Properties

Label 4788.2.a.p.1.2
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1016.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1596)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.85577\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.29966 q^{5} +1.00000 q^{7} -2.00000 q^{11} +5.71155 q^{13} -1.29966 q^{17} -1.00000 q^{19} -2.00000 q^{23} -3.31087 q^{25} +10.7228 q^{29} -3.71155 q^{31} -1.29966 q^{35} -0.599328 q^{37} +4.00000 q^{41} +10.3109 q^{43} -10.1234 q^{47} +1.00000 q^{49} -0.700336 q^{53} +2.59933 q^{55} +3.40067 q^{61} -7.42309 q^{65} -2.59933 q^{67} +0.700336 q^{71} +13.4231 q^{73} -2.00000 q^{77} -6.02242 q^{79} +12.7228 q^{83} +1.68913 q^{85} +4.00000 q^{89} +5.71155 q^{91} +1.29966 q^{95} -2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{7} - 6 q^{11} + 2 q^{13} - 3 q^{19} - 6 q^{23} + 13 q^{25} - 2 q^{29} + 4 q^{31} + 6 q^{37} + 12 q^{41} + 8 q^{43} - 4 q^{47} + 3 q^{49} - 6 q^{53} + 18 q^{61} + 8 q^{65} + 6 q^{71} + 10 q^{73}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.29966 −0.581227 −0.290614 0.956840i \(-0.593859\pi\)
−0.290614 + 0.956840i \(0.593859\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 5.71155 1.58410 0.792049 0.610458i \(-0.209015\pi\)
0.792049 + 0.610458i \(0.209015\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.29966 −0.315215 −0.157607 0.987502i \(-0.550378\pi\)
−0.157607 + 0.987502i \(0.550378\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) −3.31087 −0.662175
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 10.7228 1.99117 0.995583 0.0938884i \(-0.0299297\pi\)
0.995583 + 0.0938884i \(0.0299297\pi\)
\(30\) 0 0
\(31\) −3.71155 −0.666613 −0.333307 0.942818i \(-0.608164\pi\)
−0.333307 + 0.942818i \(0.608164\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.29966 −0.219683
\(36\) 0 0
\(37\) −0.599328 −0.0985290 −0.0492645 0.998786i \(-0.515688\pi\)
−0.0492645 + 0.998786i \(0.515688\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) 10.3109 1.57239 0.786197 0.617976i \(-0.212047\pi\)
0.786197 + 0.617976i \(0.212047\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.1234 −1.47665 −0.738327 0.674443i \(-0.764384\pi\)
−0.738327 + 0.674443i \(0.764384\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.700336 −0.0961985 −0.0480993 0.998843i \(-0.515316\pi\)
−0.0480993 + 0.998843i \(0.515316\pi\)
\(54\) 0 0
\(55\) 2.59933 0.350493
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 3.40067 0.435411 0.217706 0.976014i \(-0.430143\pi\)
0.217706 + 0.976014i \(0.430143\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.42309 −0.920721
\(66\) 0 0
\(67\) −2.59933 −0.317558 −0.158779 0.987314i \(-0.550756\pi\)
−0.158779 + 0.987314i \(0.550756\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.700336 0.0831146 0.0415573 0.999136i \(-0.486768\pi\)
0.0415573 + 0.999136i \(0.486768\pi\)
\(72\) 0 0
\(73\) 13.4231 1.57105 0.785527 0.618827i \(-0.212392\pi\)
0.785527 + 0.618827i \(0.212392\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) −6.02242 −0.677575 −0.338787 0.940863i \(-0.610017\pi\)
−0.338787 + 0.940863i \(0.610017\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.7228 1.39650 0.698252 0.715852i \(-0.253962\pi\)
0.698252 + 0.715852i \(0.253962\pi\)
\(84\) 0 0
\(85\) 1.68913 0.183212
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) 5.71155 0.598733
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.29966 0.133343
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.70034 −0.268693 −0.134347 0.990934i \(-0.542894\pi\)
−0.134347 + 0.990934i \(0.542894\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.3221 −1.28789 −0.643947 0.765070i \(-0.722704\pi\)
−0.643947 + 0.765070i \(0.722704\pi\)
\(108\) 0 0
\(109\) −4.59933 −0.440536 −0.220268 0.975439i \(-0.570693\pi\)
−0.220268 + 0.975439i \(0.570693\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.12343 −0.764188 −0.382094 0.924124i \(-0.624797\pi\)
−0.382094 + 0.924124i \(0.624797\pi\)
\(114\) 0 0
\(115\) 2.59933 0.242389
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.29966 −0.119140
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.8013 0.966102
\(126\) 0 0
\(127\) 6.59933 0.585596 0.292798 0.956174i \(-0.405414\pi\)
0.292798 + 0.956174i \(0.405414\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.32208 0.639733 0.319867 0.947463i \(-0.396362\pi\)
0.319867 + 0.947463i \(0.396362\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.4231 1.48856 0.744278 0.667870i \(-0.232794\pi\)
0.744278 + 0.667870i \(0.232794\pi\)
\(138\) 0 0
\(139\) −6.22443 −0.527950 −0.263975 0.964530i \(-0.585034\pi\)
−0.263975 + 0.964530i \(0.585034\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −11.4231 −0.955247
\(144\) 0 0
\(145\) −13.9360 −1.15732
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.0224 1.31261 0.656304 0.754497i \(-0.272119\pi\)
0.656304 + 0.754497i \(0.272119\pi\)
\(150\) 0 0
\(151\) 7.42309 0.604082 0.302041 0.953295i \(-0.402332\pi\)
0.302041 + 0.953295i \(0.402332\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.82376 0.387454
\(156\) 0 0
\(157\) −6.82376 −0.544595 −0.272298 0.962213i \(-0.587784\pi\)
−0.272298 + 0.962213i \(0.587784\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) 21.7340 1.70234 0.851168 0.524894i \(-0.175895\pi\)
0.851168 + 0.524894i \(0.175895\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.97758 0.153030 0.0765149 0.997068i \(-0.475621\pi\)
0.0765149 + 0.997068i \(0.475621\pi\)
\(168\) 0 0
\(169\) 19.6217 1.50937
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.19866 0.0911322 0.0455661 0.998961i \(-0.485491\pi\)
0.0455661 + 0.998961i \(0.485491\pi\)
\(174\) 0 0
\(175\) −3.31087 −0.250278
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 13.3221 0.995739 0.497870 0.867252i \(-0.334116\pi\)
0.497870 + 0.867252i \(0.334116\pi\)
\(180\) 0 0
\(181\) 1.42309 0.105777 0.0528887 0.998600i \(-0.483157\pi\)
0.0528887 + 0.998600i \(0.483157\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.778925 0.0572677
\(186\) 0 0
\(187\) 2.59933 0.190082
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.42309 0.681831 0.340915 0.940094i \(-0.389263\pi\)
0.340915 + 0.940094i \(0.389263\pi\)
\(192\) 0 0
\(193\) 10.8238 0.779111 0.389556 0.921003i \(-0.372629\pi\)
0.389556 + 0.921003i \(0.372629\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 13.4007 0.949948 0.474974 0.880000i \(-0.342457\pi\)
0.474974 + 0.880000i \(0.342457\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.7228 0.752590
\(204\) 0 0
\(205\) −5.19866 −0.363090
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −13.4007 −0.913918
\(216\) 0 0
\(217\) −3.71155 −0.251956
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.42309 −0.499331
\(222\) 0 0
\(223\) −21.9360 −1.46894 −0.734471 0.678640i \(-0.762570\pi\)
−0.734471 + 0.678640i \(0.762570\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.17624 0.210814 0.105407 0.994429i \(-0.466385\pi\)
0.105407 + 0.994429i \(0.466385\pi\)
\(228\) 0 0
\(229\) 17.2211 1.13800 0.569000 0.822337i \(-0.307330\pi\)
0.569000 + 0.822337i \(0.307330\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 22.2469 1.45744 0.728720 0.684812i \(-0.240116\pi\)
0.728720 + 0.684812i \(0.240116\pi\)
\(234\) 0 0
\(235\) 13.1571 0.858272
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.17624 0.0760845 0.0380423 0.999276i \(-0.487888\pi\)
0.0380423 + 0.999276i \(0.487888\pi\)
\(240\) 0 0
\(241\) −14.6217 −0.941869 −0.470935 0.882168i \(-0.656083\pi\)
−0.470935 + 0.882168i \(0.656083\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.29966 −0.0830325
\(246\) 0 0
\(247\) −5.71155 −0.363417
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.87657 0.118448 0.0592242 0.998245i \(-0.481137\pi\)
0.0592242 + 0.998245i \(0.481137\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.0224 1.37372 0.686860 0.726789i \(-0.258988\pi\)
0.686860 + 0.726789i \(0.258988\pi\)
\(258\) 0 0
\(259\) −0.599328 −0.0372404
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.599328 0.0369562 0.0184781 0.999829i \(-0.494118\pi\)
0.0184781 + 0.999829i \(0.494118\pi\)
\(264\) 0 0
\(265\) 0.910201 0.0559132
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.40067 0.329285 0.164642 0.986353i \(-0.447353\pi\)
0.164642 + 0.986353i \(0.447353\pi\)
\(270\) 0 0
\(271\) 31.2211 1.89655 0.948273 0.317457i \(-0.102829\pi\)
0.948273 + 0.317457i \(0.102829\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.62175 0.399306
\(276\) 0 0
\(277\) −29.9584 −1.80003 −0.900013 0.435863i \(-0.856443\pi\)
−0.900013 + 0.435863i \(0.856443\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.70034 0.519019 0.259509 0.965741i \(-0.416439\pi\)
0.259509 + 0.965741i \(0.416439\pi\)
\(282\) 0 0
\(283\) −6.02242 −0.357996 −0.178998 0.983849i \(-0.557286\pi\)
−0.178998 + 0.983849i \(0.557286\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) −15.3109 −0.900640
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 29.8204 1.74213 0.871063 0.491171i \(-0.163431\pi\)
0.871063 + 0.491171i \(0.163431\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.4231 −0.660614
\(300\) 0 0
\(301\) 10.3109 0.594309
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.41973 −0.253073
\(306\) 0 0
\(307\) −10.6858 −0.609869 −0.304934 0.952373i \(-0.598635\pi\)
−0.304934 + 0.952373i \(0.598635\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.5207 1.16362 0.581812 0.813323i \(-0.302344\pi\)
0.581812 + 0.813323i \(0.302344\pi\)
\(312\) 0 0
\(313\) 9.22107 0.521206 0.260603 0.965446i \(-0.416079\pi\)
0.260603 + 0.965446i \(0.416079\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −30.9696 −1.73943 −0.869713 0.493557i \(-0.835696\pi\)
−0.869713 + 0.493557i \(0.835696\pi\)
\(318\) 0 0
\(319\) −21.4455 −1.20072
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.29966 0.0723152
\(324\) 0 0
\(325\) −18.9102 −1.04895
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10.1234 −0.558123
\(330\) 0 0
\(331\) 6.80134 0.373836 0.186918 0.982376i \(-0.440150\pi\)
0.186918 + 0.982376i \(0.440150\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.37825 0.184574
\(336\) 0 0
\(337\) 12.5993 0.686329 0.343165 0.939275i \(-0.388501\pi\)
0.343165 + 0.939275i \(0.388501\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.42309 0.401983
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.02242 0.215935 0.107967 0.994154i \(-0.465566\pi\)
0.107967 + 0.994154i \(0.465566\pi\)
\(348\) 0 0
\(349\) −27.8204 −1.48919 −0.744596 0.667515i \(-0.767358\pi\)
−0.744596 + 0.667515i \(0.767358\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.2997 0.920768 0.460384 0.887720i \(-0.347712\pi\)
0.460384 + 0.887720i \(0.347712\pi\)
\(354\) 0 0
\(355\) −0.910201 −0.0483085
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.8204 −1.67942 −0.839708 0.543038i \(-0.817274\pi\)
−0.839708 + 0.543038i \(0.817274\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −17.4455 −0.913140
\(366\) 0 0
\(367\) 24.8686 1.29813 0.649065 0.760733i \(-0.275160\pi\)
0.649065 + 0.760733i \(0.275160\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.700336 −0.0363596
\(372\) 0 0
\(373\) 26.0448 1.34855 0.674275 0.738480i \(-0.264456\pi\)
0.674275 + 0.738480i \(0.264456\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 61.2435 3.15420
\(378\) 0 0
\(379\) −31.4679 −1.61640 −0.808199 0.588909i \(-0.799558\pi\)
−0.808199 + 0.588909i \(0.799558\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −21.4007 −1.09352 −0.546762 0.837288i \(-0.684140\pi\)
−0.546762 + 0.837288i \(0.684140\pi\)
\(384\) 0 0
\(385\) 2.59933 0.132474
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −20.6442 −1.04670 −0.523350 0.852118i \(-0.675318\pi\)
−0.523350 + 0.852118i \(0.675318\pi\)
\(390\) 0 0
\(391\) 2.59933 0.131454
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.82712 0.393825
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.2997 0.963779 0.481890 0.876232i \(-0.339951\pi\)
0.481890 + 0.876232i \(0.339951\pi\)
\(402\) 0 0
\(403\) −21.1987 −1.05598
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.19866 0.0594152
\(408\) 0 0
\(409\) −3.48711 −0.172427 −0.0862133 0.996277i \(-0.527477\pi\)
−0.0862133 + 0.996277i \(0.527477\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −16.5353 −0.811686
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.5207 1.58874 0.794371 0.607433i \(-0.207801\pi\)
0.794371 + 0.607433i \(0.207801\pi\)
\(420\) 0 0
\(421\) 17.4231 0.849149 0.424575 0.905393i \(-0.360424\pi\)
0.424575 + 0.905393i \(0.360424\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.30302 0.208727
\(426\) 0 0
\(427\) 3.40067 0.164570
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.325441 0.0156760 0.00783798 0.999969i \(-0.497505\pi\)
0.00783798 + 0.999969i \(0.497505\pi\)
\(432\) 0 0
\(433\) −31.8204 −1.52919 −0.764595 0.644510i \(-0.777061\pi\)
−0.764595 + 0.644510i \(0.777061\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.00000 0.0956730
\(438\) 0 0
\(439\) 23.7564 1.13383 0.566915 0.823776i \(-0.308137\pi\)
0.566915 + 0.823776i \(0.308137\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −24.5993 −1.16875 −0.584375 0.811484i \(-0.698660\pi\)
−0.584375 + 0.811484i \(0.698660\pi\)
\(444\) 0 0
\(445\) −5.19866 −0.246440
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.3445 1.29047 0.645233 0.763986i \(-0.276760\pi\)
0.645233 + 0.763986i \(0.276760\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.42309 −0.348000
\(456\) 0 0
\(457\) 8.31087 0.388766 0.194383 0.980926i \(-0.437730\pi\)
0.194383 + 0.980926i \(0.437730\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −9.54652 −0.444626 −0.222313 0.974975i \(-0.571361\pi\)
−0.222313 + 0.974975i \(0.571361\pi\)
\(462\) 0 0
\(463\) −10.8462 −0.504065 −0.252032 0.967719i \(-0.581099\pi\)
−0.252032 + 0.967719i \(0.581099\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.5241 −0.533272 −0.266636 0.963797i \(-0.585912\pi\)
−0.266636 + 0.963797i \(0.585912\pi\)
\(468\) 0 0
\(469\) −2.59933 −0.120026
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −20.6217 −0.948189
\(474\) 0 0
\(475\) 3.31087 0.151913
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 35.3669 1.61596 0.807978 0.589213i \(-0.200562\pi\)
0.807978 + 0.589213i \(0.200562\pi\)
\(480\) 0 0
\(481\) −3.42309 −0.156079
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.59933 0.118029
\(486\) 0 0
\(487\) −11.3783 −0.515598 −0.257799 0.966199i \(-0.582997\pi\)
−0.257799 + 0.966199i \(0.582997\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −21.2211 −0.957694 −0.478847 0.877898i \(-0.658945\pi\)
−0.478847 + 0.877898i \(0.658945\pi\)
\(492\) 0 0
\(493\) −13.9360 −0.627645
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.700336 0.0314144
\(498\) 0 0
\(499\) 37.2435 1.66725 0.833624 0.552333i \(-0.186262\pi\)
0.833624 + 0.552333i \(0.186262\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.924770 0.0412334 0.0206167 0.999787i \(-0.493437\pi\)
0.0206167 + 0.999787i \(0.493437\pi\)
\(504\) 0 0
\(505\) 3.50953 0.156172
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.2469 0.897426 0.448713 0.893676i \(-0.351883\pi\)
0.448713 + 0.893676i \(0.351883\pi\)
\(510\) 0 0
\(511\) 13.4231 0.593803
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.3973 −0.458160
\(516\) 0 0
\(517\) 20.2469 0.890456
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 44.2469 1.93849 0.969245 0.246098i \(-0.0791486\pi\)
0.969245 + 0.246098i \(0.0791486\pi\)
\(522\) 0 0
\(523\) −37.9808 −1.66079 −0.830393 0.557179i \(-0.811884\pi\)
−0.830393 + 0.557179i \(0.811884\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.82376 0.210126
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 22.8462 0.989578
\(534\) 0 0
\(535\) 17.3142 0.748560
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) −9.46793 −0.407058 −0.203529 0.979069i \(-0.565241\pi\)
−0.203529 + 0.979069i \(0.565241\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.97758 0.256051
\(546\) 0 0
\(547\) −11.1762 −0.477861 −0.238931 0.971037i \(-0.576797\pi\)
−0.238931 + 0.971037i \(0.576797\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10.7228 −0.456805
\(552\) 0 0
\(553\) −6.02242 −0.256099
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −36.0224 −1.52632 −0.763159 0.646210i \(-0.776353\pi\)
−0.763159 + 0.646210i \(0.776353\pi\)
\(558\) 0 0
\(559\) 58.8910 2.49082
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.0224 0.422395 0.211197 0.977443i \(-0.432264\pi\)
0.211197 + 0.977443i \(0.432264\pi\)
\(564\) 0 0
\(565\) 10.5577 0.444167
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 11.0976 0.465238 0.232619 0.972568i \(-0.425271\pi\)
0.232619 + 0.972568i \(0.425271\pi\)
\(570\) 0 0
\(571\) −28.0448 −1.17364 −0.586820 0.809717i \(-0.699620\pi\)
−0.586820 + 0.809717i \(0.699620\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.62175 0.276146
\(576\) 0 0
\(577\) −17.1762 −0.715056 −0.357528 0.933902i \(-0.616380\pi\)
−0.357528 + 0.933902i \(0.616380\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.7228 0.527829
\(582\) 0 0
\(583\) 1.40067 0.0580099
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.5207 −0.681884 −0.340942 0.940084i \(-0.610746\pi\)
−0.340942 + 0.940084i \(0.610746\pi\)
\(588\) 0 0
\(589\) 3.71155 0.152932
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −36.1907 −1.48617 −0.743087 0.669195i \(-0.766639\pi\)
−0.743087 + 0.669195i \(0.766639\pi\)
\(594\) 0 0
\(595\) 1.68913 0.0692474
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.32544 −0.176733 −0.0883664 0.996088i \(-0.528165\pi\)
−0.0883664 + 0.996088i \(0.528165\pi\)
\(600\) 0 0
\(601\) −31.6475 −1.29093 −0.645465 0.763790i \(-0.723336\pi\)
−0.645465 + 0.763790i \(0.723336\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.09765 0.369872
\(606\) 0 0
\(607\) −14.8462 −0.602588 −0.301294 0.953531i \(-0.597419\pi\)
−0.301294 + 0.953531i \(0.597419\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −57.8204 −2.33916
\(612\) 0 0
\(613\) 12.8878 0.520533 0.260266 0.965537i \(-0.416190\pi\)
0.260266 + 0.965537i \(0.416190\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.60269 −0.145039 −0.0725194 0.997367i \(-0.523104\pi\)
−0.0725194 + 0.997367i \(0.523104\pi\)
\(618\) 0 0
\(619\) 6.22443 0.250181 0.125091 0.992145i \(-0.460078\pi\)
0.125091 + 0.992145i \(0.460078\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) 2.51625 0.100650
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.778925 0.0310578
\(630\) 0 0
\(631\) −8.08644 −0.321916 −0.160958 0.986961i \(-0.551458\pi\)
−0.160958 + 0.986961i \(0.551458\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.57691 −0.340364
\(636\) 0 0
\(637\) 5.71155 0.226300
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.1683 0.796598 0.398299 0.917256i \(-0.369601\pi\)
0.398299 + 0.917256i \(0.369601\pi\)
\(642\) 0 0
\(643\) 20.8686 0.822977 0.411489 0.911415i \(-0.365009\pi\)
0.411489 + 0.911415i \(0.365009\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.87657 0.231032 0.115516 0.993306i \(-0.463148\pi\)
0.115516 + 0.993306i \(0.463148\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.1987 −0.751301 −0.375651 0.926761i \(-0.622581\pi\)
−0.375651 + 0.926761i \(0.622581\pi\)
\(654\) 0 0
\(655\) −9.51625 −0.371831
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −41.9438 −1.63390 −0.816950 0.576709i \(-0.804337\pi\)
−0.816950 + 0.576709i \(0.804337\pi\)
\(660\) 0 0
\(661\) 26.7822 1.04171 0.520853 0.853647i \(-0.325614\pi\)
0.520853 + 0.853647i \(0.325614\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.29966 0.0503988
\(666\) 0 0
\(667\) −21.4455 −0.830373
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.80134 −0.262563
\(672\) 0 0
\(673\) 25.1762 0.970473 0.485236 0.874383i \(-0.338734\pi\)
0.485236 + 0.874383i \(0.338734\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31.8428 1.22382 0.611910 0.790928i \(-0.290402\pi\)
0.611910 + 0.790928i \(0.290402\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −38.7228 −1.48169 −0.740843 0.671679i \(-0.765574\pi\)
−0.740843 + 0.671679i \(0.765574\pi\)
\(684\) 0 0
\(685\) −22.6442 −0.865189
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.00000 −0.152388
\(690\) 0 0
\(691\) −30.0224 −1.14211 −0.571053 0.820913i \(-0.693465\pi\)
−0.571053 + 0.820913i \(0.693465\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.08967 0.306859
\(696\) 0 0
\(697\) −5.19866 −0.196913
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −47.6475 −1.79962 −0.899811 0.436280i \(-0.856296\pi\)
−0.899811 + 0.436280i \(0.856296\pi\)
\(702\) 0 0
\(703\) 0.599328 0.0226041
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.70034 −0.101557
\(708\) 0 0
\(709\) 25.5095 0.958030 0.479015 0.877807i \(-0.340994\pi\)
0.479015 + 0.877807i \(0.340994\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.42309 0.277997
\(714\) 0 0
\(715\) 14.8462 0.555216
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.67456 −0.360800 −0.180400 0.983593i \(-0.557739\pi\)
−0.180400 + 0.983593i \(0.557739\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −35.5017 −1.31850
\(726\) 0 0
\(727\) −45.4903 −1.68714 −0.843572 0.537016i \(-0.819551\pi\)
−0.843572 + 0.537016i \(0.819551\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −13.4007 −0.495642
\(732\) 0 0
\(733\) 15.7756 0.582684 0.291342 0.956619i \(-0.405898\pi\)
0.291342 + 0.956619i \(0.405898\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.19866 0.191495
\(738\) 0 0
\(739\) −50.3557 −1.85236 −0.926182 0.377076i \(-0.876930\pi\)
−0.926182 + 0.377076i \(0.876930\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −29.7709 −1.09219 −0.546095 0.837723i \(-0.683886\pi\)
−0.546095 + 0.837723i \(0.683886\pi\)
\(744\) 0 0
\(745\) −20.8238 −0.762924
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.3221 −0.486778
\(750\) 0 0
\(751\) 25.8204 0.942200 0.471100 0.882080i \(-0.343857\pi\)
0.471100 + 0.882080i \(0.343857\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.64752 −0.351109
\(756\) 0 0
\(757\) −21.8720 −0.794950 −0.397475 0.917613i \(-0.630113\pi\)
−0.397475 + 0.917613i \(0.630113\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −28.1458 −1.02029 −0.510143 0.860090i \(-0.670408\pi\)
−0.510143 + 0.860090i \(0.670408\pi\)
\(762\) 0 0
\(763\) −4.59933 −0.166507
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 30.8238 1.11153 0.555767 0.831338i \(-0.312425\pi\)
0.555767 + 0.831338i \(0.312425\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 18.8462 0.677850 0.338925 0.940813i \(-0.389937\pi\)
0.338925 + 0.940813i \(0.389937\pi\)
\(774\) 0 0
\(775\) 12.2885 0.441414
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) −1.40067 −0.0501200
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.86860 0.316534
\(786\) 0 0
\(787\) 10.6858 0.380906 0.190453 0.981696i \(-0.439004\pi\)
0.190453 + 0.981696i \(0.439004\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.12343 −0.288836
\(792\) 0 0
\(793\) 19.4231 0.689734
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 39.8720 1.41234 0.706169 0.708044i \(-0.250422\pi\)
0.706169 + 0.708044i \(0.250422\pi\)
\(798\) 0 0
\(799\) 13.1571 0.465463
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −26.8462 −0.947381
\(804\) 0 0
\(805\) 2.59933 0.0916143
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −30.4489 −1.07053 −0.535263 0.844686i \(-0.679787\pi\)
−0.535263 + 0.844686i \(0.679787\pi\)
\(810\) 0 0
\(811\) −0.448867 −0.0157619 −0.00788093 0.999969i \(-0.502509\pi\)
−0.00788093 + 0.999969i \(0.502509\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −28.2469 −0.989444
\(816\) 0 0
\(817\) −10.3109 −0.360732
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.0482 0.734587 0.367294 0.930105i \(-0.380284\pi\)
0.367294 + 0.930105i \(0.380284\pi\)
\(822\) 0 0
\(823\) 35.9584 1.25343 0.626715 0.779248i \(-0.284399\pi\)
0.626715 + 0.779248i \(0.284399\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −23.3445 −0.811768 −0.405884 0.913925i \(-0.633036\pi\)
−0.405884 + 0.913925i \(0.633036\pi\)
\(828\) 0 0
\(829\) 32.4421 1.12676 0.563381 0.826197i \(-0.309500\pi\)
0.563381 + 0.826197i \(0.309500\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.29966 −0.0450307
\(834\) 0 0
\(835\) −2.57019 −0.0889452
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8.04484 0.277739 0.138869 0.990311i \(-0.455653\pi\)
0.138869 + 0.990311i \(0.455653\pi\)
\(840\) 0 0
\(841\) 85.9775 2.96474
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −25.5017 −0.877284
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.19866 0.0410894
\(852\) 0 0
\(853\) −24.2693 −0.830964 −0.415482 0.909601i \(-0.636387\pi\)
−0.415482 + 0.909601i \(0.636387\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17.7756 0.607202 0.303601 0.952799i \(-0.401811\pi\)
0.303601 + 0.952799i \(0.401811\pi\)
\(858\) 0 0
\(859\) 9.02578 0.307956 0.153978 0.988074i \(-0.450792\pi\)
0.153978 + 0.988074i \(0.450792\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −42.3187 −1.44055 −0.720273 0.693691i \(-0.755983\pi\)
−0.720273 + 0.693691i \(0.755983\pi\)
\(864\) 0 0
\(865\) −1.55785 −0.0529685
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12.0448 0.408593
\(870\) 0 0
\(871\) −14.8462 −0.503044
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.8013 0.365152
\(876\) 0 0
\(877\) 29.5960 0.999385 0.499692 0.866203i \(-0.333446\pi\)
0.499692 + 0.866203i \(0.333446\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −16.3479 −0.550773 −0.275387 0.961334i \(-0.588806\pi\)
−0.275387 + 0.961334i \(0.588806\pi\)
\(882\) 0 0
\(883\) 21.6475 0.728497 0.364249 0.931302i \(-0.381326\pi\)
0.364249 + 0.931302i \(0.381326\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −19.2211 −0.645381 −0.322690 0.946505i \(-0.604587\pi\)
−0.322690 + 0.946505i \(0.604587\pi\)
\(888\) 0 0
\(889\) 6.59933 0.221334
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.1234 0.338768
\(894\) 0 0
\(895\) −17.3142 −0.578751
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −39.7980 −1.32734
\(900\) 0 0
\(901\) 0.910201 0.0303232
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.84954 −0.0614808
\(906\) 0 0
\(907\) −25.7756 −0.855864 −0.427932 0.903811i \(-0.640758\pi\)
−0.427932 + 0.903811i \(0.640758\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 8.49832 0.281562 0.140781 0.990041i \(-0.455039\pi\)
0.140781 + 0.990041i \(0.455039\pi\)
\(912\) 0 0
\(913\) −25.4455 −0.842123
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.32208 0.241796
\(918\) 0 0
\(919\) 41.2435 1.36050 0.680249 0.732981i \(-0.261872\pi\)
0.680249 + 0.732981i \(0.261872\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.00000 0.131662
\(924\) 0 0
\(925\) 1.98430 0.0652434
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.5914 0.708389 0.354195 0.935172i \(-0.384755\pi\)
0.354195 + 0.935172i \(0.384755\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.37825 −0.110481
\(936\) 0 0
\(937\) 38.0448 1.24287 0.621435 0.783465i \(-0.286550\pi\)
0.621435 + 0.783465i \(0.286550\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12.4197 −0.404872 −0.202436 0.979296i \(-0.564886\pi\)
−0.202436 + 0.979296i \(0.564886\pi\)
\(942\) 0 0
\(943\) −8.00000 −0.260516
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −42.6666 −1.38648 −0.693239 0.720708i \(-0.743817\pi\)
−0.693239 + 0.720708i \(0.743817\pi\)
\(948\) 0 0
\(949\) 76.6666 2.48870
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −32.7003 −1.05927 −0.529634 0.848226i \(-0.677671\pi\)
−0.529634 + 0.848226i \(0.677671\pi\)
\(954\) 0 0
\(955\) −12.2469 −0.396299
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 17.4231 0.562621
\(960\) 0 0
\(961\) −17.2244 −0.555627
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −14.0673 −0.452841
\(966\) 0 0
\(967\) −25.1571 −0.808996 −0.404498 0.914539i \(-0.632554\pi\)
−0.404498 + 0.914539i \(0.632554\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.0897 0.901441 0.450720 0.892665i \(-0.351167\pi\)
0.450720 + 0.892665i \(0.351167\pi\)
\(972\) 0 0
\(973\) −6.22443 −0.199546
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.1010 0.451131 0.225566 0.974228i \(-0.427577\pi\)
0.225566 + 0.974228i \(0.427577\pi\)
\(978\) 0 0
\(979\) −8.00000 −0.255681
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 39.4231 1.25740 0.628701 0.777647i \(-0.283587\pi\)
0.628701 + 0.777647i \(0.283587\pi\)
\(984\) 0 0
\(985\) −7.79798 −0.248464
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −20.6217 −0.655733
\(990\) 0 0
\(991\) −43.4679 −1.38080 −0.690402 0.723426i \(-0.742566\pi\)
−0.690402 + 0.723426i \(0.742566\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17.4164 −0.552136
\(996\) 0 0
\(997\) 31.6184 1.00136 0.500682 0.865631i \(-0.333083\pi\)
0.500682 + 0.865631i \(0.333083\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.p.1.2 3
3.2 odd 2 1596.2.a.j.1.2 3
12.11 even 2 6384.2.a.bt.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1596.2.a.j.1.2 3 3.2 odd 2
4788.2.a.p.1.2 3 1.1 even 1 trivial
6384.2.a.bt.1.2 3 12.11 even 2