Properties

Label 4788.2.a.n.1.2
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.23607 q^{5} -1.00000 q^{7} +2.61803 q^{11} +3.47214 q^{13} +5.85410 q^{17} +1.00000 q^{19} +8.23607 q^{23} +12.9443 q^{25} +4.61803 q^{29} -3.85410 q^{31} -4.23607 q^{35} -8.23607 q^{37} -11.5623 q^{41} +4.47214 q^{43} -7.47214 q^{47} +1.00000 q^{49} -6.09017 q^{53} +11.0902 q^{55} -11.0000 q^{59} -4.23607 q^{61} +14.7082 q^{65} -7.56231 q^{67} +3.76393 q^{71} +3.61803 q^{73} -2.61803 q^{77} -4.47214 q^{79} -10.5623 q^{83} +24.7984 q^{85} +15.7082 q^{89} -3.47214 q^{91} +4.23607 q^{95} -3.47214 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 2 q^{7} + 3 q^{11} - 2 q^{13} + 5 q^{17} + 2 q^{19} + 12 q^{23} + 8 q^{25} + 7 q^{29} - q^{31} - 4 q^{35} - 12 q^{37} - 3 q^{41} - 6 q^{47} + 2 q^{49} - q^{53} + 11 q^{55} - 22 q^{59}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.23607 1.89443 0.947214 0.320603i \(-0.103886\pi\)
0.947214 + 0.320603i \(0.103886\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.61803 0.789367 0.394683 0.918817i \(-0.370854\pi\)
0.394683 + 0.918817i \(0.370854\pi\)
\(12\) 0 0
\(13\) 3.47214 0.962997 0.481499 0.876447i \(-0.340093\pi\)
0.481499 + 0.876447i \(0.340093\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.85410 1.41983 0.709914 0.704288i \(-0.248734\pi\)
0.709914 + 0.704288i \(0.248734\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.23607 1.71734 0.858669 0.512530i \(-0.171292\pi\)
0.858669 + 0.512530i \(0.171292\pi\)
\(24\) 0 0
\(25\) 12.9443 2.58885
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.61803 0.857547 0.428774 0.903412i \(-0.358946\pi\)
0.428774 + 0.903412i \(0.358946\pi\)
\(30\) 0 0
\(31\) −3.85410 −0.692217 −0.346109 0.938194i \(-0.612497\pi\)
−0.346109 + 0.938194i \(0.612497\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.23607 −0.716026
\(36\) 0 0
\(37\) −8.23607 −1.35400 −0.677001 0.735982i \(-0.736721\pi\)
−0.677001 + 0.735982i \(0.736721\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.5623 −1.80573 −0.902864 0.429925i \(-0.858540\pi\)
−0.902864 + 0.429925i \(0.858540\pi\)
\(42\) 0 0
\(43\) 4.47214 0.681994 0.340997 0.940064i \(-0.389235\pi\)
0.340997 + 0.940064i \(0.389235\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.47214 −1.08992 −0.544962 0.838461i \(-0.683456\pi\)
−0.544962 + 0.838461i \(0.683456\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.09017 −0.836549 −0.418275 0.908321i \(-0.637365\pi\)
−0.418275 + 0.908321i \(0.637365\pi\)
\(54\) 0 0
\(55\) 11.0902 1.49540
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.0000 −1.43208 −0.716039 0.698060i \(-0.754047\pi\)
−0.716039 + 0.698060i \(0.754047\pi\)
\(60\) 0 0
\(61\) −4.23607 −0.542373 −0.271186 0.962527i \(-0.587416\pi\)
−0.271186 + 0.962527i \(0.587416\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14.7082 1.82433
\(66\) 0 0
\(67\) −7.56231 −0.923883 −0.461941 0.886910i \(-0.652847\pi\)
−0.461941 + 0.886910i \(0.652847\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.76393 0.446697 0.223348 0.974739i \(-0.428301\pi\)
0.223348 + 0.974739i \(0.428301\pi\)
\(72\) 0 0
\(73\) 3.61803 0.423459 0.211729 0.977328i \(-0.432090\pi\)
0.211729 + 0.977328i \(0.432090\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.61803 −0.298353
\(78\) 0 0
\(79\) −4.47214 −0.503155 −0.251577 0.967837i \(-0.580949\pi\)
−0.251577 + 0.967837i \(0.580949\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.5623 −1.15936 −0.579682 0.814843i \(-0.696823\pi\)
−0.579682 + 0.814843i \(0.696823\pi\)
\(84\) 0 0
\(85\) 24.7984 2.68976
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.7082 1.66507 0.832533 0.553975i \(-0.186890\pi\)
0.832533 + 0.553975i \(0.186890\pi\)
\(90\) 0 0
\(91\) −3.47214 −0.363979
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.23607 0.434611
\(96\) 0 0
\(97\) −3.47214 −0.352542 −0.176271 0.984342i \(-0.556404\pi\)
−0.176271 + 0.984342i \(0.556404\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.4164 1.43449 0.717243 0.696823i \(-0.245404\pi\)
0.717243 + 0.696823i \(0.245404\pi\)
\(102\) 0 0
\(103\) 6.52786 0.643210 0.321605 0.946874i \(-0.395778\pi\)
0.321605 + 0.946874i \(0.395778\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.1803 −1.46754 −0.733769 0.679399i \(-0.762241\pi\)
−0.733769 + 0.679399i \(0.762241\pi\)
\(108\) 0 0
\(109\) 0.527864 0.0505602 0.0252801 0.999680i \(-0.491952\pi\)
0.0252801 + 0.999680i \(0.491952\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.5623 1.55805 0.779025 0.626992i \(-0.215714\pi\)
0.779025 + 0.626992i \(0.215714\pi\)
\(114\) 0 0
\(115\) 34.8885 3.25337
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.85410 −0.536645
\(120\) 0 0
\(121\) −4.14590 −0.376900
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 33.6525 3.00997
\(126\) 0 0
\(127\) −15.7082 −1.39388 −0.696939 0.717131i \(-0.745455\pi\)
−0.696939 + 0.717131i \(0.745455\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.90983 −0.428974 −0.214487 0.976727i \(-0.568808\pi\)
−0.214487 + 0.976727i \(0.568808\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.41641 −0.462755 −0.231377 0.972864i \(-0.574323\pi\)
−0.231377 + 0.972864i \(0.574323\pi\)
\(138\) 0 0
\(139\) 2.52786 0.214411 0.107205 0.994237i \(-0.465810\pi\)
0.107205 + 0.994237i \(0.465810\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.09017 0.760158
\(144\) 0 0
\(145\) 19.5623 1.62456
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.4164 −0.853345 −0.426673 0.904406i \(-0.640314\pi\)
−0.426673 + 0.904406i \(0.640314\pi\)
\(150\) 0 0
\(151\) 1.09017 0.0887168 0.0443584 0.999016i \(-0.485876\pi\)
0.0443584 + 0.999016i \(0.485876\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.3262 −1.31135
\(156\) 0 0
\(157\) −11.5623 −0.922772 −0.461386 0.887199i \(-0.652648\pi\)
−0.461386 + 0.887199i \(0.652648\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.23607 −0.649093
\(162\) 0 0
\(163\) −3.14590 −0.246406 −0.123203 0.992382i \(-0.539317\pi\)
−0.123203 + 0.992382i \(0.539317\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.23607 0.482561 0.241281 0.970455i \(-0.422433\pi\)
0.241281 + 0.970455i \(0.422433\pi\)
\(168\) 0 0
\(169\) −0.944272 −0.0726363
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.70820 −0.586044 −0.293022 0.956106i \(-0.594661\pi\)
−0.293022 + 0.956106i \(0.594661\pi\)
\(174\) 0 0
\(175\) −12.9443 −0.978495
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.79837 0.508134 0.254067 0.967187i \(-0.418232\pi\)
0.254067 + 0.967187i \(0.418232\pi\)
\(180\) 0 0
\(181\) 10.7984 0.802637 0.401318 0.915939i \(-0.368552\pi\)
0.401318 + 0.915939i \(0.368552\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −34.8885 −2.56506
\(186\) 0 0
\(187\) 15.3262 1.12077
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.0902 1.16424 0.582122 0.813102i \(-0.302223\pi\)
0.582122 + 0.813102i \(0.302223\pi\)
\(192\) 0 0
\(193\) −9.27051 −0.667306 −0.333653 0.942696i \(-0.608281\pi\)
−0.333653 + 0.942696i \(0.608281\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.90983 0.706046 0.353023 0.935615i \(-0.385154\pi\)
0.353023 + 0.935615i \(0.385154\pi\)
\(198\) 0 0
\(199\) −7.00000 −0.496217 −0.248108 0.968732i \(-0.579809\pi\)
−0.248108 + 0.968732i \(0.579809\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.61803 −0.324122
\(204\) 0 0
\(205\) −48.9787 −3.42082
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.61803 0.181093
\(210\) 0 0
\(211\) −0.381966 −0.0262956 −0.0131478 0.999914i \(-0.504185\pi\)
−0.0131478 + 0.999914i \(0.504185\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.9443 1.29199
\(216\) 0 0
\(217\) 3.85410 0.261633
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 20.3262 1.36729
\(222\) 0 0
\(223\) −21.7639 −1.45742 −0.728710 0.684822i \(-0.759880\pi\)
−0.728710 + 0.684822i \(0.759880\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.14590 −0.540662 −0.270331 0.962767i \(-0.587133\pi\)
−0.270331 + 0.962767i \(0.587133\pi\)
\(228\) 0 0
\(229\) 24.4721 1.61716 0.808582 0.588383i \(-0.200235\pi\)
0.808582 + 0.588383i \(0.200235\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.0902 1.77474 0.887368 0.461062i \(-0.152531\pi\)
0.887368 + 0.461062i \(0.152531\pi\)
\(234\) 0 0
\(235\) −31.6525 −2.06478
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.6525 −1.01247 −0.506237 0.862394i \(-0.668964\pi\)
−0.506237 + 0.862394i \(0.668964\pi\)
\(240\) 0 0
\(241\) −11.2361 −0.723779 −0.361889 0.932221i \(-0.617868\pi\)
−0.361889 + 0.932221i \(0.617868\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.23607 0.270632
\(246\) 0 0
\(247\) 3.47214 0.220927
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.85410 0.495747 0.247873 0.968792i \(-0.420268\pi\)
0.247873 + 0.968792i \(0.420268\pi\)
\(252\) 0 0
\(253\) 21.5623 1.35561
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.90983 0.618158 0.309079 0.951036i \(-0.399979\pi\)
0.309079 + 0.951036i \(0.399979\pi\)
\(258\) 0 0
\(259\) 8.23607 0.511764
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.43769 0.335303 0.167651 0.985846i \(-0.446382\pi\)
0.167651 + 0.985846i \(0.446382\pi\)
\(264\) 0 0
\(265\) −25.7984 −1.58478
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.32624 0.446689 0.223344 0.974740i \(-0.428303\pi\)
0.223344 + 0.974740i \(0.428303\pi\)
\(270\) 0 0
\(271\) 21.2705 1.29209 0.646046 0.763299i \(-0.276422\pi\)
0.646046 + 0.763299i \(0.276422\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 33.8885 2.04356
\(276\) 0 0
\(277\) −8.18034 −0.491509 −0.245754 0.969332i \(-0.579036\pi\)
−0.245754 + 0.969332i \(0.579036\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.4164 0.979321 0.489660 0.871913i \(-0.337121\pi\)
0.489660 + 0.871913i \(0.337121\pi\)
\(282\) 0 0
\(283\) −8.09017 −0.480911 −0.240455 0.970660i \(-0.577297\pi\)
−0.240455 + 0.970660i \(0.577297\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.5623 0.682501
\(288\) 0 0
\(289\) 17.2705 1.01591
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.236068 −0.0137912 −0.00689562 0.999976i \(-0.502195\pi\)
−0.00689562 + 0.999976i \(0.502195\pi\)
\(294\) 0 0
\(295\) −46.5967 −2.71297
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 28.5967 1.65379
\(300\) 0 0
\(301\) −4.47214 −0.257770
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −17.9443 −1.02749
\(306\) 0 0
\(307\) 19.8541 1.13313 0.566567 0.824016i \(-0.308271\pi\)
0.566567 + 0.824016i \(0.308271\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.7426 −0.779274 −0.389637 0.920969i \(-0.627400\pi\)
−0.389637 + 0.920969i \(0.627400\pi\)
\(312\) 0 0
\(313\) −7.23607 −0.409007 −0.204503 0.978866i \(-0.565558\pi\)
−0.204503 + 0.978866i \(0.565558\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.5279 0.647469 0.323735 0.946148i \(-0.395061\pi\)
0.323735 + 0.946148i \(0.395061\pi\)
\(318\) 0 0
\(319\) 12.0902 0.676920
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.85410 0.325731
\(324\) 0 0
\(325\) 44.9443 2.49306
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.47214 0.411952
\(330\) 0 0
\(331\) −11.0344 −0.606508 −0.303254 0.952910i \(-0.598073\pi\)
−0.303254 + 0.952910i \(0.598073\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −32.0344 −1.75023
\(336\) 0 0
\(337\) −1.38197 −0.0752805 −0.0376402 0.999291i \(-0.511984\pi\)
−0.0376402 + 0.999291i \(0.511984\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.0902 −0.546413
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.9787 −1.07251 −0.536257 0.844055i \(-0.680162\pi\)
−0.536257 + 0.844055i \(0.680162\pi\)
\(348\) 0 0
\(349\) −1.43769 −0.0769580 −0.0384790 0.999259i \(-0.512251\pi\)
−0.0384790 + 0.999259i \(0.512251\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.9787 −0.584338 −0.292169 0.956367i \(-0.594377\pi\)
−0.292169 + 0.956367i \(0.594377\pi\)
\(354\) 0 0
\(355\) 15.9443 0.846234
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.2705 −1.43928 −0.719641 0.694346i \(-0.755694\pi\)
−0.719641 + 0.694346i \(0.755694\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.3262 0.802212
\(366\) 0 0
\(367\) −22.7082 −1.18536 −0.592679 0.805439i \(-0.701930\pi\)
−0.592679 + 0.805439i \(0.701930\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.09017 0.316186
\(372\) 0 0
\(373\) 23.7984 1.23223 0.616117 0.787655i \(-0.288705\pi\)
0.616117 + 0.787655i \(0.288705\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.0344 0.825816
\(378\) 0 0
\(379\) −13.0000 −0.667765 −0.333883 0.942615i \(-0.608359\pi\)
−0.333883 + 0.942615i \(0.608359\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.4164 −0.736644 −0.368322 0.929698i \(-0.620068\pi\)
−0.368322 + 0.929698i \(0.620068\pi\)
\(384\) 0 0
\(385\) −11.0902 −0.565207
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.43769 −0.123596 −0.0617980 0.998089i \(-0.519683\pi\)
−0.0617980 + 0.998089i \(0.519683\pi\)
\(390\) 0 0
\(391\) 48.2148 2.43833
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −18.9443 −0.953190
\(396\) 0 0
\(397\) −3.70820 −0.186109 −0.0930547 0.995661i \(-0.529663\pi\)
−0.0930547 + 0.995661i \(0.529663\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.72949 −0.136304 −0.0681521 0.997675i \(-0.521710\pi\)
−0.0681521 + 0.997675i \(0.521710\pi\)
\(402\) 0 0
\(403\) −13.3820 −0.666603
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −21.5623 −1.06880
\(408\) 0 0
\(409\) 14.8541 0.734488 0.367244 0.930125i \(-0.380301\pi\)
0.367244 + 0.930125i \(0.380301\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.0000 0.541275
\(414\) 0 0
\(415\) −44.7426 −2.19633
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −20.5279 −1.00285 −0.501426 0.865201i \(-0.667191\pi\)
−0.501426 + 0.865201i \(0.667191\pi\)
\(420\) 0 0
\(421\) −10.1246 −0.493443 −0.246722 0.969086i \(-0.579353\pi\)
−0.246722 + 0.969086i \(0.579353\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 75.7771 3.67573
\(426\) 0 0
\(427\) 4.23607 0.204998
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.0000 0.481683 0.240842 0.970564i \(-0.422577\pi\)
0.240842 + 0.970564i \(0.422577\pi\)
\(432\) 0 0
\(433\) −36.5967 −1.75873 −0.879364 0.476151i \(-0.842032\pi\)
−0.879364 + 0.476151i \(0.842032\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.23607 0.393985
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.5623 −0.501830 −0.250915 0.968009i \(-0.580732\pi\)
−0.250915 + 0.968009i \(0.580732\pi\)
\(444\) 0 0
\(445\) 66.5410 3.15435
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.27051 0.295924 0.147962 0.988993i \(-0.452729\pi\)
0.147962 + 0.988993i \(0.452729\pi\)
\(450\) 0 0
\(451\) −30.2705 −1.42538
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −14.7082 −0.689531
\(456\) 0 0
\(457\) −27.7984 −1.30035 −0.650177 0.759783i \(-0.725305\pi\)
−0.650177 + 0.759783i \(0.725305\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −31.2148 −1.45382 −0.726909 0.686734i \(-0.759044\pi\)
−0.726909 + 0.686734i \(0.759044\pi\)
\(462\) 0 0
\(463\) −4.05573 −0.188486 −0.0942428 0.995549i \(-0.530043\pi\)
−0.0942428 + 0.995549i \(0.530043\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 40.4508 1.87184 0.935921 0.352210i \(-0.114570\pi\)
0.935921 + 0.352210i \(0.114570\pi\)
\(468\) 0 0
\(469\) 7.56231 0.349195
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.7082 0.538344
\(474\) 0 0
\(475\) 12.9443 0.593924
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.3262 0.563200 0.281600 0.959532i \(-0.409135\pi\)
0.281600 + 0.959532i \(0.409135\pi\)
\(480\) 0 0
\(481\) −28.5967 −1.30390
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.7082 −0.667865
\(486\) 0 0
\(487\) 33.1803 1.50354 0.751772 0.659423i \(-0.229199\pi\)
0.751772 + 0.659423i \(0.229199\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 23.4164 1.05677 0.528384 0.849006i \(-0.322798\pi\)
0.528384 + 0.849006i \(0.322798\pi\)
\(492\) 0 0
\(493\) 27.0344 1.21757
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.76393 −0.168835
\(498\) 0 0
\(499\) 35.6180 1.59448 0.797241 0.603661i \(-0.206292\pi\)
0.797241 + 0.603661i \(0.206292\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.9443 0.577157 0.288578 0.957456i \(-0.406817\pi\)
0.288578 + 0.957456i \(0.406817\pi\)
\(504\) 0 0
\(505\) 61.0689 2.71753
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −32.8328 −1.45529 −0.727644 0.685954i \(-0.759385\pi\)
−0.727644 + 0.685954i \(0.759385\pi\)
\(510\) 0 0
\(511\) −3.61803 −0.160052
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 27.6525 1.21851
\(516\) 0 0
\(517\) −19.5623 −0.860349
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −39.1803 −1.71652 −0.858261 0.513214i \(-0.828455\pi\)
−0.858261 + 0.513214i \(0.828455\pi\)
\(522\) 0 0
\(523\) 34.5967 1.51281 0.756405 0.654103i \(-0.226954\pi\)
0.756405 + 0.654103i \(0.226954\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −22.5623 −0.982829
\(528\) 0 0
\(529\) 44.8328 1.94925
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −40.1459 −1.73891
\(534\) 0 0
\(535\) −64.3050 −2.78015
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.61803 0.112767
\(540\) 0 0
\(541\) −26.3607 −1.13333 −0.566667 0.823947i \(-0.691767\pi\)
−0.566667 + 0.823947i \(0.691767\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.23607 0.0957826
\(546\) 0 0
\(547\) 35.3951 1.51339 0.756693 0.653770i \(-0.226814\pi\)
0.756693 + 0.653770i \(0.226814\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.61803 0.196735
\(552\) 0 0
\(553\) 4.47214 0.190175
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.3262 0.776508 0.388254 0.921552i \(-0.373078\pi\)
0.388254 + 0.921552i \(0.373078\pi\)
\(558\) 0 0
\(559\) 15.5279 0.656759
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 37.8328 1.59446 0.797232 0.603674i \(-0.206297\pi\)
0.797232 + 0.603674i \(0.206297\pi\)
\(564\) 0 0
\(565\) 70.1591 2.95161
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 38.0132 1.59359 0.796797 0.604247i \(-0.206526\pi\)
0.796797 + 0.604247i \(0.206526\pi\)
\(570\) 0 0
\(571\) 0.527864 0.0220904 0.0110452 0.999939i \(-0.496484\pi\)
0.0110452 + 0.999939i \(0.496484\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 106.610 4.44594
\(576\) 0 0
\(577\) −23.6869 −0.986099 −0.493050 0.870001i \(-0.664118\pi\)
−0.493050 + 0.870001i \(0.664118\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.5623 0.438198
\(582\) 0 0
\(583\) −15.9443 −0.660344
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.5836 −0.436832 −0.218416 0.975856i \(-0.570089\pi\)
−0.218416 + 0.975856i \(0.570089\pi\)
\(588\) 0 0
\(589\) −3.85410 −0.158806
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 26.5279 1.08937 0.544684 0.838641i \(-0.316649\pi\)
0.544684 + 0.838641i \(0.316649\pi\)
\(594\) 0 0
\(595\) −24.7984 −1.01663
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.5623 −0.513282 −0.256641 0.966507i \(-0.582616\pi\)
−0.256641 + 0.966507i \(0.582616\pi\)
\(600\) 0 0
\(601\) −3.14590 −0.128324 −0.0641619 0.997940i \(-0.520437\pi\)
−0.0641619 + 0.997940i \(0.520437\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −17.5623 −0.714009
\(606\) 0 0
\(607\) 3.00000 0.121766 0.0608831 0.998145i \(-0.480608\pi\)
0.0608831 + 0.998145i \(0.480608\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −25.9443 −1.04959
\(612\) 0 0
\(613\) −14.0902 −0.569097 −0.284548 0.958662i \(-0.591844\pi\)
−0.284548 + 0.958662i \(0.591844\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16.4377 −0.661757 −0.330878 0.943673i \(-0.607345\pi\)
−0.330878 + 0.943673i \(0.607345\pi\)
\(618\) 0 0
\(619\) −36.3820 −1.46231 −0.731157 0.682209i \(-0.761019\pi\)
−0.731157 + 0.682209i \(0.761019\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −15.7082 −0.629336
\(624\) 0 0
\(625\) 77.8328 3.11331
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −48.2148 −1.92245
\(630\) 0 0
\(631\) 12.8885 0.513085 0.256542 0.966533i \(-0.417417\pi\)
0.256542 + 0.966533i \(0.417417\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −66.5410 −2.64060
\(636\) 0 0
\(637\) 3.47214 0.137571
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.6738 0.935057 0.467529 0.883978i \(-0.345144\pi\)
0.467529 + 0.883978i \(0.345144\pi\)
\(642\) 0 0
\(643\) 23.1803 0.914143 0.457072 0.889430i \(-0.348898\pi\)
0.457072 + 0.889430i \(0.348898\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.41641 −0.173627 −0.0868135 0.996225i \(-0.527668\pi\)
−0.0868135 + 0.996225i \(0.527668\pi\)
\(648\) 0 0
\(649\) −28.7984 −1.13044
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.1246 −0.709271 −0.354635 0.935005i \(-0.615395\pi\)
−0.354635 + 0.935005i \(0.615395\pi\)
\(654\) 0 0
\(655\) −20.7984 −0.812660
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.6180 −0.725256 −0.362628 0.931934i \(-0.618120\pi\)
−0.362628 + 0.931934i \(0.618120\pi\)
\(660\) 0 0
\(661\) −25.0557 −0.974555 −0.487277 0.873247i \(-0.662010\pi\)
−0.487277 + 0.873247i \(0.662010\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.23607 −0.164268
\(666\) 0 0
\(667\) 38.0344 1.47270
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −11.0902 −0.428131
\(672\) 0 0
\(673\) −12.5623 −0.484241 −0.242121 0.970246i \(-0.577843\pi\)
−0.242121 + 0.970246i \(0.577843\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 30.3820 1.16767 0.583837 0.811871i \(-0.301551\pi\)
0.583837 + 0.811871i \(0.301551\pi\)
\(678\) 0 0
\(679\) 3.47214 0.133248
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10.2361 0.391672 0.195836 0.980637i \(-0.437258\pi\)
0.195836 + 0.980637i \(0.437258\pi\)
\(684\) 0 0
\(685\) −22.9443 −0.876656
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −21.1459 −0.805595
\(690\) 0 0
\(691\) −14.2918 −0.543686 −0.271843 0.962342i \(-0.587633\pi\)
−0.271843 + 0.962342i \(0.587633\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.7082 0.406185
\(696\) 0 0
\(697\) −67.6869 −2.56382
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −20.3607 −0.769012 −0.384506 0.923122i \(-0.625628\pi\)
−0.384506 + 0.923122i \(0.625628\pi\)
\(702\) 0 0
\(703\) −8.23607 −0.310629
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.4164 −0.542185
\(708\) 0 0
\(709\) 35.2918 1.32541 0.662706 0.748880i \(-0.269408\pi\)
0.662706 + 0.748880i \(0.269408\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −31.7426 −1.18877
\(714\) 0 0
\(715\) 38.5066 1.44006
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.9443 0.631915 0.315957 0.948773i \(-0.397674\pi\)
0.315957 + 0.948773i \(0.397674\pi\)
\(720\) 0 0
\(721\) −6.52786 −0.243110
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 59.7771 2.22007
\(726\) 0 0
\(727\) 37.0689 1.37481 0.687404 0.726275i \(-0.258750\pi\)
0.687404 + 0.726275i \(0.258750\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 26.1803 0.968315
\(732\) 0 0
\(733\) −32.0000 −1.18195 −0.590973 0.806691i \(-0.701256\pi\)
−0.590973 + 0.806691i \(0.701256\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −19.7984 −0.729282
\(738\) 0 0
\(739\) 3.29180 0.121091 0.0605453 0.998165i \(-0.480716\pi\)
0.0605453 + 0.998165i \(0.480716\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −41.5410 −1.52399 −0.761996 0.647582i \(-0.775780\pi\)
−0.761996 + 0.647582i \(0.775780\pi\)
\(744\) 0 0
\(745\) −44.1246 −1.61660
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15.1803 0.554678
\(750\) 0 0
\(751\) 10.0902 0.368196 0.184098 0.982908i \(-0.441064\pi\)
0.184098 + 0.982908i \(0.441064\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.61803 0.168067
\(756\) 0 0
\(757\) 7.52786 0.273605 0.136802 0.990598i \(-0.456317\pi\)
0.136802 + 0.990598i \(0.456317\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −46.5967 −1.68913 −0.844565 0.535452i \(-0.820141\pi\)
−0.844565 + 0.535452i \(0.820141\pi\)
\(762\) 0 0
\(763\) −0.527864 −0.0191100
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −38.1935 −1.37909
\(768\) 0 0
\(769\) 24.9443 0.899513 0.449757 0.893151i \(-0.351511\pi\)
0.449757 + 0.893151i \(0.351511\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 29.7082 1.06853 0.534265 0.845317i \(-0.320588\pi\)
0.534265 + 0.845317i \(0.320588\pi\)
\(774\) 0 0
\(775\) −49.8885 −1.79205
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.5623 −0.414263
\(780\) 0 0
\(781\) 9.85410 0.352607
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −48.9787 −1.74813
\(786\) 0 0
\(787\) 31.4164 1.11987 0.559937 0.828535i \(-0.310825\pi\)
0.559937 + 0.828535i \(0.310825\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −16.5623 −0.588888
\(792\) 0 0
\(793\) −14.7082 −0.522304
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.9787 0.813948 0.406974 0.913440i \(-0.366584\pi\)
0.406974 + 0.913440i \(0.366584\pi\)
\(798\) 0 0
\(799\) −43.7426 −1.54750
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.47214 0.334264
\(804\) 0 0
\(805\) −34.8885 −1.22966
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −11.0689 −0.389161 −0.194581 0.980887i \(-0.562335\pi\)
−0.194581 + 0.980887i \(0.562335\pi\)
\(810\) 0 0
\(811\) −48.8328 −1.71475 −0.857376 0.514691i \(-0.827907\pi\)
−0.857376 + 0.514691i \(0.827907\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.3262 −0.466798
\(816\) 0 0
\(817\) 4.47214 0.156460
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −44.3607 −1.54820 −0.774099 0.633064i \(-0.781797\pi\)
−0.774099 + 0.633064i \(0.781797\pi\)
\(822\) 0 0
\(823\) −8.76393 −0.305491 −0.152746 0.988266i \(-0.548812\pi\)
−0.152746 + 0.988266i \(0.548812\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −7.29180 −0.253561 −0.126780 0.991931i \(-0.540464\pi\)
−0.126780 + 0.991931i \(0.540464\pi\)
\(828\) 0 0
\(829\) −6.11146 −0.212260 −0.106130 0.994352i \(-0.533846\pi\)
−0.106130 + 0.994352i \(0.533846\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.85410 0.202833
\(834\) 0 0
\(835\) 26.4164 0.914177
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −34.4721 −1.19011 −0.595055 0.803685i \(-0.702870\pi\)
−0.595055 + 0.803685i \(0.702870\pi\)
\(840\) 0 0
\(841\) −7.67376 −0.264612
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −4.00000 −0.137604
\(846\) 0 0
\(847\) 4.14590 0.142455
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −67.8328 −2.32528
\(852\) 0 0
\(853\) −31.6180 −1.08258 −0.541290 0.840836i \(-0.682064\pi\)
−0.541290 + 0.840836i \(0.682064\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 49.9230 1.70534 0.852668 0.522453i \(-0.174983\pi\)
0.852668 + 0.522453i \(0.174983\pi\)
\(858\) 0 0
\(859\) −19.4508 −0.663654 −0.331827 0.943340i \(-0.607665\pi\)
−0.331827 + 0.943340i \(0.607665\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28.1591 0.958545 0.479273 0.877666i \(-0.340901\pi\)
0.479273 + 0.877666i \(0.340901\pi\)
\(864\) 0 0
\(865\) −32.6525 −1.11022
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.7082 −0.397174
\(870\) 0 0
\(871\) −26.2574 −0.889697
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −33.6525 −1.13766
\(876\) 0 0
\(877\) 54.5410 1.84172 0.920860 0.389894i \(-0.127488\pi\)
0.920860 + 0.389894i \(0.127488\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.21478 0.175690 0.0878452 0.996134i \(-0.472002\pi\)
0.0878452 + 0.996134i \(0.472002\pi\)
\(882\) 0 0
\(883\) −45.0689 −1.51669 −0.758344 0.651854i \(-0.773991\pi\)
−0.758344 + 0.651854i \(0.773991\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.1246 0.541411 0.270706 0.962662i \(-0.412743\pi\)
0.270706 + 0.962662i \(0.412743\pi\)
\(888\) 0 0
\(889\) 15.7082 0.526836
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.47214 −0.250045
\(894\) 0 0
\(895\) 28.7984 0.962623
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −17.7984 −0.593609
\(900\) 0 0
\(901\) −35.6525 −1.18776
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 45.7426 1.52054
\(906\) 0 0
\(907\) 46.1935 1.53383 0.766915 0.641749i \(-0.221791\pi\)
0.766915 + 0.641749i \(0.221791\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.58359 0.218124 0.109062 0.994035i \(-0.465215\pi\)
0.109062 + 0.994035i \(0.465215\pi\)
\(912\) 0 0
\(913\) −27.6525 −0.915163
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.90983 0.162137
\(918\) 0 0
\(919\) 2.63932 0.0870631 0.0435316 0.999052i \(-0.486139\pi\)
0.0435316 + 0.999052i \(0.486139\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.0689 0.430168
\(924\) 0 0
\(925\) −106.610 −3.50531
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −16.4508 −0.539735 −0.269867 0.962897i \(-0.586980\pi\)
−0.269867 + 0.962897i \(0.586980\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 64.9230 2.12321
\(936\) 0 0
\(937\) −38.2148 −1.24842 −0.624211 0.781256i \(-0.714580\pi\)
−0.624211 + 0.781256i \(0.714580\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 24.4721 0.797769 0.398884 0.917001i \(-0.369397\pi\)
0.398884 + 0.917001i \(0.369397\pi\)
\(942\) 0 0
\(943\) −95.2279 −3.10105
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26.4508 0.859537 0.429769 0.902939i \(-0.358595\pi\)
0.429769 + 0.902939i \(0.358595\pi\)
\(948\) 0 0
\(949\) 12.5623 0.407790
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 31.4508 1.01879 0.509396 0.860532i \(-0.329869\pi\)
0.509396 + 0.860532i \(0.329869\pi\)
\(954\) 0 0
\(955\) 68.1591 2.20558
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.41641 0.174905
\(960\) 0 0
\(961\) −16.1459 −0.520835
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −39.2705 −1.26416
\(966\) 0 0
\(967\) −24.6869 −0.793878 −0.396939 0.917845i \(-0.629928\pi\)
−0.396939 + 0.917845i \(0.629928\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −50.8885 −1.63309 −0.816546 0.577281i \(-0.804114\pi\)
−0.816546 + 0.577281i \(0.804114\pi\)
\(972\) 0 0
\(973\) −2.52786 −0.0810396
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40.7639 1.30415 0.652077 0.758153i \(-0.273898\pi\)
0.652077 + 0.758153i \(0.273898\pi\)
\(978\) 0 0
\(979\) 41.1246 1.31435
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −33.5836 −1.07115 −0.535575 0.844488i \(-0.679905\pi\)
−0.535575 + 0.844488i \(0.679905\pi\)
\(984\) 0 0
\(985\) 41.9787 1.33755
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 36.8328 1.17122
\(990\) 0 0
\(991\) −0.763932 −0.0242671 −0.0121336 0.999926i \(-0.503862\pi\)
−0.0121336 + 0.999926i \(0.503862\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −29.6525 −0.940047
\(996\) 0 0
\(997\) 22.6312 0.716737 0.358368 0.933580i \(-0.383333\pi\)
0.358368 + 0.933580i \(0.383333\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.n.1.2 2
3.2 odd 2 532.2.a.d.1.2 2
12.11 even 2 2128.2.a.e.1.1 2
21.20 even 2 3724.2.a.d.1.1 2
24.5 odd 2 8512.2.a.s.1.1 2
24.11 even 2 8512.2.a.z.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.a.d.1.2 2 3.2 odd 2
2128.2.a.e.1.1 2 12.11 even 2
3724.2.a.d.1.1 2 21.20 even 2
4788.2.a.n.1.2 2 1.1 even 1 trivial
8512.2.a.s.1.1 2 24.5 odd 2
8512.2.a.z.1.2 2 24.11 even 2