Properties

Label 4788.2.a.p.1.3
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1016.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1596)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.321637\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.21819 q^{5} +1.00000 q^{7} -2.00000 q^{11} +0.643274 q^{13} +4.21819 q^{17} -1.00000 q^{19} -2.00000 q^{23} +12.7931 q^{25} -4.93164 q^{29} +1.35673 q^{31} +4.21819 q^{35} +10.4364 q^{37} +4.00000 q^{41} -5.79310 q^{43} -5.50474 q^{47} +1.00000 q^{49} -6.21819 q^{53} -8.43637 q^{55} +14.4364 q^{61} +2.71345 q^{65} +8.43637 q^{67} +6.21819 q^{71} +3.28655 q^{73} -2.00000 q^{77} +15.1498 q^{79} -2.93164 q^{83} +17.7931 q^{85} +4.00000 q^{89} +0.643274 q^{91} -4.21819 q^{95} -2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{7} - 6 q^{11} + 2 q^{13} - 3 q^{19} - 6 q^{23} + 13 q^{25} - 2 q^{29} + 4 q^{31} + 6 q^{37} + 12 q^{41} + 8 q^{43} - 4 q^{47} + 3 q^{49} - 6 q^{53} + 18 q^{61} + 8 q^{65} + 6 q^{71} + 10 q^{73}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.21819 1.88643 0.943215 0.332182i \(-0.107785\pi\)
0.943215 + 0.332182i \(0.107785\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 0.643274 0.178412 0.0892061 0.996013i \(-0.471567\pi\)
0.0892061 + 0.996013i \(0.471567\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.21819 1.02306 0.511530 0.859265i \(-0.329079\pi\)
0.511530 + 0.859265i \(0.329079\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) 12.7931 2.55862
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.93164 −0.915782 −0.457891 0.889008i \(-0.651395\pi\)
−0.457891 + 0.889008i \(0.651395\pi\)
\(30\) 0 0
\(31\) 1.35673 0.243675 0.121838 0.992550i \(-0.461121\pi\)
0.121838 + 0.992550i \(0.461121\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.21819 0.713004
\(36\) 0 0
\(37\) 10.4364 1.71573 0.857865 0.513876i \(-0.171791\pi\)
0.857865 + 0.513876i \(0.171791\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) −5.79310 −0.883439 −0.441720 0.897153i \(-0.645631\pi\)
−0.441720 + 0.897153i \(0.645631\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.50474 −0.802948 −0.401474 0.915870i \(-0.631502\pi\)
−0.401474 + 0.915870i \(0.631502\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.21819 −0.854134 −0.427067 0.904220i \(-0.640453\pi\)
−0.427067 + 0.904220i \(0.640453\pi\)
\(54\) 0 0
\(55\) −8.43637 −1.13756
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 14.4364 1.84839 0.924194 0.381923i \(-0.124738\pi\)
0.924194 + 0.381923i \(0.124738\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.71345 0.336562
\(66\) 0 0
\(67\) 8.43637 1.03067 0.515334 0.856990i \(-0.327668\pi\)
0.515334 + 0.856990i \(0.327668\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.21819 0.737963 0.368981 0.929437i \(-0.379707\pi\)
0.368981 + 0.929437i \(0.379707\pi\)
\(72\) 0 0
\(73\) 3.28655 0.384661 0.192331 0.981330i \(-0.438395\pi\)
0.192331 + 0.981330i \(0.438395\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 15.1498 1.70449 0.852244 0.523144i \(-0.175241\pi\)
0.852244 + 0.523144i \(0.175241\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.93164 −0.321789 −0.160895 0.986972i \(-0.551438\pi\)
−0.160895 + 0.986972i \(0.551438\pi\)
\(84\) 0 0
\(85\) 17.7931 1.92993
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) 0.643274 0.0674335
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.21819 −0.432777
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.21819 −0.817740 −0.408870 0.912593i \(-0.634077\pi\)
−0.408870 + 0.912593i \(0.634077\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.3680 1.29233 0.646167 0.763196i \(-0.276371\pi\)
0.646167 + 0.763196i \(0.276371\pi\)
\(108\) 0 0
\(109\) 6.43637 0.616493 0.308246 0.951307i \(-0.400258\pi\)
0.308246 + 0.951307i \(0.400258\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.50474 −0.329698 −0.164849 0.986319i \(-0.552714\pi\)
−0.164849 + 0.986319i \(0.552714\pi\)
\(114\) 0 0
\(115\) −8.43637 −0.786696
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.21819 0.386681
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 32.8727 2.94023
\(126\) 0 0
\(127\) −4.43637 −0.393664 −0.196832 0.980437i \(-0.563065\pi\)
−0.196832 + 0.980437i \(0.563065\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −19.3680 −1.69219 −0.846096 0.533031i \(-0.821053\pi\)
−0.846096 + 0.533031i \(0.821053\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.28655 0.622532 0.311266 0.950323i \(-0.399247\pi\)
0.311266 + 0.950323i \(0.399247\pi\)
\(138\) 0 0
\(139\) −18.1593 −1.54025 −0.770126 0.637892i \(-0.779807\pi\)
−0.770126 + 0.637892i \(0.779807\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.28655 −0.107587
\(144\) 0 0
\(145\) −20.8026 −1.72756
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.14982 −0.421890 −0.210945 0.977498i \(-0.567654\pi\)
−0.210945 + 0.977498i \(0.567654\pi\)
\(150\) 0 0
\(151\) −2.71345 −0.220818 −0.110409 0.993886i \(-0.535216\pi\)
−0.110409 + 0.993886i \(0.535216\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.72292 0.459676
\(156\) 0 0
\(157\) −7.72292 −0.616356 −0.308178 0.951329i \(-0.599719\pi\)
−0.308178 + 0.951329i \(0.599719\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) −4.50655 −0.352980 −0.176490 0.984302i \(-0.556474\pi\)
−0.176490 + 0.984302i \(0.556474\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 23.1498 1.79139 0.895694 0.444672i \(-0.146680\pi\)
0.895694 + 0.444672i \(0.146680\pi\)
\(168\) 0 0
\(169\) −12.5862 −0.968169
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −20.8727 −1.58693 −0.793463 0.608619i \(-0.791724\pi\)
−0.793463 + 0.608619i \(0.791724\pi\)
\(174\) 0 0
\(175\) 12.7931 0.967067
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.3680 −0.999172 −0.499586 0.866264i \(-0.666515\pi\)
−0.499586 + 0.866264i \(0.666515\pi\)
\(180\) 0 0
\(181\) −8.71345 −0.647666 −0.323833 0.946114i \(-0.604972\pi\)
−0.323833 + 0.946114i \(0.604972\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 44.0226 3.23660
\(186\) 0 0
\(187\) −8.43637 −0.616929
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.713451 −0.0516235 −0.0258118 0.999667i \(-0.508217\pi\)
−0.0258118 + 0.999667i \(0.508217\pi\)
\(192\) 0 0
\(193\) 11.7229 0.843834 0.421917 0.906634i \(-0.361357\pi\)
0.421917 + 0.906634i \(0.361357\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 24.4364 1.73225 0.866124 0.499829i \(-0.166604\pi\)
0.866124 + 0.499829i \(0.166604\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.93164 −0.346133
\(204\) 0 0
\(205\) 16.8727 1.17844
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −24.4364 −1.66655
\(216\) 0 0
\(217\) 1.35673 0.0921005
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.71345 0.182526
\(222\) 0 0
\(223\) −28.8026 −1.92876 −0.964381 0.264516i \(-0.914788\pi\)
−0.964381 + 0.264516i \(0.914788\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.27708 0.151135 0.0755675 0.997141i \(-0.475923\pi\)
0.0755675 + 0.997141i \(0.475923\pi\)
\(228\) 0 0
\(229\) −26.0226 −1.71962 −0.859810 0.510614i \(-0.829418\pi\)
−0.859810 + 0.510614i \(0.829418\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.0095 0.852279 0.426139 0.904658i \(-0.359873\pi\)
0.426139 + 0.904658i \(0.359873\pi\)
\(234\) 0 0
\(235\) −23.2200 −1.51471
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.277078 0.0179227 0.00896134 0.999960i \(-0.497147\pi\)
0.00896134 + 0.999960i \(0.497147\pi\)
\(240\) 0 0
\(241\) 17.5862 1.13283 0.566413 0.824121i \(-0.308331\pi\)
0.566413 + 0.824121i \(0.308331\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.21819 0.269490
\(246\) 0 0
\(247\) −0.643274 −0.0409306
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.49526 0.409977 0.204989 0.978764i \(-0.434284\pi\)
0.204989 + 0.978764i \(0.434284\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.850175 0.0530325 0.0265162 0.999648i \(-0.491559\pi\)
0.0265162 + 0.999648i \(0.491559\pi\)
\(258\) 0 0
\(259\) 10.4364 0.648485
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.4364 −0.643534 −0.321767 0.946819i \(-0.604277\pi\)
−0.321767 + 0.946819i \(0.604277\pi\)
\(264\) 0 0
\(265\) −26.2295 −1.61126
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 16.4364 1.00214 0.501072 0.865406i \(-0.332939\pi\)
0.501072 + 0.865406i \(0.332939\pi\)
\(270\) 0 0
\(271\) −12.0226 −0.730319 −0.365160 0.930945i \(-0.618986\pi\)
−0.365160 + 0.930945i \(0.618986\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −25.5862 −1.54291
\(276\) 0 0
\(277\) −15.6527 −0.940482 −0.470241 0.882538i \(-0.655833\pi\)
−0.470241 + 0.882538i \(0.655833\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.2182 0.848186 0.424093 0.905619i \(-0.360593\pi\)
0.424093 + 0.905619i \(0.360593\pi\)
\(282\) 0 0
\(283\) 15.1498 0.900564 0.450282 0.892886i \(-0.351324\pi\)
0.450282 + 0.892886i \(0.351324\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) 0.793099 0.0466529
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.4589 −1.42891 −0.714453 0.699683i \(-0.753325\pi\)
−0.714453 + 0.699683i \(0.753325\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.28655 −0.0744030
\(300\) 0 0
\(301\) −5.79310 −0.333909
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 60.8953 3.48686
\(306\) 0 0
\(307\) 28.3888 1.62023 0.810116 0.586269i \(-0.199404\pi\)
0.810116 + 0.586269i \(0.199404\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −28.2408 −1.60139 −0.800693 0.599075i \(-0.795535\pi\)
−0.800693 + 0.599075i \(0.795535\pi\)
\(312\) 0 0
\(313\) −34.0226 −1.92307 −0.961535 0.274683i \(-0.911427\pi\)
−0.961535 + 0.274683i \(0.911427\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.07783 −0.341365 −0.170683 0.985326i \(-0.554597\pi\)
−0.170683 + 0.985326i \(0.554597\pi\)
\(318\) 0 0
\(319\) 9.86328 0.552237
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.21819 −0.234706
\(324\) 0 0
\(325\) 8.22947 0.456489
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.50474 −0.303486
\(330\) 0 0
\(331\) 28.8727 1.58699 0.793495 0.608577i \(-0.208259\pi\)
0.793495 + 0.608577i \(0.208259\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 35.5862 1.94428
\(336\) 0 0
\(337\) 1.56363 0.0851762 0.0425881 0.999093i \(-0.486440\pi\)
0.0425881 + 0.999093i \(0.486440\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.71345 −0.146942
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.1498 −0.920651 −0.460325 0.887750i \(-0.652267\pi\)
−0.460325 + 0.887750i \(0.652267\pi\)
\(348\) 0 0
\(349\) 26.4589 1.41631 0.708157 0.706055i \(-0.249527\pi\)
0.708157 + 0.706055i \(0.249527\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.7818 0.627083 0.313541 0.949575i \(-0.398485\pi\)
0.313541 + 0.949575i \(0.398485\pi\)
\(354\) 0 0
\(355\) 26.2295 1.39212
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 22.4589 1.18534 0.592669 0.805446i \(-0.298074\pi\)
0.592669 + 0.805446i \(0.298074\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.8633 0.725637
\(366\) 0 0
\(367\) −16.5767 −0.865298 −0.432649 0.901562i \(-0.642421\pi\)
−0.432649 + 0.901562i \(0.642421\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6.21819 −0.322832
\(372\) 0 0
\(373\) −16.2996 −0.843964 −0.421982 0.906604i \(-0.638665\pi\)
−0.421982 + 0.906604i \(0.638665\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.17240 −0.163387
\(378\) 0 0
\(379\) 21.0131 1.07937 0.539685 0.841867i \(-0.318543\pi\)
0.539685 + 0.841867i \(0.318543\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −32.4364 −1.65742 −0.828711 0.559677i \(-0.810925\pi\)
−0.828711 + 0.559677i \(0.810925\pi\)
\(384\) 0 0
\(385\) −8.43637 −0.429957
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 32.7360 1.65978 0.829891 0.557925i \(-0.188402\pi\)
0.829891 + 0.557925i \(0.188402\pi\)
\(390\) 0 0
\(391\) −8.43637 −0.426646
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 63.9048 3.21540
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.7818 0.688231 0.344115 0.938927i \(-0.388179\pi\)
0.344115 + 0.938927i \(0.388179\pi\)
\(402\) 0 0
\(403\) 0.872747 0.0434746
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.8727 −1.03462
\(408\) 0 0
\(409\) 13.5160 0.668324 0.334162 0.942516i \(-0.391547\pi\)
0.334162 + 0.942516i \(0.391547\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.3662 −0.607033
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16.2408 −0.793413 −0.396706 0.917946i \(-0.629847\pi\)
−0.396706 + 0.917946i \(0.629847\pi\)
\(420\) 0 0
\(421\) 7.28655 0.355125 0.177562 0.984110i \(-0.443179\pi\)
0.177562 + 0.984110i \(0.443179\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 53.9637 2.61762
\(426\) 0 0
\(427\) 14.4364 0.698625
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.8139 1.38791 0.693957 0.720016i \(-0.255866\pi\)
0.693957 + 0.720016i \(0.255866\pi\)
\(432\) 0 0
\(433\) 22.4589 1.07931 0.539654 0.841887i \(-0.318555\pi\)
0.539654 + 0.841887i \(0.318555\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.00000 0.0956730
\(438\) 0 0
\(439\) −23.6564 −1.12906 −0.564529 0.825414i \(-0.690942\pi\)
−0.564529 + 0.825414i \(0.690942\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.5636 −0.644427 −0.322214 0.946667i \(-0.604427\pi\)
−0.322214 + 0.946667i \(0.604427\pi\)
\(444\) 0 0
\(445\) 16.8727 0.799845
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.5178 −0.968297 −0.484148 0.874986i \(-0.660870\pi\)
−0.484148 + 0.874986i \(0.660870\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.71345 0.127209
\(456\) 0 0
\(457\) −7.79310 −0.364546 −0.182273 0.983248i \(-0.558345\pi\)
−0.182273 + 0.983248i \(0.558345\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.20872 0.242594 0.121297 0.992616i \(-0.461295\pi\)
0.121297 + 0.992616i \(0.461295\pi\)
\(462\) 0 0
\(463\) 9.42690 0.438105 0.219053 0.975713i \(-0.429703\pi\)
0.219053 + 0.975713i \(0.429703\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.9411 −0.830216 −0.415108 0.909772i \(-0.636256\pi\)
−0.415108 + 0.909772i \(0.636256\pi\)
\(468\) 0 0
\(469\) 8.43637 0.389556
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.5862 0.532734
\(474\) 0 0
\(475\) −12.7931 −0.586988
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −33.6677 −1.53831 −0.769157 0.639059i \(-0.779324\pi\)
−0.769157 + 0.639059i \(0.779324\pi\)
\(480\) 0 0
\(481\) 6.71345 0.306107
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.43637 −0.383076
\(486\) 0 0
\(487\) −43.5862 −1.97508 −0.987540 0.157371i \(-0.949698\pi\)
−0.987540 + 0.157371i \(0.949698\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 22.0226 0.993865 0.496932 0.867789i \(-0.334460\pi\)
0.496932 + 0.867789i \(0.334460\pi\)
\(492\) 0 0
\(493\) −20.8026 −0.936901
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.21819 0.278924
\(498\) 0 0
\(499\) −27.1724 −1.21640 −0.608202 0.793782i \(-0.708109\pi\)
−0.608202 + 0.793782i \(0.708109\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.3775 0.819411 0.409706 0.912218i \(-0.365631\pi\)
0.409706 + 0.912218i \(0.365631\pi\)
\(504\) 0 0
\(505\) −34.6658 −1.54261
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.0095 0.487986 0.243993 0.969777i \(-0.421543\pi\)
0.243993 + 0.969777i \(0.421543\pi\)
\(510\) 0 0
\(511\) 3.28655 0.145388
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 33.7455 1.48700
\(516\) 0 0
\(517\) 11.0095 0.484196
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 35.0095 1.53379 0.766896 0.641771i \(-0.221800\pi\)
0.766896 + 0.641771i \(0.221800\pi\)
\(522\) 0 0
\(523\) −2.50292 −0.109445 −0.0547225 0.998502i \(-0.517427\pi\)
−0.0547225 + 0.998502i \(0.517427\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.72292 0.249294
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.57310 0.111453
\(534\) 0 0
\(535\) 56.3888 2.43790
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) 43.0131 1.84928 0.924639 0.380845i \(-0.124367\pi\)
0.924639 + 0.380845i \(0.124367\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 27.1498 1.16297
\(546\) 0 0
\(547\) −10.2771 −0.439416 −0.219708 0.975566i \(-0.570510\pi\)
−0.219708 + 0.975566i \(0.570510\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.93164 0.210095
\(552\) 0 0
\(553\) 15.1498 0.644236
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.8502 −0.629222 −0.314611 0.949221i \(-0.601874\pi\)
−0.314611 + 0.949221i \(0.601874\pi\)
\(558\) 0 0
\(559\) −3.72655 −0.157616
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −11.1498 −0.469909 −0.234955 0.972006i \(-0.575494\pi\)
−0.234955 + 0.972006i \(0.575494\pi\)
\(564\) 0 0
\(565\) −14.7836 −0.621952
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −27.5273 −1.15400 −0.577002 0.816742i \(-0.695778\pi\)
−0.577002 + 0.816742i \(0.695778\pi\)
\(570\) 0 0
\(571\) 14.2996 0.598422 0.299211 0.954187i \(-0.403277\pi\)
0.299211 + 0.954187i \(0.403277\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −25.5862 −1.06702
\(576\) 0 0
\(577\) −16.2771 −0.677624 −0.338812 0.940854i \(-0.610025\pi\)
−0.338812 + 0.940854i \(0.610025\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.93164 −0.121625
\(582\) 0 0
\(583\) 12.4364 0.515062
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 32.2408 1.33072 0.665359 0.746523i \(-0.268278\pi\)
0.665359 + 0.746523i \(0.268278\pi\)
\(588\) 0 0
\(589\) −1.35673 −0.0559029
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.9447 1.31181 0.655907 0.754842i \(-0.272287\pi\)
0.655907 + 0.754842i \(0.272287\pi\)
\(594\) 0 0
\(595\) 17.7931 0.729446
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −32.8139 −1.34074 −0.670369 0.742028i \(-0.733864\pi\)
−0.670369 + 0.742028i \(0.733864\pi\)
\(600\) 0 0
\(601\) −33.4458 −1.36428 −0.682142 0.731220i \(-0.738952\pi\)
−0.682142 + 0.731220i \(0.738952\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −29.5273 −1.20046
\(606\) 0 0
\(607\) 5.42690 0.220271 0.110136 0.993917i \(-0.464871\pi\)
0.110136 + 0.993917i \(0.464871\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.54106 −0.143256
\(612\) 0 0
\(613\) 6.92035 0.279510 0.139755 0.990186i \(-0.455368\pi\)
0.139755 + 0.990186i \(0.455368\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −47.7455 −1.92216 −0.961081 0.276268i \(-0.910902\pi\)
−0.961081 + 0.276268i \(0.910902\pi\)
\(618\) 0 0
\(619\) 18.1593 0.729884 0.364942 0.931030i \(-0.381089\pi\)
0.364942 + 0.931030i \(0.381089\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) 74.6979 2.98792
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 44.0226 1.75529
\(630\) 0 0
\(631\) 19.9524 0.794292 0.397146 0.917755i \(-0.370001\pi\)
0.397146 + 0.917755i \(0.370001\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −18.7135 −0.742621
\(636\) 0 0
\(637\) 0.643274 0.0254875
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −26.7949 −1.05834 −0.529168 0.848517i \(-0.677496\pi\)
−0.529168 + 0.848517i \(0.677496\pi\)
\(642\) 0 0
\(643\) −20.5767 −0.811467 −0.405733 0.913991i \(-0.632984\pi\)
−0.405733 + 0.913991i \(0.632984\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.4953 0.412611 0.206306 0.978488i \(-0.433856\pi\)
0.206306 + 0.978488i \(0.433856\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.87275 0.112419 0.0562096 0.998419i \(-0.482098\pi\)
0.0562096 + 0.998419i \(0.482098\pi\)
\(654\) 0 0
\(655\) −81.6979 −3.19220
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.9542 0.660442 0.330221 0.943904i \(-0.392877\pi\)
0.330221 + 0.943904i \(0.392877\pi\)
\(660\) 0 0
\(661\) 13.3757 0.520253 0.260127 0.965575i \(-0.416236\pi\)
0.260127 + 0.965575i \(0.416236\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.21819 −0.163574
\(666\) 0 0
\(667\) 9.86328 0.381908
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −28.8727 −1.11462
\(672\) 0 0
\(673\) 24.2771 0.935813 0.467906 0.883778i \(-0.345008\pi\)
0.467906 + 0.883778i \(0.345008\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −43.6088 −1.67602 −0.838011 0.545654i \(-0.816281\pi\)
−0.838011 + 0.545654i \(0.816281\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −23.0684 −0.882686 −0.441343 0.897338i \(-0.645498\pi\)
−0.441343 + 0.897338i \(0.645498\pi\)
\(684\) 0 0
\(685\) 30.7360 1.17436
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.00000 −0.152388
\(690\) 0 0
\(691\) −8.85018 −0.336677 −0.168338 0.985729i \(-0.553840\pi\)
−0.168338 + 0.985729i \(0.553840\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −76.5993 −2.90558
\(696\) 0 0
\(697\) 16.8727 0.639101
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −49.4458 −1.86754 −0.933772 0.357869i \(-0.883504\pi\)
−0.933772 + 0.357869i \(0.883504\pi\)
\(702\) 0 0
\(703\) −10.4364 −0.393615
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.21819 −0.309077
\(708\) 0 0
\(709\) −12.6658 −0.475676 −0.237838 0.971305i \(-0.576439\pi\)
−0.237838 + 0.971305i \(0.576439\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.71345 −0.101620
\(714\) 0 0
\(715\) −5.42690 −0.202955
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18.8139 0.701638 0.350819 0.936443i \(-0.385903\pi\)
0.350819 + 0.936443i \(0.385903\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −63.0909 −2.34314
\(726\) 0 0
\(727\) 28.1629 1.04451 0.522253 0.852791i \(-0.325092\pi\)
0.522253 + 0.852791i \(0.325092\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −24.4364 −0.903812
\(732\) 0 0
\(733\) 3.84070 0.141860 0.0709298 0.997481i \(-0.477403\pi\)
0.0709298 + 0.997481i \(0.477403\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.8727 −0.621516
\(738\) 0 0
\(739\) 8.09275 0.297697 0.148848 0.988860i \(-0.452443\pi\)
0.148848 + 0.988860i \(0.452443\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26.9506 −0.988721 −0.494360 0.869257i \(-0.664598\pi\)
−0.494360 + 0.869257i \(0.664598\pi\)
\(744\) 0 0
\(745\) −21.7229 −0.795866
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13.3680 0.488457
\(750\) 0 0
\(751\) −28.4589 −1.03848 −0.519241 0.854628i \(-0.673785\pi\)
−0.519241 + 0.854628i \(0.673785\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −11.4458 −0.416557
\(756\) 0 0
\(757\) −35.6051 −1.29409 −0.647045 0.762451i \(-0.723996\pi\)
−0.647045 + 0.762451i \(0.723996\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.35491 −0.0853654 −0.0426827 0.999089i \(-0.513590\pi\)
−0.0426827 + 0.999089i \(0.513590\pi\)
\(762\) 0 0
\(763\) 6.43637 0.233012
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 31.7229 1.14396 0.571979 0.820268i \(-0.306176\pi\)
0.571979 + 0.820268i \(0.306176\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.42690 −0.0513221 −0.0256611 0.999671i \(-0.508169\pi\)
−0.0256611 + 0.999671i \(0.508169\pi\)
\(774\) 0 0
\(775\) 17.3567 0.623472
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) −12.4364 −0.445008
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −32.5767 −1.16271
\(786\) 0 0
\(787\) −28.3888 −1.01195 −0.505975 0.862548i \(-0.668867\pi\)
−0.505975 + 0.862548i \(0.668867\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.50474 −0.124614
\(792\) 0 0
\(793\) 9.28655 0.329775
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 53.6051 1.89879 0.949396 0.314082i \(-0.101697\pi\)
0.949396 + 0.314082i \(0.101697\pi\)
\(798\) 0 0
\(799\) −23.2200 −0.821465
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.57310 −0.231960
\(804\) 0 0
\(805\) −8.43637 −0.297343
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −54.3186 −1.90974 −0.954870 0.297024i \(-0.904006\pi\)
−0.954870 + 0.297024i \(0.904006\pi\)
\(810\) 0 0
\(811\) −24.3186 −0.853941 −0.426971 0.904266i \(-0.640419\pi\)
−0.426971 + 0.904266i \(0.640419\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −19.0095 −0.665873
\(816\) 0 0
\(817\) 5.79310 0.202675
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.8822 1.18250 0.591249 0.806489i \(-0.298635\pi\)
0.591249 + 0.806489i \(0.298635\pi\)
\(822\) 0 0
\(823\) 21.6527 0.754767 0.377384 0.926057i \(-0.376824\pi\)
0.377384 + 0.926057i \(0.376824\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.5178 0.852569 0.426284 0.904589i \(-0.359822\pi\)
0.426284 + 0.904589i \(0.359822\pi\)
\(828\) 0 0
\(829\) −54.0451 −1.87707 −0.938533 0.345190i \(-0.887814\pi\)
−0.938533 + 0.345190i \(0.887814\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.21819 0.146152
\(834\) 0 0
\(835\) 97.6503 3.37933
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −34.2996 −1.18416 −0.592078 0.805881i \(-0.701692\pi\)
−0.592078 + 0.805881i \(0.701692\pi\)
\(840\) 0 0
\(841\) −4.67895 −0.161343
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −53.0909 −1.82638
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −20.8727 −0.715509
\(852\) 0 0
\(853\) 6.14035 0.210242 0.105121 0.994459i \(-0.466477\pi\)
0.105121 + 0.994459i \(0.466477\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.84070 0.199515 0.0997573 0.995012i \(-0.468193\pi\)
0.0997573 + 0.995012i \(0.468193\pi\)
\(858\) 0 0
\(859\) 43.0320 1.46823 0.734117 0.679023i \(-0.237596\pi\)
0.734117 + 0.679023i \(0.237596\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 39.5499 1.34629 0.673147 0.739509i \(-0.264942\pi\)
0.673147 + 0.739509i \(0.264942\pi\)
\(864\) 0 0
\(865\) −88.0451 −2.99362
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −30.2996 −1.02785
\(870\) 0 0
\(871\) 5.42690 0.183884
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 32.8727 1.11130
\(876\) 0 0
\(877\) −36.6182 −1.23651 −0.618255 0.785978i \(-0.712160\pi\)
−0.618255 + 0.785978i \(0.712160\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23.6640 −0.797261 −0.398631 0.917112i \(-0.630514\pi\)
−0.398631 + 0.917112i \(0.630514\pi\)
\(882\) 0 0
\(883\) 23.4458 0.789015 0.394508 0.918893i \(-0.370915\pi\)
0.394508 + 0.918893i \(0.370915\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.0226 0.806599 0.403300 0.915068i \(-0.367863\pi\)
0.403300 + 0.915068i \(0.367863\pi\)
\(888\) 0 0
\(889\) −4.43637 −0.148791
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.50474 0.184209
\(894\) 0 0
\(895\) −56.3888 −1.88487
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.69088 −0.223153
\(900\) 0 0
\(901\) −26.2295 −0.873830
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −36.7550 −1.22178
\(906\) 0 0
\(907\) −13.8407 −0.459573 −0.229787 0.973241i \(-0.573803\pi\)
−0.229787 + 0.973241i \(0.573803\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −19.0909 −0.632511 −0.316255 0.948674i \(-0.602426\pi\)
−0.316255 + 0.948674i \(0.602426\pi\)
\(912\) 0 0
\(913\) 5.86328 0.194046
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19.3680 −0.639588
\(918\) 0 0
\(919\) −23.1724 −0.764387 −0.382193 0.924082i \(-0.624831\pi\)
−0.382193 + 0.924082i \(0.624831\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.00000 0.131662
\(924\) 0 0
\(925\) 133.514 4.38990
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −35.5084 −1.16499 −0.582496 0.812834i \(-0.697924\pi\)
−0.582496 + 0.812834i \(0.697924\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −35.5862 −1.16379
\(936\) 0 0
\(937\) −4.29965 −0.140463 −0.0702317 0.997531i \(-0.522374\pi\)
−0.0702317 + 0.997531i \(0.522374\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 52.8953 1.72434 0.862169 0.506621i \(-0.169106\pi\)
0.862169 + 0.506621i \(0.169106\pi\)
\(942\) 0 0
\(943\) −8.00000 −0.260516
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31.8858 1.03615 0.518075 0.855335i \(-0.326649\pi\)
0.518075 + 0.855335i \(0.326649\pi\)
\(948\) 0 0
\(949\) 2.11415 0.0686283
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38.2182 −1.23801 −0.619004 0.785388i \(-0.712464\pi\)
−0.619004 + 0.785388i \(0.712464\pi\)
\(954\) 0 0
\(955\) −3.00947 −0.0973842
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7.28655 0.235295
\(960\) 0 0
\(961\) −29.1593 −0.940622
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 49.4495 1.59183
\(966\) 0 0
\(967\) 11.2200 0.360811 0.180405 0.983592i \(-0.442259\pi\)
0.180405 + 0.983592i \(0.442259\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −56.5993 −1.81636 −0.908179 0.418582i \(-0.862527\pi\)
−0.908179 + 0.418582i \(0.862527\pi\)
\(972\) 0 0
\(973\) −18.1593 −0.582160
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.6546 0.980726 0.490363 0.871518i \(-0.336864\pi\)
0.490363 + 0.871518i \(0.336864\pi\)
\(978\) 0 0
\(979\) −8.00000 −0.255681
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 29.2865 0.934096 0.467048 0.884232i \(-0.345318\pi\)
0.467048 + 0.884232i \(0.345318\pi\)
\(984\) 0 0
\(985\) 25.3091 0.806416
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 11.5862 0.368420
\(990\) 0 0
\(991\) 9.01310 0.286311 0.143155 0.989700i \(-0.454275\pi\)
0.143155 + 0.989700i \(0.454275\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 103.077 3.26777
\(996\) 0 0
\(997\) −55.7681 −1.76619 −0.883096 0.469192i \(-0.844545\pi\)
−0.883096 + 0.469192i \(0.844545\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.p.1.3 3
3.2 odd 2 1596.2.a.j.1.1 3
12.11 even 2 6384.2.a.bt.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1596.2.a.j.1.1 3 3.2 odd 2
4788.2.a.p.1.3 3 1.1 even 1 trivial
6384.2.a.bt.1.1 3 12.11 even 2