Properties

Label 4788.2.a.q.1.2
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.874032\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.874032 q^{5} -1.00000 q^{7} -2.82843 q^{11} +1.23607 q^{13} +3.70246 q^{17} +1.00000 q^{19} +2.82843 q^{23} -4.23607 q^{25} +7.19859 q^{29} -5.70820 q^{31} +0.874032 q^{35} -4.47214 q^{37} -8.48528 q^{41} -0.763932 q^{43} +5.45052 q^{47} +1.00000 q^{49} -4.37016 q^{53} +2.47214 q^{55} +14.8098 q^{59} -12.4721 q^{61} -1.08036 q^{65} +11.4164 q^{67} +3.03476 q^{71} +6.94427 q^{73} +2.82843 q^{77} -1.52786 q^{79} -4.78282 q^{83} -3.23607 q^{85} -8.48528 q^{89} -1.23607 q^{91} -0.874032 q^{95} -3.52786 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} - 4 q^{13} + 4 q^{19} - 8 q^{25} + 4 q^{31} - 12 q^{43} + 4 q^{49} - 8 q^{55} - 32 q^{61} - 8 q^{67} - 8 q^{73} - 24 q^{79} - 4 q^{85} + 4 q^{91} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.874032 −0.390879 −0.195440 0.980716i \(-0.562613\pi\)
−0.195440 + 0.980716i \(0.562613\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.82843 −0.852803 −0.426401 0.904534i \(-0.640219\pi\)
−0.426401 + 0.904534i \(0.640219\pi\)
\(12\) 0 0
\(13\) 1.23607 0.342824 0.171412 0.985199i \(-0.445167\pi\)
0.171412 + 0.985199i \(0.445167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.70246 0.897978 0.448989 0.893537i \(-0.351784\pi\)
0.448989 + 0.893537i \(0.351784\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843 0.589768 0.294884 0.955533i \(-0.404719\pi\)
0.294884 + 0.955533i \(0.404719\pi\)
\(24\) 0 0
\(25\) −4.23607 −0.847214
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.19859 1.33674 0.668372 0.743827i \(-0.266991\pi\)
0.668372 + 0.743827i \(0.266991\pi\)
\(30\) 0 0
\(31\) −5.70820 −1.02522 −0.512612 0.858620i \(-0.671322\pi\)
−0.512612 + 0.858620i \(0.671322\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.874032 0.147738
\(36\) 0 0
\(37\) −4.47214 −0.735215 −0.367607 0.929981i \(-0.619823\pi\)
−0.367607 + 0.929981i \(0.619823\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.48528 −1.32518 −0.662589 0.748983i \(-0.730542\pi\)
−0.662589 + 0.748983i \(0.730542\pi\)
\(42\) 0 0
\(43\) −0.763932 −0.116499 −0.0582493 0.998302i \(-0.518552\pi\)
−0.0582493 + 0.998302i \(0.518552\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.45052 0.795041 0.397520 0.917593i \(-0.369871\pi\)
0.397520 + 0.917593i \(0.369871\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.37016 −0.600288 −0.300144 0.953894i \(-0.597035\pi\)
−0.300144 + 0.953894i \(0.597035\pi\)
\(54\) 0 0
\(55\) 2.47214 0.333343
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 14.8098 1.92808 0.964038 0.265764i \(-0.0856240\pi\)
0.964038 + 0.265764i \(0.0856240\pi\)
\(60\) 0 0
\(61\) −12.4721 −1.59689 −0.798447 0.602066i \(-0.794345\pi\)
−0.798447 + 0.602066i \(0.794345\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.08036 −0.134003
\(66\) 0 0
\(67\) 11.4164 1.39474 0.697368 0.716713i \(-0.254354\pi\)
0.697368 + 0.716713i \(0.254354\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.03476 0.360160 0.180080 0.983652i \(-0.442364\pi\)
0.180080 + 0.983652i \(0.442364\pi\)
\(72\) 0 0
\(73\) 6.94427 0.812766 0.406383 0.913703i \(-0.366790\pi\)
0.406383 + 0.913703i \(0.366790\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.82843 0.322329
\(78\) 0 0
\(79\) −1.52786 −0.171898 −0.0859491 0.996300i \(-0.527392\pi\)
−0.0859491 + 0.996300i \(0.527392\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.78282 −0.524983 −0.262491 0.964934i \(-0.584544\pi\)
−0.262491 + 0.964934i \(0.584544\pi\)
\(84\) 0 0
\(85\) −3.23607 −0.351001
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.48528 −0.899438 −0.449719 0.893170i \(-0.648476\pi\)
−0.449719 + 0.893170i \(0.648476\pi\)
\(90\) 0 0
\(91\) −1.23607 −0.129575
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.874032 −0.0896738
\(96\) 0 0
\(97\) −3.52786 −0.358200 −0.179100 0.983831i \(-0.557319\pi\)
−0.179100 + 0.983831i \(0.557319\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −18.5123 −1.84204 −0.921021 0.389513i \(-0.872643\pi\)
−0.921021 + 0.389513i \(0.872643\pi\)
\(102\) 0 0
\(103\) −12.9443 −1.27544 −0.637719 0.770270i \(-0.720122\pi\)
−0.637719 + 0.770270i \(0.720122\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.6035 −1.41177 −0.705887 0.708324i \(-0.749451\pi\)
−0.705887 + 0.708324i \(0.749451\pi\)
\(108\) 0 0
\(109\) −18.9443 −1.81453 −0.907266 0.420557i \(-0.861835\pi\)
−0.907266 + 0.420557i \(0.861835\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.54173 0.145034 0.0725170 0.997367i \(-0.476897\pi\)
0.0725170 + 0.997367i \(0.476897\pi\)
\(114\) 0 0
\(115\) −2.47214 −0.230528
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.70246 −0.339404
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.07262 0.722037
\(126\) 0 0
\(127\) 7.41641 0.658100 0.329050 0.944313i \(-0.393272\pi\)
0.329050 + 0.944313i \(0.393272\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.03476 −0.265148 −0.132574 0.991173i \(-0.542324\pi\)
−0.132574 + 0.991173i \(0.542324\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.16073 0.184603 0.0923016 0.995731i \(-0.470578\pi\)
0.0923016 + 0.995731i \(0.470578\pi\)
\(138\) 0 0
\(139\) −4.94427 −0.419368 −0.209684 0.977769i \(-0.567243\pi\)
−0.209684 + 0.977769i \(0.567243\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.49613 −0.292361
\(144\) 0 0
\(145\) −6.29180 −0.522505
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.24419 0.429621 0.214810 0.976656i \(-0.431087\pi\)
0.214810 + 0.976656i \(0.431087\pi\)
\(150\) 0 0
\(151\) −1.52786 −0.124336 −0.0621679 0.998066i \(-0.519801\pi\)
−0.0621679 + 0.998066i \(0.519801\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.98915 0.400738
\(156\) 0 0
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.82843 −0.222911
\(162\) 0 0
\(163\) −25.1246 −1.96791 −0.983956 0.178413i \(-0.942904\pi\)
−0.983956 + 0.178413i \(0.942904\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.90879 0.302471 0.151236 0.988498i \(-0.451675\pi\)
0.151236 + 0.988498i \(0.451675\pi\)
\(168\) 0 0
\(169\) −11.4721 −0.882472
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 21.1344 1.60682 0.803409 0.595428i \(-0.203017\pi\)
0.803409 + 0.595428i \(0.203017\pi\)
\(174\) 0 0
\(175\) 4.23607 0.320217
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.61125 0.568891 0.284446 0.958692i \(-0.408190\pi\)
0.284446 + 0.958692i \(0.408190\pi\)
\(180\) 0 0
\(181\) −14.9443 −1.11080 −0.555399 0.831584i \(-0.687435\pi\)
−0.555399 + 0.831584i \(0.687435\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.90879 0.287380
\(186\) 0 0
\(187\) −10.4721 −0.765798
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.6305 −1.78220 −0.891101 0.453805i \(-0.850066\pi\)
−0.891101 + 0.453805i \(0.850066\pi\)
\(192\) 0 0
\(193\) −18.0000 −1.29567 −0.647834 0.761781i \(-0.724325\pi\)
−0.647834 + 0.761781i \(0.724325\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.81758 0.556980 0.278490 0.960439i \(-0.410166\pi\)
0.278490 + 0.960439i \(0.410166\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.19859 −0.505242
\(204\) 0 0
\(205\) 7.41641 0.517984
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.82843 −0.195646
\(210\) 0 0
\(211\) 1.52786 0.105182 0.0525912 0.998616i \(-0.483252\pi\)
0.0525912 + 0.998616i \(0.483252\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.667701 0.0455368
\(216\) 0 0
\(217\) 5.70820 0.387498
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.57649 0.307848
\(222\) 0 0
\(223\) 0.763932 0.0511567 0.0255783 0.999673i \(-0.491857\pi\)
0.0255783 + 0.999673i \(0.491857\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −20.0540 −1.33103 −0.665516 0.746383i \(-0.731789\pi\)
−0.665516 + 0.746383i \(0.731789\pi\)
\(228\) 0 0
\(229\) 18.3607 1.21331 0.606654 0.794966i \(-0.292511\pi\)
0.606654 + 0.794966i \(0.292511\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.7186 1.22630 0.613149 0.789967i \(-0.289903\pi\)
0.613149 + 0.789967i \(0.289903\pi\)
\(234\) 0 0
\(235\) −4.76393 −0.310765
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 19.3863 1.25400 0.626999 0.779020i \(-0.284283\pi\)
0.626999 + 0.779020i \(0.284283\pi\)
\(240\) 0 0
\(241\) −23.8885 −1.53880 −0.769398 0.638769i \(-0.779444\pi\)
−0.769398 + 0.638769i \(0.779444\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.874032 −0.0558399
\(246\) 0 0
\(247\) 1.23607 0.0786491
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.618993 0.0390705 0.0195352 0.999809i \(-0.493781\pi\)
0.0195352 + 0.999809i \(0.493781\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.3941 −0.773121 −0.386560 0.922264i \(-0.626337\pi\)
−0.386560 + 0.922264i \(0.626337\pi\)
\(258\) 0 0
\(259\) 4.47214 0.277885
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.0509 −1.11307 −0.556534 0.830825i \(-0.687869\pi\)
−0.556534 + 0.830825i \(0.687869\pi\)
\(264\) 0 0
\(265\) 3.81966 0.234640
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.73722 0.410775 0.205388 0.978681i \(-0.434154\pi\)
0.205388 + 0.978681i \(0.434154\pi\)
\(270\) 0 0
\(271\) 26.8328 1.62998 0.814989 0.579477i \(-0.196743\pi\)
0.814989 + 0.579477i \(0.196743\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.9814 0.722506
\(276\) 0 0
\(277\) −29.2361 −1.75663 −0.878313 0.478087i \(-0.841330\pi\)
−0.878313 + 0.478087i \(0.841330\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −19.5927 −1.16880 −0.584400 0.811466i \(-0.698670\pi\)
−0.584400 + 0.811466i \(0.698670\pi\)
\(282\) 0 0
\(283\) −2.47214 −0.146953 −0.0734766 0.997297i \(-0.523409\pi\)
−0.0734766 + 0.997297i \(0.523409\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.48528 0.500870
\(288\) 0 0
\(289\) −3.29180 −0.193635
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −28.1266 −1.64318 −0.821588 0.570081i \(-0.806912\pi\)
−0.821588 + 0.570081i \(0.806912\pi\)
\(294\) 0 0
\(295\) −12.9443 −0.753645
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.49613 0.202186
\(300\) 0 0
\(301\) 0.763932 0.0440323
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.9010 0.624192
\(306\) 0 0
\(307\) 9.70820 0.554076 0.277038 0.960859i \(-0.410647\pi\)
0.277038 + 0.960859i \(0.410647\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.03476 −0.172085 −0.0860427 0.996291i \(-0.527422\pi\)
−0.0860427 + 0.996291i \(0.527422\pi\)
\(312\) 0 0
\(313\) −19.8885 −1.12417 −0.562083 0.827081i \(-0.690000\pi\)
−0.562083 + 0.827081i \(0.690000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 31.9867 1.79655 0.898277 0.439430i \(-0.144820\pi\)
0.898277 + 0.439430i \(0.144820\pi\)
\(318\) 0 0
\(319\) −20.3607 −1.13998
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.70246 0.206010
\(324\) 0 0
\(325\) −5.23607 −0.290445
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.45052 −0.300497
\(330\) 0 0
\(331\) 13.8885 0.763383 0.381692 0.924290i \(-0.375342\pi\)
0.381692 + 0.924290i \(0.375342\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.97831 −0.545173
\(336\) 0 0
\(337\) 10.9443 0.596172 0.298086 0.954539i \(-0.403652\pi\)
0.298086 + 0.954539i \(0.403652\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.1452 0.874314
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 26.3786 1.41608 0.708038 0.706174i \(-0.249580\pi\)
0.708038 + 0.706174i \(0.249580\pi\)
\(348\) 0 0
\(349\) 9.41641 0.504049 0.252024 0.967721i \(-0.418904\pi\)
0.252024 + 0.967721i \(0.418904\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.0270 0.533684 0.266842 0.963740i \(-0.414020\pi\)
0.266842 + 0.963740i \(0.414020\pi\)
\(354\) 0 0
\(355\) −2.65248 −0.140779
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −35.9442 −1.89706 −0.948532 0.316682i \(-0.897431\pi\)
−0.948532 + 0.316682i \(0.897431\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.06952 −0.317693
\(366\) 0 0
\(367\) 3.41641 0.178335 0.0891675 0.996017i \(-0.471579\pi\)
0.0891675 + 0.996017i \(0.471579\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.37016 0.226887
\(372\) 0 0
\(373\) −22.9443 −1.18801 −0.594005 0.804462i \(-0.702454\pi\)
−0.594005 + 0.804462i \(0.702454\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.89794 0.458267
\(378\) 0 0
\(379\) 0.583592 0.0299771 0.0149886 0.999888i \(-0.495229\pi\)
0.0149886 + 0.999888i \(0.495229\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.08347 −0.157558 −0.0787789 0.996892i \(-0.525102\pi\)
−0.0787789 + 0.996892i \(0.525102\pi\)
\(384\) 0 0
\(385\) −2.47214 −0.125992
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.8933 −0.907226 −0.453613 0.891199i \(-0.649865\pi\)
−0.453613 + 0.891199i \(0.649865\pi\)
\(390\) 0 0
\(391\) 10.4721 0.529599
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.33540 0.0671914
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.8369 −1.24029 −0.620147 0.784486i \(-0.712927\pi\)
−0.620147 + 0.784486i \(0.712927\pi\)
\(402\) 0 0
\(403\) −7.05573 −0.351471
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.6491 0.626993
\(408\) 0 0
\(409\) 15.1246 0.747864 0.373932 0.927456i \(-0.378009\pi\)
0.373932 + 0.927456i \(0.378009\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −14.8098 −0.728744
\(414\) 0 0
\(415\) 4.18034 0.205205
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.6870 0.864065 0.432033 0.901858i \(-0.357797\pi\)
0.432033 + 0.901858i \(0.357797\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −15.6839 −0.760779
\(426\) 0 0
\(427\) 12.4721 0.603569
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −23.7565 −1.14431 −0.572155 0.820146i \(-0.693892\pi\)
−0.572155 + 0.820146i \(0.693892\pi\)
\(432\) 0 0
\(433\) 23.8885 1.14801 0.574005 0.818852i \(-0.305389\pi\)
0.574005 + 0.818852i \(0.305389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.82843 0.135302
\(438\) 0 0
\(439\) −25.1246 −1.19913 −0.599566 0.800325i \(-0.704660\pi\)
−0.599566 + 0.800325i \(0.704660\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 28.5393 1.35594 0.677972 0.735088i \(-0.262859\pi\)
0.677972 + 0.735088i \(0.262859\pi\)
\(444\) 0 0
\(445\) 7.41641 0.351571
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −31.3190 −1.47804 −0.739018 0.673685i \(-0.764710\pi\)
−0.739018 + 0.673685i \(0.764710\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.08036 0.0506482
\(456\) 0 0
\(457\) −17.5967 −0.823141 −0.411571 0.911378i \(-0.635020\pi\)
−0.411571 + 0.911378i \(0.635020\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 39.9017 1.85841 0.929204 0.369566i \(-0.120494\pi\)
0.929204 + 0.369566i \(0.120494\pi\)
\(462\) 0 0
\(463\) 13.8885 0.645455 0.322728 0.946492i \(-0.395400\pi\)
0.322728 + 0.946492i \(0.395400\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.5014 −1.08752 −0.543759 0.839242i \(-0.682999\pi\)
−0.543759 + 0.839242i \(0.682999\pi\)
\(468\) 0 0
\(469\) −11.4164 −0.527161
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.16073 0.0993503
\(474\) 0 0
\(475\) −4.23607 −0.194364
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.9389 −0.728267 −0.364134 0.931347i \(-0.618635\pi\)
−0.364134 + 0.931347i \(0.618635\pi\)
\(480\) 0 0
\(481\) −5.52786 −0.252049
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.08347 0.140013
\(486\) 0 0
\(487\) −37.8885 −1.71689 −0.858447 0.512902i \(-0.828570\pi\)
−0.858447 + 0.512902i \(0.828570\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −32.8608 −1.48299 −0.741493 0.670961i \(-0.765882\pi\)
−0.741493 + 0.670961i \(0.765882\pi\)
\(492\) 0 0
\(493\) 26.6525 1.20037
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.03476 −0.136128
\(498\) 0 0
\(499\) −17.8885 −0.800801 −0.400401 0.916340i \(-0.631129\pi\)
−0.400401 + 0.916340i \(0.631129\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.7456 1.28170 0.640852 0.767664i \(-0.278581\pi\)
0.640852 + 0.767664i \(0.278581\pi\)
\(504\) 0 0
\(505\) 16.1803 0.720016
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.2117 0.895866 0.447933 0.894067i \(-0.352160\pi\)
0.447933 + 0.894067i \(0.352160\pi\)
\(510\) 0 0
\(511\) −6.94427 −0.307197
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.3137 0.498542
\(516\) 0 0
\(517\) −15.4164 −0.678013
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.2333 0.448331 0.224166 0.974551i \(-0.428034\pi\)
0.224166 + 0.974551i \(0.428034\pi\)
\(522\) 0 0
\(523\) −16.1803 −0.707517 −0.353758 0.935337i \(-0.615097\pi\)
−0.353758 + 0.935337i \(0.615097\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21.1344 −0.920629
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.4884 −0.454302
\(534\) 0 0
\(535\) 12.7639 0.551833
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.82843 −0.121829
\(540\) 0 0
\(541\) 15.5279 0.667595 0.333798 0.942645i \(-0.391670\pi\)
0.333798 + 0.942645i \(0.391670\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16.5579 0.709263
\(546\) 0 0
\(547\) 16.5836 0.709063 0.354532 0.935044i \(-0.384640\pi\)
0.354532 + 0.935044i \(0.384640\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.19859 0.306670
\(552\) 0 0
\(553\) 1.52786 0.0649714
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.5579 −0.701581 −0.350790 0.936454i \(-0.614087\pi\)
−0.350790 + 0.936454i \(0.614087\pi\)
\(558\) 0 0
\(559\) −0.944272 −0.0399384
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.8639 1.46934 0.734668 0.678426i \(-0.237338\pi\)
0.734668 + 0.678426i \(0.237338\pi\)
\(564\) 0 0
\(565\) −1.34752 −0.0566908
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.03476 0.127224 0.0636118 0.997975i \(-0.479738\pi\)
0.0636118 + 0.997975i \(0.479738\pi\)
\(570\) 0 0
\(571\) 37.8885 1.58559 0.792793 0.609491i \(-0.208626\pi\)
0.792793 + 0.609491i \(0.208626\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −11.9814 −0.499659
\(576\) 0 0
\(577\) −24.8328 −1.03380 −0.516902 0.856045i \(-0.672915\pi\)
−0.516902 + 0.856045i \(0.672915\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.78282 0.198425
\(582\) 0 0
\(583\) 12.3607 0.511927
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.1074 0.458451 0.229225 0.973373i \(-0.426381\pi\)
0.229225 + 0.973373i \(0.426381\pi\)
\(588\) 0 0
\(589\) −5.70820 −0.235202
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.7456 1.18044 0.590221 0.807242i \(-0.299041\pi\)
0.590221 + 0.807242i \(0.299041\pi\)
\(594\) 0 0
\(595\) 3.23607 0.132666
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14.1908 −0.579822 −0.289911 0.957054i \(-0.593626\pi\)
−0.289911 + 0.957054i \(0.593626\pi\)
\(600\) 0 0
\(601\) 29.4164 1.19992 0.599960 0.800030i \(-0.295183\pi\)
0.599960 + 0.800030i \(0.295183\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.62210 0.106603
\(606\) 0 0
\(607\) 12.0000 0.487065 0.243532 0.969893i \(-0.421694\pi\)
0.243532 + 0.969893i \(0.421694\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.73722 0.272559
\(612\) 0 0
\(613\) −30.1803 −1.21897 −0.609486 0.792797i \(-0.708624\pi\)
−0.609486 + 0.792797i \(0.708624\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.1081 1.61469 0.807345 0.590080i \(-0.200904\pi\)
0.807345 + 0.590080i \(0.200904\pi\)
\(618\) 0 0
\(619\) 35.7771 1.43800 0.719001 0.695009i \(-0.244600\pi\)
0.719001 + 0.695009i \(0.244600\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.48528 0.339956
\(624\) 0 0
\(625\) 14.1246 0.564984
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −16.5579 −0.660207
\(630\) 0 0
\(631\) −11.5967 −0.461659 −0.230830 0.972994i \(-0.574144\pi\)
−0.230830 + 0.972994i \(0.574144\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.48218 −0.257237
\(636\) 0 0
\(637\) 1.23607 0.0489748
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 32.9095 1.29985 0.649923 0.760000i \(-0.274801\pi\)
0.649923 + 0.760000i \(0.274801\pi\)
\(642\) 0 0
\(643\) 37.5279 1.47995 0.739977 0.672632i \(-0.234836\pi\)
0.739977 + 0.672632i \(0.234836\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.86319 −0.230506 −0.115253 0.993336i \(-0.536768\pi\)
−0.115253 + 0.993336i \(0.536768\pi\)
\(648\) 0 0
\(649\) −41.8885 −1.64427
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −21.2920 −0.833221 −0.416610 0.909085i \(-0.636782\pi\)
−0.416610 + 0.909085i \(0.636782\pi\)
\(654\) 0 0
\(655\) 2.65248 0.103641
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.0965 0.627032 0.313516 0.949583i \(-0.398493\pi\)
0.313516 + 0.949583i \(0.398493\pi\)
\(660\) 0 0
\(661\) 14.7639 0.574250 0.287125 0.957893i \(-0.407300\pi\)
0.287125 + 0.957893i \(0.407300\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.874032 0.0338935
\(666\) 0 0
\(667\) 20.3607 0.788369
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 35.2765 1.36184
\(672\) 0 0
\(673\) −24.8328 −0.957235 −0.478617 0.878024i \(-0.658862\pi\)
−0.478617 + 0.878024i \(0.658862\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.5610 0.713357 0.356679 0.934227i \(-0.383909\pi\)
0.356679 + 0.934227i \(0.383909\pi\)
\(678\) 0 0
\(679\) 3.52786 0.135387
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −26.3299 −1.00748 −0.503742 0.863854i \(-0.668044\pi\)
−0.503742 + 0.863854i \(0.668044\pi\)
\(684\) 0 0
\(685\) −1.88854 −0.0721576
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.40182 −0.205793
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.32145 0.163922
\(696\) 0 0
\(697\) −31.4164 −1.18998
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19.6414 −0.741844 −0.370922 0.928664i \(-0.620958\pi\)
−0.370922 + 0.928664i \(0.620958\pi\)
\(702\) 0 0
\(703\) −4.47214 −0.168670
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.5123 0.696227
\(708\) 0 0
\(709\) −27.7082 −1.04060 −0.520302 0.853983i \(-0.674181\pi\)
−0.520302 + 0.853983i \(0.674181\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.1452 −0.604644
\(714\) 0 0
\(715\) 3.05573 0.114278
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 27.8229 1.03762 0.518810 0.854890i \(-0.326375\pi\)
0.518810 + 0.854890i \(0.326375\pi\)
\(720\) 0 0
\(721\) 12.9443 0.482070
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −30.4937 −1.13251
\(726\) 0 0
\(727\) −5.52786 −0.205017 −0.102509 0.994732i \(-0.532687\pi\)
−0.102509 + 0.994732i \(0.532687\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.82843 −0.104613
\(732\) 0 0
\(733\) 12.8328 0.473991 0.236995 0.971511i \(-0.423837\pi\)
0.236995 + 0.971511i \(0.423837\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32.2905 −1.18944
\(738\) 0 0
\(739\) −25.1246 −0.924224 −0.462112 0.886822i \(-0.652908\pi\)
−0.462112 + 0.886822i \(0.652908\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.2681 −0.486760 −0.243380 0.969931i \(-0.578256\pi\)
−0.243380 + 0.969931i \(0.578256\pi\)
\(744\) 0 0
\(745\) −4.58359 −0.167930
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 14.6035 0.533600
\(750\) 0 0
\(751\) −16.3607 −0.597010 −0.298505 0.954408i \(-0.596488\pi\)
−0.298505 + 0.954408i \(0.596488\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.33540 0.0486003
\(756\) 0 0
\(757\) 43.3050 1.57395 0.786973 0.616988i \(-0.211647\pi\)
0.786973 + 0.616988i \(0.211647\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.60815 0.203295 0.101648 0.994820i \(-0.467589\pi\)
0.101648 + 0.994820i \(0.467589\pi\)
\(762\) 0 0
\(763\) 18.9443 0.685829
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.3060 0.660990
\(768\) 0 0
\(769\) 39.8885 1.43842 0.719209 0.694794i \(-0.244504\pi\)
0.719209 + 0.694794i \(0.244504\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −44.2719 −1.59235 −0.796175 0.605067i \(-0.793146\pi\)
−0.796175 + 0.605067i \(0.793146\pi\)
\(774\) 0 0
\(775\) 24.1803 0.868583
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.48528 −0.304017
\(780\) 0 0
\(781\) −8.58359 −0.307145
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.24419 0.187173
\(786\) 0 0
\(787\) 53.1246 1.89369 0.946844 0.321693i \(-0.104252\pi\)
0.946844 + 0.321693i \(0.104252\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.54173 −0.0548177
\(792\) 0 0
\(793\) −15.4164 −0.547453
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −48.5933 −1.72126 −0.860632 0.509227i \(-0.829931\pi\)
−0.860632 + 0.509227i \(0.829931\pi\)
\(798\) 0 0
\(799\) 20.1803 0.713929
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19.6414 −0.693129
\(804\) 0 0
\(805\) 2.47214 0.0871313
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4.83153 −0.169868 −0.0849338 0.996387i \(-0.527068\pi\)
−0.0849338 + 0.996387i \(0.527068\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 21.9597 0.769215
\(816\) 0 0
\(817\) −0.763932 −0.0267266
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13.0618 0.455859 0.227930 0.973678i \(-0.426804\pi\)
0.227930 + 0.973678i \(0.426804\pi\)
\(822\) 0 0
\(823\) 0.180340 0.00628625 0.00314313 0.999995i \(-0.499000\pi\)
0.00314313 + 0.999995i \(0.499000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.6761 0.788526 0.394263 0.918998i \(-0.371000\pi\)
0.394263 + 0.918998i \(0.371000\pi\)
\(828\) 0 0
\(829\) 19.5279 0.678231 0.339115 0.940745i \(-0.389872\pi\)
0.339115 + 0.940745i \(0.389872\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.70246 0.128283
\(834\) 0 0
\(835\) −3.41641 −0.118230
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16.1452 −0.557396 −0.278698 0.960379i \(-0.589903\pi\)
−0.278698 + 0.960379i \(0.589903\pi\)
\(840\) 0 0
\(841\) 22.8197 0.786885
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.0270 0.344940
\(846\) 0 0
\(847\) 3.00000 0.103081
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −12.6491 −0.433606
\(852\) 0 0
\(853\) −18.3607 −0.628658 −0.314329 0.949314i \(-0.601779\pi\)
−0.314329 + 0.949314i \(0.601779\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −43.7618 −1.49487 −0.747437 0.664332i \(-0.768716\pi\)
−0.747437 + 0.664332i \(0.768716\pi\)
\(858\) 0 0
\(859\) 41.3050 1.40931 0.704653 0.709552i \(-0.251103\pi\)
0.704653 + 0.709552i \(0.251103\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 52.5508 1.78885 0.894426 0.447217i \(-0.147585\pi\)
0.894426 + 0.447217i \(0.147585\pi\)
\(864\) 0 0
\(865\) −18.4721 −0.628071
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.32145 0.146595
\(870\) 0 0
\(871\) 14.1115 0.478148
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.07262 −0.272904
\(876\) 0 0
\(877\) 6.00000 0.202606 0.101303 0.994856i \(-0.467699\pi\)
0.101303 + 0.994856i \(0.467699\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −44.0656 −1.48461 −0.742303 0.670064i \(-0.766267\pi\)
−0.742303 + 0.670064i \(0.766267\pi\)
\(882\) 0 0
\(883\) 52.9443 1.78172 0.890858 0.454281i \(-0.150104\pi\)
0.890858 + 0.454281i \(0.150104\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −53.9952 −1.81298 −0.906490 0.422227i \(-0.861248\pi\)
−0.906490 + 0.422227i \(0.861248\pi\)
\(888\) 0 0
\(889\) −7.41641 −0.248738
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.45052 0.182395
\(894\) 0 0
\(895\) −6.65248 −0.222368
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −41.0910 −1.37046
\(900\) 0 0
\(901\) −16.1803 −0.539045
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.0618 0.434188
\(906\) 0 0
\(907\) −20.9443 −0.695443 −0.347722 0.937598i \(-0.613045\pi\)
−0.347722 + 0.937598i \(0.613045\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.1877 −0.403798 −0.201899 0.979406i \(-0.564711\pi\)
−0.201899 + 0.979406i \(0.564711\pi\)
\(912\) 0 0
\(913\) 13.5279 0.447707
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.03476 0.100217
\(918\) 0 0
\(919\) −11.0557 −0.364695 −0.182347 0.983234i \(-0.558370\pi\)
−0.182347 + 0.983234i \(0.558370\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.75117 0.123471
\(924\) 0 0
\(925\) 18.9443 0.622884
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −12.4428 −0.408234 −0.204117 0.978946i \(-0.565432\pi\)
−0.204117 + 0.978946i \(0.565432\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9.15298 0.299335
\(936\) 0 0
\(937\) 6.94427 0.226859 0.113430 0.993546i \(-0.463816\pi\)
0.113430 + 0.993546i \(0.463816\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.90569 −0.0621236 −0.0310618 0.999517i \(-0.509889\pi\)
−0.0310618 + 0.999517i \(0.509889\pi\)
\(942\) 0 0
\(943\) −24.0000 −0.781548
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.6011 1.35185 0.675927 0.736969i \(-0.263744\pi\)
0.675927 + 0.736969i \(0.263744\pi\)
\(948\) 0 0
\(949\) 8.58359 0.278635
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.9281 0.677926 0.338963 0.940800i \(-0.389924\pi\)
0.338963 + 0.940800i \(0.389924\pi\)
\(954\) 0 0
\(955\) 21.5279 0.696625
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.16073 −0.0697735
\(960\) 0 0
\(961\) 1.58359 0.0510836
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 15.7326 0.506450
\(966\) 0 0
\(967\) 16.5410 0.531923 0.265962 0.963984i \(-0.414311\pi\)
0.265962 + 0.963984i \(0.414311\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.3137 0.363074 0.181537 0.983384i \(-0.441893\pi\)
0.181537 + 0.983384i \(0.441893\pi\)
\(972\) 0 0
\(973\) 4.94427 0.158506
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.0888 0.738676 0.369338 0.929295i \(-0.379585\pi\)
0.369338 + 0.929295i \(0.379585\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.32145 0.137833 0.0689165 0.997622i \(-0.478046\pi\)
0.0689165 + 0.997622i \(0.478046\pi\)
\(984\) 0 0
\(985\) −6.83282 −0.217712
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.16073 −0.0687071
\(990\) 0 0
\(991\) 5.88854 0.187056 0.0935279 0.995617i \(-0.470186\pi\)
0.0935279 + 0.995617i \(0.470186\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.99226 −0.221669
\(996\) 0 0
\(997\) −17.7771 −0.563006 −0.281503 0.959560i \(-0.590833\pi\)
−0.281503 + 0.959560i \(0.590833\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.q.1.2 4
3.2 odd 2 inner 4788.2.a.q.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4788.2.a.q.1.2 4 1.1 even 1 trivial
4788.2.a.q.1.3 yes 4 3.2 odd 2 inner