Properties

Label 4788.2.a.q.1.1
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.28825\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.28825 q^{5} -1.00000 q^{7} +O(q^{10})\) \(q-2.28825 q^{5} -1.00000 q^{7} +2.82843 q^{11} -3.23607 q^{13} -0.540182 q^{17} +1.00000 q^{19} -2.82843 q^{23} +0.236068 q^{25} +8.61280 q^{29} +7.70820 q^{31} +2.28825 q^{35} +4.47214 q^{37} +8.48528 q^{41} -5.23607 q^{43} +4.03631 q^{47} +1.00000 q^{49} -11.4412 q^{53} -6.47214 q^{55} -2.16073 q^{59} -3.52786 q^{61} +7.40492 q^{65} -15.4164 q^{67} -12.5216 q^{71} -10.9443 q^{73} -2.82843 q^{77} -10.4721 q^{79} +7.94510 q^{83} +1.23607 q^{85} +8.48528 q^{89} +3.23607 q^{91} -2.28825 q^{95} -12.4721 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{7} - 4 q^{13} + 4 q^{19} - 8 q^{25} + 4 q^{31} - 12 q^{43} + 4 q^{49} - 8 q^{55} - 32 q^{61} - 8 q^{67} - 8 q^{73} - 24 q^{79} - 4 q^{85} + 4 q^{91} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.28825 −1.02333 −0.511667 0.859184i \(-0.670972\pi\)
−0.511667 + 0.859184i \(0.670972\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.82843 0.852803 0.426401 0.904534i \(-0.359781\pi\)
0.426401 + 0.904534i \(0.359781\pi\)
\(12\) 0 0
\(13\) −3.23607 −0.897524 −0.448762 0.893651i \(-0.648135\pi\)
−0.448762 + 0.893651i \(0.648135\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.540182 −0.131013 −0.0655066 0.997852i \(-0.520866\pi\)
−0.0655066 + 0.997852i \(0.520866\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.82843 −0.589768 −0.294884 0.955533i \(-0.595281\pi\)
−0.294884 + 0.955533i \(0.595281\pi\)
\(24\) 0 0
\(25\) 0.236068 0.0472136
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.61280 1.59936 0.799678 0.600428i \(-0.205003\pi\)
0.799678 + 0.600428i \(0.205003\pi\)
\(30\) 0 0
\(31\) 7.70820 1.38443 0.692217 0.721689i \(-0.256634\pi\)
0.692217 + 0.721689i \(0.256634\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.28825 0.386784
\(36\) 0 0
\(37\) 4.47214 0.735215 0.367607 0.929981i \(-0.380177\pi\)
0.367607 + 0.929981i \(0.380177\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.48528 1.32518 0.662589 0.748983i \(-0.269458\pi\)
0.662589 + 0.748983i \(0.269458\pi\)
\(42\) 0 0
\(43\) −5.23607 −0.798493 −0.399246 0.916844i \(-0.630728\pi\)
−0.399246 + 0.916844i \(0.630728\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.03631 0.588756 0.294378 0.955689i \(-0.404887\pi\)
0.294378 + 0.955689i \(0.404887\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.4412 −1.57157 −0.785787 0.618497i \(-0.787742\pi\)
−0.785787 + 0.618497i \(0.787742\pi\)
\(54\) 0 0
\(55\) −6.47214 −0.872703
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.16073 −0.281303 −0.140651 0.990059i \(-0.544920\pi\)
−0.140651 + 0.990059i \(0.544920\pi\)
\(60\) 0 0
\(61\) −3.52786 −0.451697 −0.225848 0.974162i \(-0.572515\pi\)
−0.225848 + 0.974162i \(0.572515\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.40492 0.918467
\(66\) 0 0
\(67\) −15.4164 −1.88341 −0.941707 0.336434i \(-0.890779\pi\)
−0.941707 + 0.336434i \(0.890779\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.5216 −1.48604 −0.743020 0.669270i \(-0.766607\pi\)
−0.743020 + 0.669270i \(0.766607\pi\)
\(72\) 0 0
\(73\) −10.9443 −1.28093 −0.640465 0.767987i \(-0.721258\pi\)
−0.640465 + 0.767987i \(0.721258\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.82843 −0.322329
\(78\) 0 0
\(79\) −10.4721 −1.17821 −0.589104 0.808057i \(-0.700519\pi\)
−0.589104 + 0.808057i \(0.700519\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.94510 0.872088 0.436044 0.899925i \(-0.356379\pi\)
0.436044 + 0.899925i \(0.356379\pi\)
\(84\) 0 0
\(85\) 1.23607 0.134070
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.48528 0.899438 0.449719 0.893170i \(-0.351524\pi\)
0.449719 + 0.893170i \(0.351524\pi\)
\(90\) 0 0
\(91\) 3.23607 0.339232
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.28825 −0.234769
\(96\) 0 0
\(97\) −12.4721 −1.26635 −0.633177 0.774007i \(-0.718249\pi\)
−0.633177 + 0.774007i \(0.718249\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.70091 0.268750 0.134375 0.990931i \(-0.457097\pi\)
0.134375 + 0.990931i \(0.457097\pi\)
\(102\) 0 0
\(103\) 4.94427 0.487174 0.243587 0.969879i \(-0.421676\pi\)
0.243587 + 0.969879i \(0.421676\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.53244 −0.728188 −0.364094 0.931362i \(-0.618621\pi\)
−0.364094 + 0.931362i \(0.618621\pi\)
\(108\) 0 0
\(109\) −1.05573 −0.101120 −0.0505602 0.998721i \(-0.516101\pi\)
−0.0505602 + 0.998721i \(0.516101\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.2697 1.34238 0.671188 0.741287i \(-0.265784\pi\)
0.671188 + 0.741287i \(0.265784\pi\)
\(114\) 0 0
\(115\) 6.47214 0.603530
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.540182 0.0495184
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.9010 0.975019
\(126\) 0 0
\(127\) −19.4164 −1.72293 −0.861464 0.507819i \(-0.830452\pi\)
−0.861464 + 0.507819i \(0.830452\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.5216 1.09402 0.547008 0.837127i \(-0.315767\pi\)
0.547008 + 0.837127i \(0.315767\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.8098 −1.26529 −0.632645 0.774442i \(-0.718031\pi\)
−0.632645 + 0.774442i \(0.718031\pi\)
\(138\) 0 0
\(139\) 12.9443 1.09792 0.548959 0.835849i \(-0.315024\pi\)
0.548959 + 0.835849i \(0.315024\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.15298 −0.765411
\(144\) 0 0
\(145\) −19.7082 −1.63668
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.7295 1.12476 0.562381 0.826878i \(-0.309885\pi\)
0.562381 + 0.826878i \(0.309885\pi\)
\(150\) 0 0
\(151\) −10.4721 −0.852210 −0.426105 0.904674i \(-0.640115\pi\)
−0.426105 + 0.904674i \(0.640115\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −17.6383 −1.41674
\(156\) 0 0
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.82843 0.222911
\(162\) 0 0
\(163\) 15.1246 1.18465 0.592326 0.805699i \(-0.298210\pi\)
0.592326 + 0.805699i \(0.298210\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.2333 −0.791880 −0.395940 0.918276i \(-0.629581\pi\)
−0.395940 + 0.918276i \(0.629581\pi\)
\(168\) 0 0
\(169\) −2.52786 −0.194451
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.16383 0.316570 0.158285 0.987393i \(-0.449404\pi\)
0.158285 + 0.987393i \(0.449404\pi\)
\(174\) 0 0
\(175\) −0.236068 −0.0178451
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.7735 −0.805251 −0.402626 0.915365i \(-0.631902\pi\)
−0.402626 + 0.915365i \(0.631902\pi\)
\(180\) 0 0
\(181\) 2.94427 0.218846 0.109423 0.993995i \(-0.465100\pi\)
0.109423 + 0.993995i \(0.465100\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.2333 −0.752371
\(186\) 0 0
\(187\) −1.52786 −0.111728
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.3168 −0.963571 −0.481785 0.876289i \(-0.660012\pi\)
−0.481785 + 0.876289i \(0.660012\pi\)
\(192\) 0 0
\(193\) −18.0000 −1.29567 −0.647834 0.761781i \(-0.724325\pi\)
−0.647834 + 0.761781i \(0.724325\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −20.4667 −1.45819 −0.729096 0.684412i \(-0.760059\pi\)
−0.729096 + 0.684412i \(0.760059\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.61280 −0.604500
\(204\) 0 0
\(205\) −19.4164 −1.35610
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.82843 0.195646
\(210\) 0 0
\(211\) 10.4721 0.720932 0.360466 0.932772i \(-0.382618\pi\)
0.360466 + 0.932772i \(0.382618\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.9814 0.817125
\(216\) 0 0
\(217\) −7.70820 −0.523267
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.74806 0.117588
\(222\) 0 0
\(223\) 5.23607 0.350633 0.175317 0.984512i \(-0.443905\pi\)
0.175317 + 0.984512i \(0.443905\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.5687 −0.767845 −0.383922 0.923365i \(-0.625427\pi\)
−0.383922 + 0.923365i \(0.625427\pi\)
\(228\) 0 0
\(229\) −26.3607 −1.74196 −0.870981 0.491316i \(-0.836516\pi\)
−0.870981 + 0.491316i \(0.836516\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.3941 −0.811963 −0.405981 0.913881i \(-0.633070\pi\)
−0.405981 + 0.913881i \(0.633070\pi\)
\(234\) 0 0
\(235\) −9.23607 −0.602495
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.412662 −0.0266929 −0.0133464 0.999911i \(-0.504248\pi\)
−0.0133464 + 0.999911i \(0.504248\pi\)
\(240\) 0 0
\(241\) 11.8885 0.765808 0.382904 0.923788i \(-0.374924\pi\)
0.382904 + 0.923788i \(0.374924\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.28825 −0.146191
\(246\) 0 0
\(247\) −3.23607 −0.205906
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −29.0795 −1.83548 −0.917741 0.397180i \(-0.869989\pi\)
−0.917741 + 0.397180i \(0.869989\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.7186 1.16764 0.583818 0.811885i \(-0.301558\pi\)
0.583818 + 0.811885i \(0.301558\pi\)
\(258\) 0 0
\(259\) −4.47214 −0.277885
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 24.3755 1.50306 0.751528 0.659701i \(-0.229317\pi\)
0.751528 + 0.659701i \(0.229317\pi\)
\(264\) 0 0
\(265\) 26.1803 1.60825
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.0618 −0.796390 −0.398195 0.917301i \(-0.630363\pi\)
−0.398195 + 0.917301i \(0.630363\pi\)
\(270\) 0 0
\(271\) −26.8328 −1.62998 −0.814989 0.579477i \(-0.803257\pi\)
−0.814989 + 0.579477i \(0.803257\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.667701 0.0402639
\(276\) 0 0
\(277\) −24.7639 −1.48792 −0.743960 0.668224i \(-0.767055\pi\)
−0.743960 + 0.668224i \(0.767055\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.1058 0.602863 0.301432 0.953488i \(-0.402536\pi\)
0.301432 + 0.953488i \(0.402536\pi\)
\(282\) 0 0
\(283\) 6.47214 0.384729 0.192364 0.981324i \(-0.438384\pi\)
0.192364 + 0.981324i \(0.438384\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.48528 −0.500870
\(288\) 0 0
\(289\) −16.7082 −0.982836
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −22.4698 −1.31270 −0.656350 0.754457i \(-0.727900\pi\)
−0.656350 + 0.754457i \(0.727900\pi\)
\(294\) 0 0
\(295\) 4.94427 0.287867
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.15298 0.529331
\(300\) 0 0
\(301\) 5.23607 0.301802
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.07262 0.462237
\(306\) 0 0
\(307\) −3.70820 −0.211638 −0.105819 0.994385i \(-0.533746\pi\)
−0.105819 + 0.994385i \(0.533746\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.5216 0.710034 0.355017 0.934860i \(-0.384475\pi\)
0.355017 + 0.934860i \(0.384475\pi\)
\(312\) 0 0
\(313\) 15.8885 0.898074 0.449037 0.893513i \(-0.351767\pi\)
0.449037 + 0.893513i \(0.351767\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −28.8245 −1.61894 −0.809471 0.587159i \(-0.800246\pi\)
−0.809471 + 0.587159i \(0.800246\pi\)
\(318\) 0 0
\(319\) 24.3607 1.36394
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.540182 −0.0300565
\(324\) 0 0
\(325\) −0.763932 −0.0423753
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.03631 −0.222529
\(330\) 0 0
\(331\) −21.8885 −1.20310 −0.601552 0.798834i \(-0.705451\pi\)
−0.601552 + 0.798834i \(0.705451\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 35.2765 1.92736
\(336\) 0 0
\(337\) −6.94427 −0.378279 −0.189139 0.981950i \(-0.560570\pi\)
−0.189139 + 0.981950i \(0.560570\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 21.8021 1.18065
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.8933 0.960563 0.480281 0.877114i \(-0.340535\pi\)
0.480281 + 0.877114i \(0.340535\pi\)
\(348\) 0 0
\(349\) −17.4164 −0.932279 −0.466139 0.884711i \(-0.654356\pi\)
−0.466139 + 0.884711i \(0.654356\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.78437 0.307871 0.153936 0.988081i \(-0.450805\pi\)
0.153936 + 0.988081i \(0.450805\pi\)
\(354\) 0 0
\(355\) 28.6525 1.52072
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.00310 −0.105720 −0.0528599 0.998602i \(-0.516834\pi\)
−0.0528599 + 0.998602i \(0.516834\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 25.0432 1.31082
\(366\) 0 0
\(367\) −23.4164 −1.22233 −0.611163 0.791505i \(-0.709298\pi\)
−0.611163 + 0.791505i \(0.709298\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.4412 0.593999
\(372\) 0 0
\(373\) −5.05573 −0.261776 −0.130888 0.991397i \(-0.541783\pi\)
−0.130888 + 0.991397i \(0.541783\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −27.8716 −1.43546
\(378\) 0 0
\(379\) 27.4164 1.40829 0.704143 0.710058i \(-0.251331\pi\)
0.704143 + 0.710058i \(0.251331\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −28.5393 −1.45829 −0.729145 0.684359i \(-0.760082\pi\)
−0.729145 + 0.684359i \(0.760082\pi\)
\(384\) 0 0
\(385\) 6.47214 0.329851
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −26.3786 −1.33745 −0.668724 0.743511i \(-0.733159\pi\)
−0.668724 + 0.743511i \(0.733159\pi\)
\(390\) 0 0
\(391\) 1.52786 0.0772674
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 23.9628 1.20570
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.62365 −0.180956 −0.0904782 0.995898i \(-0.528840\pi\)
−0.0904782 + 0.995898i \(0.528840\pi\)
\(402\) 0 0
\(403\) −24.9443 −1.24256
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.6491 0.626993
\(408\) 0 0
\(409\) −25.1246 −1.24233 −0.621166 0.783679i \(-0.713341\pi\)
−0.621166 + 0.783679i \(0.713341\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.16073 0.106322
\(414\) 0 0
\(415\) −18.1803 −0.892438
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.0717 1.76222 0.881110 0.472911i \(-0.156797\pi\)
0.881110 + 0.472911i \(0.156797\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.127520 −0.00618561
\(426\) 0 0
\(427\) 3.52786 0.170725
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.0286 −0.531227 −0.265614 0.964080i \(-0.585575\pi\)
−0.265614 + 0.964080i \(0.585575\pi\)
\(432\) 0 0
\(433\) −11.8885 −0.571327 −0.285663 0.958330i \(-0.592214\pi\)
−0.285663 + 0.958330i \(0.592214\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.82843 −0.135302
\(438\) 0 0
\(439\) 15.1246 0.721858 0.360929 0.932593i \(-0.382460\pi\)
0.360929 + 0.932593i \(0.382460\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.08347 0.146500 0.0732500 0.997314i \(-0.476663\pi\)
0.0732500 + 0.997314i \(0.476663\pi\)
\(444\) 0 0
\(445\) −19.4164 −0.920426
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40.8059 1.92575 0.962874 0.269952i \(-0.0870078\pi\)
0.962874 + 0.269952i \(0.0870078\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.40492 −0.347148
\(456\) 0 0
\(457\) 31.5967 1.47803 0.739017 0.673687i \(-0.235290\pi\)
0.739017 + 0.673687i \(0.235290\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 32.8307 1.52908 0.764538 0.644579i \(-0.222967\pi\)
0.764538 + 0.644579i \(0.222967\pi\)
\(462\) 0 0
\(463\) −21.8885 −1.01725 −0.508623 0.860989i \(-0.669845\pi\)
−0.508623 + 0.860989i \(0.669845\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.3392 0.941185 0.470592 0.882351i \(-0.344040\pi\)
0.470592 + 0.882351i \(0.344040\pi\)
\(468\) 0 0
\(469\) 15.4164 0.711864
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.8098 −0.680957
\(474\) 0 0
\(475\) 0.236068 0.0108315
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −31.4953 −1.43906 −0.719528 0.694464i \(-0.755642\pi\)
−0.719528 + 0.694464i \(0.755642\pi\)
\(480\) 0 0
\(481\) −14.4721 −0.659873
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.5393 1.29590
\(486\) 0 0
\(487\) −2.11146 −0.0956792 −0.0478396 0.998855i \(-0.515234\pi\)
−0.0478396 + 0.998855i \(0.515234\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 26.5362 1.19756 0.598781 0.800913i \(-0.295652\pi\)
0.598781 + 0.800913i \(0.295652\pi\)
\(492\) 0 0
\(493\) −4.65248 −0.209537
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.5216 0.561670
\(498\) 0 0
\(499\) 17.8885 0.800801 0.400401 0.916340i \(-0.368871\pi\)
0.400401 + 0.916340i \(0.368871\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6.60970 −0.294712 −0.147356 0.989084i \(-0.547076\pi\)
−0.147356 + 0.989084i \(0.547076\pi\)
\(504\) 0 0
\(505\) −6.18034 −0.275022
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −39.1853 −1.73686 −0.868429 0.495813i \(-0.834870\pi\)
−0.868429 + 0.495813i \(0.834870\pi\)
\(510\) 0 0
\(511\) 10.9443 0.484146
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −11.3137 −0.498542
\(516\) 0 0
\(517\) 11.4164 0.502093
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.90879 −0.171247 −0.0856236 0.996328i \(-0.527288\pi\)
−0.0856236 + 0.996328i \(0.527288\pi\)
\(522\) 0 0
\(523\) 6.18034 0.270247 0.135124 0.990829i \(-0.456857\pi\)
0.135124 + 0.990829i \(0.456857\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.16383 −0.181379
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −27.4589 −1.18938
\(534\) 0 0
\(535\) 17.2361 0.745180
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.82843 0.121829
\(540\) 0 0
\(541\) 24.4721 1.05214 0.526070 0.850441i \(-0.323665\pi\)
0.526070 + 0.850441i \(0.323665\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.41577 0.103480
\(546\) 0 0
\(547\) 43.4164 1.85635 0.928176 0.372142i \(-0.121377\pi\)
0.928176 + 0.372142i \(0.121377\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.61280 0.366918
\(552\) 0 0
\(553\) 10.4721 0.445321
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.41577 −0.102359 −0.0511796 0.998689i \(-0.516298\pi\)
−0.0511796 + 0.998689i \(0.516298\pi\)
\(558\) 0 0
\(559\) 16.9443 0.716666
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.40802 0.396501 0.198250 0.980151i \(-0.436474\pi\)
0.198250 + 0.980151i \(0.436474\pi\)
\(564\) 0 0
\(565\) −32.6525 −1.37370
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.5216 −0.524932 −0.262466 0.964941i \(-0.584536\pi\)
−0.262466 + 0.964941i \(0.584536\pi\)
\(570\) 0 0
\(571\) 2.11146 0.0883617 0.0441808 0.999024i \(-0.485932\pi\)
0.0441808 + 0.999024i \(0.485932\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.667701 −0.0278451
\(576\) 0 0
\(577\) 28.8328 1.20033 0.600163 0.799878i \(-0.295102\pi\)
0.600163 + 0.799878i \(0.295102\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.94510 −0.329618
\(582\) 0 0
\(583\) −32.3607 −1.34024
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.62054 −0.0668870 −0.0334435 0.999441i \(-0.510647\pi\)
−0.0334435 + 0.999441i \(0.510647\pi\)
\(588\) 0 0
\(589\) 7.70820 0.317611
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.60970 −0.271428 −0.135714 0.990748i \(-0.543333\pi\)
−0.135714 + 0.990748i \(0.543333\pi\)
\(594\) 0 0
\(595\) −1.23607 −0.0506738
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.9188 −1.09987 −0.549935 0.835207i \(-0.685348\pi\)
−0.549935 + 0.835207i \(0.685348\pi\)
\(600\) 0 0
\(601\) 2.58359 0.105387 0.0526935 0.998611i \(-0.483219\pi\)
0.0526935 + 0.998611i \(0.483219\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.86474 0.279091
\(606\) 0 0
\(607\) 12.0000 0.487065 0.243532 0.969893i \(-0.421694\pi\)
0.243532 + 0.969893i \(0.421694\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13.0618 −0.528423
\(612\) 0 0
\(613\) −7.81966 −0.315833 −0.157917 0.987452i \(-0.550478\pi\)
−0.157917 + 0.987452i \(0.550478\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.1375 0.931480 0.465740 0.884921i \(-0.345788\pi\)
0.465740 + 0.884921i \(0.345788\pi\)
\(618\) 0 0
\(619\) −35.7771 −1.43800 −0.719001 0.695009i \(-0.755400\pi\)
−0.719001 + 0.695009i \(0.755400\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.48528 −0.339956
\(624\) 0 0
\(625\) −26.1246 −1.04498
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.41577 −0.0963229
\(630\) 0 0
\(631\) 37.5967 1.49670 0.748351 0.663302i \(-0.230846\pi\)
0.748351 + 0.663302i \(0.230846\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 44.4295 1.76313
\(636\) 0 0
\(637\) −3.23607 −0.128218
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.5247 0.573691 0.286845 0.957977i \(-0.407393\pi\)
0.286845 + 0.957977i \(0.407393\pi\)
\(642\) 0 0
\(643\) 46.4721 1.83268 0.916341 0.400399i \(-0.131128\pi\)
0.916341 + 0.400399i \(0.131128\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.3500 0.603471 0.301736 0.953392i \(-0.402434\pi\)
0.301736 + 0.953392i \(0.402434\pi\)
\(648\) 0 0
\(649\) −6.11146 −0.239896
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 46.5902 1.82322 0.911608 0.411060i \(-0.134841\pi\)
0.911608 + 0.411060i \(0.134841\pi\)
\(654\) 0 0
\(655\) −28.6525 −1.11954
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.2588 −0.750217 −0.375108 0.926981i \(-0.622394\pi\)
−0.375108 + 0.926981i \(0.622394\pi\)
\(660\) 0 0
\(661\) 19.2361 0.748196 0.374098 0.927389i \(-0.377952\pi\)
0.374098 + 0.927389i \(0.377952\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.28825 0.0887344
\(666\) 0 0
\(667\) −24.3607 −0.943249
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −9.97831 −0.385208
\(672\) 0 0
\(673\) 28.8328 1.11142 0.555712 0.831375i \(-0.312446\pi\)
0.555712 + 0.831375i \(0.312446\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 38.3600 1.47429 0.737147 0.675732i \(-0.236172\pi\)
0.737147 + 0.675732i \(0.236172\pi\)
\(678\) 0 0
\(679\) 12.4721 0.478637
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.1676 0.886484 0.443242 0.896402i \(-0.353828\pi\)
0.443242 + 0.896402i \(0.353828\pi\)
\(684\) 0 0
\(685\) 33.8885 1.29481
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 37.0246 1.41052
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −29.6197 −1.12354
\(696\) 0 0
\(697\) −4.58359 −0.173616
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −30.9551 −1.16916 −0.584579 0.811337i \(-0.698740\pi\)
−0.584579 + 0.811337i \(0.698740\pi\)
\(702\) 0 0
\(703\) 4.47214 0.168670
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.70091 −0.101578
\(708\) 0 0
\(709\) −14.2918 −0.536740 −0.268370 0.963316i \(-0.586485\pi\)
−0.268370 + 0.963316i \(0.586485\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −21.8021 −0.816495
\(714\) 0 0
\(715\) 20.9443 0.783271
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −49.9588 −1.86315 −0.931575 0.363549i \(-0.881565\pi\)
−0.931575 + 0.363549i \(0.881565\pi\)
\(720\) 0 0
\(721\) −4.94427 −0.184134
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.03321 0.0755114
\(726\) 0 0
\(727\) −14.4721 −0.536742 −0.268371 0.963316i \(-0.586485\pi\)
−0.268371 + 0.963316i \(0.586485\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.82843 0.104613
\(732\) 0 0
\(733\) −40.8328 −1.50819 −0.754097 0.656763i \(-0.771925\pi\)
−0.754097 + 0.656763i \(0.771925\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −43.6042 −1.60618
\(738\) 0 0
\(739\) 15.1246 0.556368 0.278184 0.960528i \(-0.410268\pi\)
0.278184 + 0.960528i \(0.410268\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.4304 0.602772 0.301386 0.953502i \(-0.402551\pi\)
0.301386 + 0.953502i \(0.402551\pi\)
\(744\) 0 0
\(745\) −31.4164 −1.15101
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7.53244 0.275229
\(750\) 0 0
\(751\) 28.3607 1.03490 0.517448 0.855715i \(-0.326882\pi\)
0.517448 + 0.855715i \(0.326882\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 23.9628 0.872096
\(756\) 0 0
\(757\) −19.3050 −0.701650 −0.350825 0.936441i \(-0.614099\pi\)
−0.350825 + 0.936441i \(0.614099\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −46.7178 −1.69352 −0.846759 0.531977i \(-0.821449\pi\)
−0.846759 + 0.531977i \(0.821449\pi\)
\(762\) 0 0
\(763\) 1.05573 0.0382199
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.99226 0.252476
\(768\) 0 0
\(769\) 4.11146 0.148263 0.0741315 0.997248i \(-0.476382\pi\)
0.0741315 + 0.997248i \(0.476382\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −44.2719 −1.59235 −0.796175 0.605067i \(-0.793146\pi\)
−0.796175 + 0.605067i \(0.793146\pi\)
\(774\) 0 0
\(775\) 1.81966 0.0653641
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.48528 0.304017
\(780\) 0 0
\(781\) −35.4164 −1.26730
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.7295 0.490026
\(786\) 0 0
\(787\) 12.8754 0.458958 0.229479 0.973314i \(-0.426298\pi\)
0.229479 + 0.973314i \(0.426298\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14.2697 −0.507371
\(792\) 0 0
\(793\) 11.4164 0.405409
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.6522 −0.519008 −0.259504 0.965742i \(-0.583559\pi\)
−0.259504 + 0.965742i \(0.583559\pi\)
\(798\) 0 0
\(799\) −2.18034 −0.0771349
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.9551 −1.09238
\(804\) 0 0
\(805\) −6.47214 −0.228113
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −33.1158 −1.16429 −0.582145 0.813085i \(-0.697786\pi\)
−0.582145 + 0.813085i \(0.697786\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −34.6088 −1.21229
\(816\) 0 0
\(817\) −5.23607 −0.183187
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.73722 −0.235131 −0.117565 0.993065i \(-0.537509\pi\)
−0.117565 + 0.993065i \(0.537509\pi\)
\(822\) 0 0
\(823\) −22.1803 −0.773158 −0.386579 0.922256i \(-0.626343\pi\)
−0.386579 + 0.922256i \(0.626343\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.4335 0.640995 0.320498 0.947249i \(-0.396150\pi\)
0.320498 + 0.947249i \(0.396150\pi\)
\(828\) 0 0
\(829\) 28.4721 0.988878 0.494439 0.869212i \(-0.335374\pi\)
0.494439 + 0.869212i \(0.335374\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.540182 −0.0187162
\(834\) 0 0
\(835\) 23.4164 0.810358
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21.8021 −0.752692 −0.376346 0.926479i \(-0.622820\pi\)
−0.376346 + 0.926479i \(0.622820\pi\)
\(840\) 0 0
\(841\) 45.1803 1.55794
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.78437 0.198989
\(846\) 0 0
\(847\) 3.00000 0.103081
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −12.6491 −0.433606
\(852\) 0 0
\(853\) 26.3607 0.902572 0.451286 0.892379i \(-0.350965\pi\)
0.451286 + 0.892379i \(0.350965\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.4636 0.630704 0.315352 0.948975i \(-0.397877\pi\)
0.315352 + 0.948975i \(0.397877\pi\)
\(858\) 0 0
\(859\) −21.3050 −0.726916 −0.363458 0.931611i \(-0.618404\pi\)
−0.363458 + 0.931611i \(0.618404\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 45.4798 1.54815 0.774075 0.633094i \(-0.218215\pi\)
0.774075 + 0.633094i \(0.218215\pi\)
\(864\) 0 0
\(865\) −9.52786 −0.323957
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −29.6197 −1.00478
\(870\) 0 0
\(871\) 49.8885 1.69041
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −10.9010 −0.368523
\(876\) 0 0
\(877\) 6.00000 0.202606 0.101303 0.994856i \(-0.467699\pi\)
0.101303 + 0.994856i \(0.467699\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −53.9651 −1.81813 −0.909064 0.416656i \(-0.863202\pi\)
−0.909064 + 0.416656i \(0.863202\pi\)
\(882\) 0 0
\(883\) 35.0557 1.17972 0.589860 0.807506i \(-0.299183\pi\)
0.589860 + 0.807506i \(0.299183\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.3724 0.751191 0.375595 0.926784i \(-0.377438\pi\)
0.375595 + 0.926784i \(0.377438\pi\)
\(888\) 0 0
\(889\) 19.4164 0.651205
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.03631 0.135070
\(894\) 0 0
\(895\) 24.6525 0.824041
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 66.3892 2.21420
\(900\) 0 0
\(901\) 6.18034 0.205897
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.73722 −0.223953
\(906\) 0 0
\(907\) −3.05573 −0.101464 −0.0507319 0.998712i \(-0.516155\pi\)
−0.0507319 + 0.998712i \(0.516155\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.02546 0.299027 0.149513 0.988760i \(-0.452229\pi\)
0.149513 + 0.988760i \(0.452229\pi\)
\(912\) 0 0
\(913\) 22.4721 0.743719
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −12.5216 −0.413499
\(918\) 0 0
\(919\) −28.9443 −0.954783 −0.477392 0.878691i \(-0.658418\pi\)
−0.477392 + 0.878691i \(0.658418\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 40.5207 1.33376
\(924\) 0 0
\(925\) 1.05573 0.0347121
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22.3423 −0.733026 −0.366513 0.930413i \(-0.619449\pi\)
−0.366513 + 0.930413i \(0.619449\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.49613 0.114336
\(936\) 0 0
\(937\) −10.9443 −0.357534 −0.178767 0.983891i \(-0.557211\pi\)
−0.178767 + 0.983891i \(0.557211\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 46.1776 1.50535 0.752673 0.658395i \(-0.228764\pi\)
0.752673 + 0.658395i \(0.228764\pi\)
\(942\) 0 0
\(943\) −24.0000 −0.781548
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.65375 −0.118731 −0.0593655 0.998236i \(-0.518908\pi\)
−0.0593655 + 0.998236i \(0.518908\pi\)
\(948\) 0 0
\(949\) 35.4164 1.14967
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 13.8570 0.448872 0.224436 0.974489i \(-0.427946\pi\)
0.224436 + 0.974489i \(0.427946\pi\)
\(954\) 0 0
\(955\) 30.4721 0.986055
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.8098 0.478235
\(960\) 0 0
\(961\) 28.4164 0.916658
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 41.1884 1.32590
\(966\) 0 0
\(967\) −50.5410 −1.62529 −0.812645 0.582759i \(-0.801973\pi\)
−0.812645 + 0.582759i \(0.801973\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11.3137 −0.363074 −0.181537 0.983384i \(-0.558107\pi\)
−0.181537 + 0.983384i \(0.558107\pi\)
\(972\) 0 0
\(973\) −12.9443 −0.414974
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.952843 −0.0304842 −0.0152421 0.999884i \(-0.504852\pi\)
−0.0152421 + 0.999884i \(0.504852\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −29.6197 −0.944721 −0.472360 0.881405i \(-0.656598\pi\)
−0.472360 + 0.881405i \(0.656598\pi\)
\(984\) 0 0
\(985\) 46.8328 1.49222
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.8098 0.470925
\(990\) 0 0
\(991\) −29.8885 −0.949441 −0.474720 0.880137i \(-0.657451\pi\)
−0.474720 + 0.880137i \(0.657451\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −18.3060 −0.580338
\(996\) 0 0
\(997\) 53.7771 1.70314 0.851569 0.524243i \(-0.175652\pi\)
0.851569 + 0.524243i \(0.175652\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.q.1.1 4
3.2 odd 2 inner 4788.2.a.q.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4788.2.a.q.1.1 4 1.1 even 1 trivial
4788.2.a.q.1.4 yes 4 3.2 odd 2 inner