607 0.277902
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.24419 −0.276778 −0.138389 0.990378i \(-0.544192\pi\)
−0.138389 + 0.990378i \(0.544192\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.90569 0.0997482
\(366\) 0 0
\(367\) 20.3607 1.06282 0.531409 0.847115i \(-0.321663\pi\)
0.531409 + 0.847115i \(0.321663\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.19704 0.321734
\(372\) 0 0
\(373\) −5.05573 −0.261776 −0.130888 0.991397i \(-0.541783\pi\)
−0.130888 + 0.991397i \(0.541783\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.06952 −0.312596
\(378\) 0 0
\(379\) −24.9443 −1.28130 −0.640651 0.767833i \(-0.721335\pi\)
−0.640651 + 0.767833i \(0.721335\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.2333 0.522900 0.261450 0.965217i \(-0.415799\pi\)
0.261450 + 0.965217i \(0.415799\pi\)
\(384\) 0 0
\(385\) 0.944272 0.0481246
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −19.3863 −0.982926 −0.491463 0.870898i \(-0.663538\pi\)
−0.491463 + 0.870898i \(0.663538\pi\)
\(390\) 0 0
\(391\) −16.9443 −0.856909
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.67080 −0.134383
\(396\) 0 0
\(397\) −3.88854 −0.195160 −0.0975802 0.995228i \(-0.531110\pi\)
−0.0975802 + 0.995228i \(0.531110\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.8461 0.941132 0.470566 0.882365i \(-0.344050\pi\)
0.470566 + 0.882365i \(0.344050\pi\)
\(402\) 0 0
\(403\) 2.11146 0.105179
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.4884 0.519890
\(408\) 0 0
\(409\) −1.70820 −0.0844652 −0.0422326 0.999108i \(-0.513447\pi\)
−0.0422326 + 0.999108i \(0.513447\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −12.6491 −0.622422
\(414\) 0 0
\(415\) 3.93112 0.192971
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.4844 1.78238 0.891190 0.453630i \(-0.149871\pi\)
0.891190 + 0.453630i \(0.149871\pi\)
\(420\) 0 0
\(421\) −14.3607 −0.699897 −0.349948 0.936769i \(-0.613801\pi\)
−0.349948 + 0.936769i \(0.613801\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10.7735 0.522593
\(426\) 0 0
\(427\) 6.94427 0.336057
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.9157 1.20015 0.600073 0.799946i \(-0.295138\pi\)
0.600073 + 0.799946i \(0.295138\pi\)
\(432\) 0 0
\(433\) −35.8885 −1.72469 −0.862347 0.506318i \(-0.831006\pi\)
−0.862347 + 0.506318i \(0.831006\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.40492 −0.354225
\(438\) 0 0
\(439\) −20.0689 −0.957836 −0.478918 0.877860i \(-0.658971\pi\)
−0.478918 + 0.877860i \(0.658971\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −40.7758 −1.93731 −0.968657 0.248401i \(-0.920095\pi\)
−0.968657 + 0.248401i \(0.920095\pi\)
\(444\) 0 0
\(445\) 0.944272 0.0447628
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9.43812 −0.445413 −0.222706 0.974886i \(-0.571489\pi\)
−0.222706 + 0.974886i \(0.571489\pi\)
\(450\) 0 0
\(451\) 3.05573 0.143889
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.412662 0.0193459
\(456\) 0 0
\(457\) −31.2361 −1.46116 −0.730581 0.682826i \(-0.760751\pi\)
−0.730581 + 0.682826i \(0.760751\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.9234 0.834776 0.417388 0.908728i \(-0.362946\pi\)
0.417388 + 0.908728i \(0.362946\pi\)
\(462\) 0 0
\(463\) 24.9443 1.15926 0.579629 0.814880i \(-0.303197\pi\)
0.579629 + 0.814880i \(0.303197\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −25.8384 −1.19566 −0.597829 0.801623i \(-0.703970\pi\)
−0.597829 + 0.801623i \(0.703970\pi\)
\(468\) 0 0
\(469\) −2.47214 −0.114153
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 17.7959 0.818256
\(474\) 0 0
\(475\) 4.70820 0.216027
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.62365 −0.165569 −0.0827843 0.996567i \(-0.526381\pi\)
−0.0827843 + 0.996567i \(0.526381\pi\)
\(480\) 0 0
\(481\) 4.58359 0.208994
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.40802 0.427196
\(486\) 0 0
\(487\) 42.8328 1.94094 0.970470 0.241222i \(-0.0775480\pi\)
0.970470 + 0.241222i \(0.0775480\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.667701 0.0301329 0.0150665 0.999886i \(-0.495204\pi\)
0.0150665 + 0.999886i \(0.495204\pi\)
\(492\) 0 0
\(493\) −18.1803 −0.818801
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.69316 −0.434798
\(498\) 0 0
\(499\) 28.9443 1.29572 0.647862 0.761758i \(-0.275663\pi\)
0.647862 + 0.761758i \(0.275663\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −41.4736 −1.84921 −0.924607 0.380921i \(-0.875607\pi\)
−0.924607 + 0.380921i \(0.875607\pi\)
\(504\) 0 0
\(505\) −2.40325 −0.106943
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.16383 −0.184558 −0.0922792 0.995733i \(-0.529415\pi\)
−0.0922792 + 0.995733i \(0.529415\pi\)
\(510\) 0 0
\(511\) −3.52786 −0.156064
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.99226 0.308116
\(516\) 0 0
\(517\) −10.1115 −0.444701
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.9520 −1.26841 −0.634204 0.773165i \(-0.718672\pi\)
−0.634204 + 0.773165i \(0.718672\pi\)
\(522\) 0 0
\(523\) 27.7082 1.21160 0.605798 0.795619i \(-0.292854\pi\)
0.605798 + 0.795619i \(0.292854\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.32456 0.275502
\(528\) 0 0
\(529\) 31.8328 1.38404
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.33540 0.0578427
\(534\) 0 0
\(535\) −8.06888 −0.348848
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.74806 −0.0752945
\(540\) 0 0
\(541\) 13.4164 0.576816 0.288408 0.957508i \(-0.406874\pi\)
0.288408 + 0.957508i \(0.406874\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.75117 −0.160682
\(546\) 0 0
\(547\) −7.05573 −0.301681 −0.150841 0.988558i \(-0.548198\pi\)
−0.150841 + 0.988558i \(0.548198\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.94510 −0.338473
\(552\) 0 0
\(553\) 4.94427 0.210252
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 32.0354 1.35739 0.678693 0.734423i \(-0.262547\pi\)
0.678693 + 0.734423i \(0.262547\pi\)
\(558\) 0 0
\(559\) 7.77709 0.328936
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 26.3786 1.11172 0.555862 0.831274i \(-0.312388\pi\)
0.555862 + 0.831274i \(0.312388\pi\)
\(564\) 0 0
\(565\) 9.81966 0.413116
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 31.2402 1.30966 0.654829 0.755777i \(-0.272741\pi\)
0.654829 + 0.755777i \(0.272741\pi\)
\(570\) 0 0
\(571\) 32.9443 1.37867 0.689337 0.724440i \(-0.257902\pi\)
0.689337 + 0.724440i \(0.257902\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −34.8639 −1.45392
\(576\) 0 0
\(577\) −30.3607 −1.26393 −0.631966 0.774996i \(-0.717752\pi\)
−0.631966 + 0.774996i \(0.717752\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.27740 −0.301917
\(582\) 0 0
\(583\) −10.8328 −0.448649
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.9079 1.31698 0.658490 0.752589i \(-0.271195\pi\)
0.658490 + 0.752589i \(0.271195\pi\)
\(588\) 0 0
\(589\) 2.76393 0.113886
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.78127 0.155278 0.0776391 0.996982i \(-0.475262\pi\)
0.0776391 + 0.996982i \(0.475262\pi\)
\(594\) 0 0
\(595\) 1.23607 0.0506738
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10.1058 −0.412913 −0.206456 0.978456i \(-0.566193\pi\)
−0.206456 + 0.978456i \(0.566193\pi\)
\(600\) 0 0
\(601\) −13.4164 −0.547267 −0.273633 0.961834i \(-0.588225\pi\)
−0.273633 + 0.961834i \(0.588225\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.29135 0.174468
\(606\) 0 0
\(607\) 5.88854 0.239009 0.119504 0.992834i \(-0.461869\pi\)
0.119504 + 0.992834i \(0.461869\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.41887 −0.178768
\(612\) 0 0
\(613\) −11.5967 −0.468388 −0.234194 0.972190i \(-0.575245\pi\)
−0.234194 + 0.972190i \(0.575245\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.32766 0.335259 0.167629 0.985850i \(-0.446389\pi\)
0.167629 + 0.985850i \(0.446389\pi\)
\(618\) 0 0
\(619\) −10.4721 −0.420911 −0.210455 0.977603i \(-0.567495\pi\)
−0.210455 + 0.977603i \(0.567495\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.74806 −0.0700347
\(624\) 0 0
\(625\) 20.7082 0.828328
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.7295 0.547430
\(630\) 0 0
\(631\) 1.81966 0.0724395 0.0362198 0.999344i \(-0.488468\pi\)
0.0362198 + 0.999344i \(0.488468\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.14678 0.204244
\(636\) 0 0
\(637\) −0.763932 −0.0302681
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.5216 0.494573 0.247287 0.968942i \(-0.420461\pi\)
0.247287 + 0.968942i \(0.420461\pi\)
\(642\) 0 0
\(643\) 22.4721 0.886215 0.443107 0.896469i \(-0.353876\pi\)
0.443107 + 0.896469i \(0.353876\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −46.4627 −1.82664 −0.913319 0.407245i \(-0.866490\pi\)
−0.913319 + 0.407245i \(0.866490\pi\)
\(648\) 0 0
\(649\) 22.1115 0.867951
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.6491 0.494998 0.247499 0.968888i \(-0.420391\pi\)
0.247499 + 0.968888i \(0.420391\pi\)
\(654\) 0 0
\(655\) 3.34752 0.130799
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6.45207 −0.251337 −0.125669 0.992072i \(-0.540108\pi\)
−0.125669 + 0.992072i \(0.540108\pi\)
\(660\) 0 0
\(661\) 11.8197 0.459731 0.229866 0.973222i \(-0.426171\pi\)
0.229866 + 0.973222i \(0.426171\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.540182 0.0209473
\(666\) 0 0
\(667\) 58.8328 2.27802
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12.1390 −0.468622
\(672\) 0 0
\(673\) −43.3050 −1.66928 −0.834642 0.550793i \(-0.814325\pi\)
−0.834642 + 0.550793i \(0.814325\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −45.9225 −1.76495 −0.882473 0.470363i \(-0.844123\pi\)
−0.882473 + 0.470363i \(0.844123\pi\)
\(678\) 0 0
\(679\) −17.4164 −0.668380
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.6746 0.829355 0.414677 0.909969i \(-0.363894\pi\)
0.414677 + 0.909969i \(0.363894\pi\)
\(684\) 0 0
\(685\) 3.77709 0.144315
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.73411 −0.180355
\(690\) 0 0
\(691\) 30.2492 1.15073 0.575367 0.817895i \(-0.304859\pi\)
0.575367 + 0.817895i \(0.304859\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.65685 −0.214577
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.3060 0.691407 0.345703 0.938344i \(-0.387640\pi\)
0.345703 + 0.938344i \(0.387640\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.44897 0.167321
\(708\) 0 0
\(709\) 17.7082 0.665046 0.332523 0.943095i \(-0.392100\pi\)
0.332523 + 0.943095i \(0.392100\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.4667 −0.766484
\(714\) 0 0
\(715\) −0.721360 −0.0269773
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 48.4658 1.80747 0.903735 0.428092i \(-0.140814\pi\)
0.903735 + 0.428092i \(0.140814\pi\)
\(720\) 0 0
\(721\) −12.9443 −0.482070
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −37.4072 −1.38927
\(726\) 0 0
\(727\) −37.8885 −1.40521 −0.702604 0.711581i \(-0.747980\pi\)
−0.702604 + 0.711581i \(0.747980\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 23.2951 0.861601
\(732\) 0 0
\(733\) 37.4164 1.38201 0.691003 0.722852i \(-0.257169\pi\)
0.691003 + 0.722852i \(0.257169\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.32145 0.159183
\(738\) 0 0
\(739\) 36.0689 1.32682 0.663408 0.748258i \(-0.269110\pi\)
0.663408 + 0.748258i \(0.269110\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.7627 0.578277 0.289138 0.957287i \(-0.406631\pi\)
0.289138 + 0.957287i \(0.406631\pi\)
\(744\) 0 0
\(745\) 0.583592 0.0213812
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 14.9374 0.545799
\(750\) 0 0
\(751\) 20.9443 0.764267 0.382134 0.924107i \(-0.375189\pi\)
0.382134 + 0.924107i \(0.375189\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.67080 −0.0972005
\(756\) 0 0
\(757\) −41.4164 −1.50530 −0.752652 0.658418i \(-0.771226\pi\)
−0.752652 + 0.658418i \(0.771226\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31.4953 −1.14170 −0.570851 0.821054i \(-0.693387\pi\)
−0.570851 + 0.821054i \(0.693387\pi\)
\(762\) 0 0
\(763\) 6.94427 0.251400
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.66306 0.348913
\(768\) 0 0
\(769\) −43.3050 −1.56162 −0.780808 0.624771i \(-0.785192\pi\)
−0.780808 + 0.624771i \(0.785192\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.8933 0.643577 0.321789 0.946812i \(-0.395716\pi\)
0.321789 + 0.946812i \(0.395716\pi\)
\(774\) 0 0
\(775\) 13.0132 0.467446
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.74806 0.0626309
\(780\) 0 0
\(781\) 16.9443 0.606314
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.57649 0.163342
\(786\) 0 0
\(787\) −14.7639 −0.526277 −0.263139 0.964758i \(-0.584758\pi\)
−0.263139 + 0.964758i \(0.584758\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −18.1784 −0.646351
\(792\) 0 0
\(793\) −5.30495 −0.188384
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −37.0246 −1.31148 −0.655739 0.754988i \(-0.727643\pi\)
−0.655739 + 0.754988i \(0.727643\pi\)
\(798\) 0 0
\(799\) −13.2361 −0.468258
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.16693 0.217626
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.7881 −0.871505 −0.435752 0.900067i \(-0.643518\pi\)
−0.435752 + 0.900067i \(0.643518\pi\)
\(810\) 0 0
\(811\) 16.9443 0.594994 0.297497 0.954723i \(-0.403848\pi\)
0.297497 + 0.954723i \(0.403848\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.82843 −0.0990755
\(816\) 0 0
\(817\) 10.1803 0.356165
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 43.3491 1.51290 0.756448 0.654054i \(-0.226933\pi\)
0.756448 + 0.654054i \(0.226933\pi\)
\(822\) 0 0
\(823\) 56.6525 1.97478 0.987391 0.158303i \(-0.0506023\pi\)
0.987391 + 0.158303i \(0.0506023\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.7363 1.20790 0.603951 0.797022i \(-0.293592\pi\)
0.603951 + 0.797022i \(0.293592\pi\)
\(828\) 0 0
\(829\) −29.4164 −1.02167 −0.510837 0.859678i \(-0.670664\pi\)
−0.510837 + 0.859678i \(0.670664\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.28825 −0.0792830
\(834\) 0 0
\(835\) −13.5279 −0.468151
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −13.9845 −0.482799 −0.241399 0.970426i \(-0.577606\pi\)
−0.241399 + 0.970426i \(0.577606\pi\)
\(840\) 0 0
\(841\) 34.1246 1.17671
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.70711 0.230732
\(846\) 0 0
\(847\) −7.94427 −0.272968
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −44.4295 −1.52302
\(852\) 0 0
\(853\) 24.4721 0.837910 0.418955 0.908007i \(-0.362397\pi\)
0.418955 + 0.908007i \(0.362397\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −10.0757 −0.344180 −0.172090 0.985081i \(-0.555052\pi\)
−0.172090 + 0.985081i \(0.555052\pi\)
\(858\) 0 0
\(859\) 35.4164 1.20839 0.604196 0.796836i \(-0.293494\pi\)
0.604196 + 0.796836i \(0.293494\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 39.1552 1.33286 0.666430 0.745568i \(-0.267822\pi\)
0.666430 + 0.745568i \(0.267822\pi\)
\(864\) 0 0
\(865\) 5.16718 0.175690
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.64290 −0.293190
\(870\) 0 0
\(871\) 1.88854 0.0639909
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.24419 0.177286
\(876\) 0 0
\(877\) 28.8328 0.973615 0.486808 0.873509i \(-0.338161\pi\)
0.486808 + 0.873509i \(0.338161\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.2989 1.42509 0.712543 0.701629i \(-0.247543\pi\)
0.712543 + 0.701629i \(0.247543\pi\)
\(882\) 0 0
\(883\) 24.0000 0.807664 0.403832 0.914833i \(-0.367678\pi\)
0.403832 + 0.914833i \(0.367678\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.5687 −0.388441 −0.194220 0.980958i \(-0.562218\pi\)
−0.194220 + 0.980958i \(0.562218\pi\)
\(888\) 0 0
\(889\) −9.52786 −0.319554
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.78437 −0.193567
\(894\) 0 0
\(895\) 0.514708 0.0172048
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −21.9597 −0.732398
\(900\) 0 0
\(901\) −14.1803 −0.472416
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.7434 0.357123
\(906\) 0 0
\(907\) 20.9443 0.695443 0.347722 0.937598i \(-0.386955\pi\)
0.347722 + 0.937598i \(0.386955\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51.9619 1.72158 0.860788 0.508964i \(-0.169971\pi\)
0.860788 + 0.508964i \(0.169971\pi\)
\(912\) 0 0
\(913\) 12.7214 0.421016
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.19704 −0.204644
\(918\) 0 0
\(919\) 3.05573 0.100799 0.0503996 0.998729i \(-0.483951\pi\)
0.0503996 + 0.998729i \(0.483951\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 7.40492 0.243736
\(924\) 0 0
\(925\) 28.2492 0.928829
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.9219 −0.948896 −0.474448 0.880284i \(-0.657352\pi\)
−0.474448 + 0.880284i \(0.657352\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.16073 −0.0706633
\(936\) 0 0
\(937\) 16.8328 0.549904 0.274952 0.961458i \(-0.411338\pi\)
0.274952 + 0.961458i \(0.411338\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −41.6011 −1.35616 −0.678078 0.734990i \(-0.737187\pi\)
−0.678078 + 0.734990i \(0.737187\pi\)
\(942\) 0 0
\(943\) −12.9443 −0.421523
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.7186 0.608274 0.304137 0.952628i \(-0.401632\pi\)
0.304137 + 0.952628i \(0.401632\pi\)
\(948\) 0 0
\(949\) 2.69505 0.0874850
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −27.7441 −0.898719 −0.449360 0.893351i \(-0.648348\pi\)
−0.449360 + 0.893351i \(0.648348\pi\)
\(954\) 0 0
\(955\) −0.944272 −0.0305559
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.99226 −0.225792
\(960\) 0 0
\(961\) −23.3607 −0.753570
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −11.5687 −0.372411
\(966\) 0 0
\(967\) −14.7639 −0.474776 −0.237388 0.971415i \(-0.576291\pi\)
−0.237388 + 0.971415i \(0.576291\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.65685 −0.181537 −0.0907685 0.995872i \(-0.528932\pi\)
−0.0907685 + 0.995872i \(0.528932\pi\)
\(972\) 0 0
\(973\) 10.4721 0.335721
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.7735 −0.344676 −0.172338 0.985038i \(-0.555132\pi\)
−0.172338 + 0.985038i \(0.555132\pi\)
\(978\) 0 0
\(979\) 3.05573 0.0976615
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 57.9039 1.84685 0.923425 0.383780i \(-0.125378\pi\)
0.923425 + 0.383780i \(0.125378\pi\)
\(984\) 0 0
\(985\) −9.88854 −0.315075
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −75.3846 −2.39709
\(990\) 0 0
\(991\) 36.0000 1.14358 0.571789 0.820401i \(-0.306250\pi\)
0.571789 + 0.820401i \(0.306250\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.3137 0.358669
\(996\) 0 0
\(997\) −27.5279 −0.871816 −0.435908 0.899991i \(-0.643573\pi\)
−0.435908 + 0.899991i \(0.643573\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.r.1.2 4
3.2 odd 2 inner 4788.2.a.r.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4788.2.a.r.1.2 4 1.1 even 1 trivial
4788.2.a.r.1.3 yes 4 3.2 odd 2 inner