Properties

Label 4788.2.a.m.1.2
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1596)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.23607 q^{5} +1.00000 q^{7} +O(q^{10})\) \(q+3.23607 q^{5} +1.00000 q^{7} +2.00000 q^{11} +4.47214 q^{13} -3.23607 q^{17} -1.00000 q^{19} +2.00000 q^{23} +5.47214 q^{25} +2.76393 q^{29} +4.00000 q^{31} +3.23607 q^{35} -4.47214 q^{37} +2.47214 q^{41} -1.52786 q^{43} +4.76393 q^{47} +1.00000 q^{49} +10.1803 q^{53} +6.47214 q^{55} -4.94427 q^{59} -8.47214 q^{61} +14.4721 q^{65} -12.9443 q^{67} +2.76393 q^{71} +6.00000 q^{73} +2.00000 q^{77} +0.944272 q^{79} +11.2361 q^{83} -10.4721 q^{85} +10.4721 q^{89} +4.47214 q^{91} -3.23607 q^{95} +7.52786 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} + 2 q^{7} + 4 q^{11} - 2 q^{17} - 2 q^{19} + 4 q^{23} + 2 q^{25} + 10 q^{29} + 8 q^{31} + 2 q^{35} - 4 q^{41} - 12 q^{43} + 14 q^{47} + 2 q^{49} - 2 q^{53} + 4 q^{55} + 8 q^{59} - 8 q^{61} + 20 q^{65} - 8 q^{67} + 10 q^{71} + 12 q^{73} + 4 q^{77} - 16 q^{79} + 18 q^{83} - 12 q^{85} + 12 q^{89} - 2 q^{95} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.23607 1.44721 0.723607 0.690212i \(-0.242483\pi\)
0.723607 + 0.690212i \(0.242483\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 4.47214 1.24035 0.620174 0.784465i \(-0.287062\pi\)
0.620174 + 0.784465i \(0.287062\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.23607 −0.784862 −0.392431 0.919781i \(-0.628366\pi\)
−0.392431 + 0.919781i \(0.628366\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 0 0
\(25\) 5.47214 1.09443
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.76393 0.513249 0.256625 0.966511i \(-0.417390\pi\)
0.256625 + 0.966511i \(0.417390\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.23607 0.546995
\(36\) 0 0
\(37\) −4.47214 −0.735215 −0.367607 0.929981i \(-0.619823\pi\)
−0.367607 + 0.929981i \(0.619823\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.47214 0.386083 0.193041 0.981191i \(-0.438165\pi\)
0.193041 + 0.981191i \(0.438165\pi\)
\(42\) 0 0
\(43\) −1.52786 −0.232997 −0.116499 0.993191i \(-0.537167\pi\)
−0.116499 + 0.993191i \(0.537167\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.76393 0.694891 0.347445 0.937700i \(-0.387049\pi\)
0.347445 + 0.937700i \(0.387049\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.1803 1.39838 0.699189 0.714937i \(-0.253545\pi\)
0.699189 + 0.714937i \(0.253545\pi\)
\(54\) 0 0
\(55\) 6.47214 0.872703
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.94427 −0.643689 −0.321845 0.946792i \(-0.604303\pi\)
−0.321845 + 0.946792i \(0.604303\pi\)
\(60\) 0 0
\(61\) −8.47214 −1.08475 −0.542373 0.840138i \(-0.682474\pi\)
−0.542373 + 0.840138i \(0.682474\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14.4721 1.79505
\(66\) 0 0
\(67\) −12.9443 −1.58139 −0.790697 0.612207i \(-0.790282\pi\)
−0.790697 + 0.612207i \(0.790282\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.76393 0.328018 0.164009 0.986459i \(-0.447557\pi\)
0.164009 + 0.986459i \(0.447557\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) 0.944272 0.106239 0.0531194 0.998588i \(-0.483084\pi\)
0.0531194 + 0.998588i \(0.483084\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.2361 1.23332 0.616659 0.787230i \(-0.288486\pi\)
0.616659 + 0.787230i \(0.288486\pi\)
\(84\) 0 0
\(85\) −10.4721 −1.13586
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.4721 1.11004 0.555022 0.831836i \(-0.312710\pi\)
0.555022 + 0.831836i \(0.312710\pi\)
\(90\) 0 0
\(91\) 4.47214 0.468807
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.23607 −0.332014
\(96\) 0 0
\(97\) 7.52786 0.764339 0.382169 0.924092i \(-0.375177\pi\)
0.382169 + 0.924092i \(0.375177\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.70820 −0.567988 −0.283994 0.958826i \(-0.591660\pi\)
−0.283994 + 0.958826i \(0.591660\pi\)
\(102\) 0 0
\(103\) −17.8885 −1.76261 −0.881305 0.472547i \(-0.843335\pi\)
−0.881305 + 0.472547i \(0.843335\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.76393 0.653894 0.326947 0.945043i \(-0.393980\pi\)
0.326947 + 0.945043i \(0.393980\pi\)
\(108\) 0 0
\(109\) 9.41641 0.901928 0.450964 0.892542i \(-0.351080\pi\)
0.450964 + 0.892542i \(0.351080\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.23607 −0.116279 −0.0581397 0.998308i \(-0.518517\pi\)
−0.0581397 + 0.998308i \(0.518517\pi\)
\(114\) 0 0
\(115\) 6.47214 0.603530
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.23607 −0.296650
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.52786 0.136656
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.18034 −0.714720 −0.357360 0.933967i \(-0.616323\pi\)
−0.357360 + 0.933967i \(0.616323\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.94427 0.747958
\(144\) 0 0
\(145\) 8.94427 0.742781
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.4721 1.02176 0.510879 0.859653i \(-0.329320\pi\)
0.510879 + 0.859653i \(0.329320\pi\)
\(150\) 0 0
\(151\) −11.4164 −0.929054 −0.464527 0.885559i \(-0.653776\pi\)
−0.464527 + 0.885559i \(0.653776\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.9443 1.03971
\(156\) 0 0
\(157\) 4.47214 0.356915 0.178458 0.983948i \(-0.442889\pi\)
0.178458 + 0.983948i \(0.442889\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) −10.4721 −0.820241 −0.410120 0.912031i \(-0.634513\pi\)
−0.410120 + 0.912031i \(0.634513\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.4164 −1.19296 −0.596479 0.802629i \(-0.703434\pi\)
−0.596479 + 0.802629i \(0.703434\pi\)
\(168\) 0 0
\(169\) 7.00000 0.538462
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.5279 −1.02850 −0.514252 0.857639i \(-0.671930\pi\)
−0.514252 + 0.857639i \(0.671930\pi\)
\(174\) 0 0
\(175\) 5.47214 0.413655
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 19.1246 1.42944 0.714720 0.699410i \(-0.246554\pi\)
0.714720 + 0.699410i \(0.246554\pi\)
\(180\) 0 0
\(181\) 3.52786 0.262224 0.131112 0.991368i \(-0.458145\pi\)
0.131112 + 0.991368i \(0.458145\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −14.4721 −1.06401
\(186\) 0 0
\(187\) −6.47214 −0.473289
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.9443 −1.08133 −0.540665 0.841238i \(-0.681827\pi\)
−0.540665 + 0.841238i \(0.681827\pi\)
\(192\) 0 0
\(193\) 20.4721 1.47362 0.736808 0.676102i \(-0.236332\pi\)
0.736808 + 0.676102i \(0.236332\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −14.4721 −1.02590 −0.512951 0.858418i \(-0.671448\pi\)
−0.512951 + 0.858418i \(0.671448\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.76393 0.193990
\(204\) 0 0
\(205\) 8.00000 0.558744
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) −7.41641 −0.510567 −0.255283 0.966866i \(-0.582169\pi\)
−0.255283 + 0.966866i \(0.582169\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.94427 −0.337197
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −14.4721 −0.973501
\(222\) 0 0
\(223\) 12.0000 0.803579 0.401790 0.915732i \(-0.368388\pi\)
0.401790 + 0.915732i \(0.368388\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.5279 1.16337 0.581683 0.813416i \(-0.302395\pi\)
0.581683 + 0.813416i \(0.302395\pi\)
\(228\) 0 0
\(229\) 16.4721 1.08851 0.544255 0.838920i \(-0.316813\pi\)
0.544255 + 0.838920i \(0.316813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.41641 −0.0927920 −0.0463960 0.998923i \(-0.514774\pi\)
−0.0463960 + 0.998923i \(0.514774\pi\)
\(234\) 0 0
\(235\) 15.4164 1.00566
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.52786 0.228199 0.114099 0.993469i \(-0.463602\pi\)
0.114099 + 0.993469i \(0.463602\pi\)
\(240\) 0 0
\(241\) 7.52786 0.484912 0.242456 0.970162i \(-0.422047\pi\)
0.242456 + 0.970162i \(0.422047\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.23607 0.206745
\(246\) 0 0
\(247\) −4.47214 −0.284555
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.29180 −0.144657 −0.0723284 0.997381i \(-0.523043\pi\)
−0.0723284 + 0.997381i \(0.523043\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −21.8885 −1.36537 −0.682685 0.730713i \(-0.739188\pi\)
−0.682685 + 0.730713i \(0.739188\pi\)
\(258\) 0 0
\(259\) −4.47214 −0.277885
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.3607 1.13217 0.566084 0.824348i \(-0.308458\pi\)
0.566084 + 0.824348i \(0.308458\pi\)
\(264\) 0 0
\(265\) 32.9443 2.02375
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 17.8885 1.09068 0.545342 0.838214i \(-0.316400\pi\)
0.545342 + 0.838214i \(0.316400\pi\)
\(270\) 0 0
\(271\) −24.3607 −1.47981 −0.739903 0.672714i \(-0.765129\pi\)
−0.739903 + 0.672714i \(0.765129\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.9443 0.659964
\(276\) 0 0
\(277\) 7.52786 0.452306 0.226153 0.974092i \(-0.427385\pi\)
0.226153 + 0.974092i \(0.427385\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.70820 0.459833 0.229916 0.973210i \(-0.426155\pi\)
0.229916 + 0.973210i \(0.426155\pi\)
\(282\) 0 0
\(283\) 23.4164 1.39196 0.695980 0.718061i \(-0.254970\pi\)
0.695980 + 0.718061i \(0.254970\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.47214 0.145926
\(288\) 0 0
\(289\) −6.52786 −0.383992
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.52786 0.322941 0.161471 0.986878i \(-0.448376\pi\)
0.161471 + 0.986878i \(0.448376\pi\)
\(294\) 0 0
\(295\) −16.0000 −0.931556
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.94427 0.517261
\(300\) 0 0
\(301\) −1.52786 −0.0880646
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −27.4164 −1.56986
\(306\) 0 0
\(307\) −4.94427 −0.282185 −0.141092 0.989996i \(-0.545061\pi\)
−0.141092 + 0.989996i \(0.545061\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 27.5967 1.56487 0.782434 0.622734i \(-0.213978\pi\)
0.782434 + 0.622734i \(0.213978\pi\)
\(312\) 0 0
\(313\) −25.4164 −1.43662 −0.718310 0.695723i \(-0.755084\pi\)
−0.718310 + 0.695723i \(0.755084\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.7639 1.27855 0.639275 0.768978i \(-0.279235\pi\)
0.639275 + 0.768978i \(0.279235\pi\)
\(318\) 0 0
\(319\) 5.52786 0.309501
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.23607 0.180060
\(324\) 0 0
\(325\) 24.4721 1.35747
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.76393 0.262644
\(330\) 0 0
\(331\) 12.3607 0.679404 0.339702 0.940533i \(-0.389674\pi\)
0.339702 + 0.940533i \(0.389674\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −41.8885 −2.28862
\(336\) 0 0
\(337\) 11.5279 0.627963 0.313981 0.949429i \(-0.398337\pi\)
0.313981 + 0.949429i \(0.398337\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −29.4164 −1.57916 −0.789578 0.613651i \(-0.789700\pi\)
−0.789578 + 0.613651i \(0.789700\pi\)
\(348\) 0 0
\(349\) −11.8885 −0.636379 −0.318190 0.948027i \(-0.603075\pi\)
−0.318190 + 0.948027i \(0.603075\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −37.1246 −1.97594 −0.987972 0.154634i \(-0.950580\pi\)
−0.987972 + 0.154634i \(0.950580\pi\)
\(354\) 0 0
\(355\) 8.94427 0.474713
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 19.4164 1.01630
\(366\) 0 0
\(367\) −32.3607 −1.68921 −0.844607 0.535387i \(-0.820166\pi\)
−0.844607 + 0.535387i \(0.820166\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.1803 0.528537
\(372\) 0 0
\(373\) −16.8328 −0.871570 −0.435785 0.900051i \(-0.643529\pi\)
−0.435785 + 0.900051i \(0.643529\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.3607 0.636607
\(378\) 0 0
\(379\) −18.4721 −0.948850 −0.474425 0.880296i \(-0.657344\pi\)
−0.474425 + 0.880296i \(0.657344\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −19.4164 −0.992132 −0.496066 0.868285i \(-0.665223\pi\)
−0.496066 + 0.868285i \(0.665223\pi\)
\(384\) 0 0
\(385\) 6.47214 0.329851
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.3607 −0.728115 −0.364058 0.931376i \(-0.618609\pi\)
−0.364058 + 0.931376i \(0.618609\pi\)
\(390\) 0 0
\(391\) −6.47214 −0.327310
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.05573 0.153750
\(396\) 0 0
\(397\) 10.9443 0.549277 0.274639 0.961548i \(-0.411442\pi\)
0.274639 + 0.961548i \(0.411442\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.7639 −0.737276 −0.368638 0.929573i \(-0.620176\pi\)
−0.368638 + 0.929573i \(0.620176\pi\)
\(402\) 0 0
\(403\) 17.8885 0.891092
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.94427 −0.443351
\(408\) 0 0
\(409\) 32.4721 1.60564 0.802822 0.596219i \(-0.203331\pi\)
0.802822 + 0.596219i \(0.203331\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.94427 −0.243292
\(414\) 0 0
\(415\) 36.3607 1.78488
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.8197 −0.577428 −0.288714 0.957415i \(-0.593228\pi\)
−0.288714 + 0.957415i \(0.593228\pi\)
\(420\) 0 0
\(421\) −9.05573 −0.441349 −0.220675 0.975347i \(-0.570826\pi\)
−0.220675 + 0.975347i \(0.570826\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −17.7082 −0.858974
\(426\) 0 0
\(427\) −8.47214 −0.409995
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −36.0689 −1.73738 −0.868688 0.495359i \(-0.835037\pi\)
−0.868688 + 0.495359i \(0.835037\pi\)
\(432\) 0 0
\(433\) 34.3607 1.65127 0.825634 0.564205i \(-0.190817\pi\)
0.825634 + 0.564205i \(0.190817\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.00000 −0.0956730
\(438\) 0 0
\(439\) −32.9443 −1.57234 −0.786172 0.618008i \(-0.787940\pi\)
−0.786172 + 0.618008i \(0.787940\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 22.3607 1.06239 0.531194 0.847250i \(-0.321744\pi\)
0.531194 + 0.847250i \(0.321744\pi\)
\(444\) 0 0
\(445\) 33.8885 1.60647
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.29180 0.391314 0.195657 0.980672i \(-0.437316\pi\)
0.195657 + 0.980672i \(0.437316\pi\)
\(450\) 0 0
\(451\) 4.94427 0.232817
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14.4721 0.678464
\(456\) 0 0
\(457\) 41.4164 1.93738 0.968689 0.248278i \(-0.0798645\pi\)
0.968689 + 0.248278i \(0.0798645\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 28.1803 1.31249 0.656245 0.754548i \(-0.272144\pi\)
0.656245 + 0.754548i \(0.272144\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.5967 0.721731 0.360866 0.932618i \(-0.382481\pi\)
0.360866 + 0.932618i \(0.382481\pi\)
\(468\) 0 0
\(469\) −12.9443 −0.597711
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.05573 −0.140503
\(474\) 0 0
\(475\) −5.47214 −0.251079
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.2361 1.24445 0.622224 0.782839i \(-0.286229\pi\)
0.622224 + 0.782839i \(0.286229\pi\)
\(480\) 0 0
\(481\) −20.0000 −0.911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 24.3607 1.10616
\(486\) 0 0
\(487\) 30.4721 1.38082 0.690412 0.723416i \(-0.257429\pi\)
0.690412 + 0.723416i \(0.257429\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −23.3050 −1.05174 −0.525869 0.850566i \(-0.676260\pi\)
−0.525869 + 0.850566i \(0.676260\pi\)
\(492\) 0 0
\(493\) −8.94427 −0.402830
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.76393 0.123979
\(498\) 0 0
\(499\) −2.11146 −0.0945218 −0.0472609 0.998883i \(-0.515049\pi\)
−0.0472609 + 0.998883i \(0.515049\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17.1246 −0.763549 −0.381774 0.924256i \(-0.624687\pi\)
−0.381774 + 0.924256i \(0.624687\pi\)
\(504\) 0 0
\(505\) −18.4721 −0.821999
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.9443 1.28293 0.641466 0.767151i \(-0.278326\pi\)
0.641466 + 0.767151i \(0.278326\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −57.8885 −2.55087
\(516\) 0 0
\(517\) 9.52786 0.419035
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.8328 1.00032 0.500162 0.865932i \(-0.333274\pi\)
0.500162 + 0.865932i \(0.333274\pi\)
\(522\) 0 0
\(523\) −12.9443 −0.566013 −0.283007 0.959118i \(-0.591332\pi\)
−0.283007 + 0.959118i \(0.591332\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.9443 −0.563861
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.0557 0.478877
\(534\) 0 0
\(535\) 21.8885 0.946324
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 30.4721 1.30528
\(546\) 0 0
\(547\) 38.8328 1.66037 0.830186 0.557487i \(-0.188234\pi\)
0.830186 + 0.557487i \(0.188234\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.76393 −0.117747
\(552\) 0 0
\(553\) 0.944272 0.0401545
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.41641 0.0600151 0.0300076 0.999550i \(-0.490447\pi\)
0.0300076 + 0.999550i \(0.490447\pi\)
\(558\) 0 0
\(559\) −6.83282 −0.288997
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.36068 0.352361 0.176180 0.984358i \(-0.443626\pi\)
0.176180 + 0.984358i \(0.443626\pi\)
\(564\) 0 0
\(565\) −4.00000 −0.168281
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.76393 0.115870 0.0579350 0.998320i \(-0.481548\pi\)
0.0579350 + 0.998320i \(0.481548\pi\)
\(570\) 0 0
\(571\) 25.8885 1.08340 0.541701 0.840571i \(-0.317781\pi\)
0.541701 + 0.840571i \(0.317781\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 10.9443 0.456408
\(576\) 0 0
\(577\) 13.4164 0.558532 0.279266 0.960214i \(-0.409909\pi\)
0.279266 + 0.960214i \(0.409909\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.2361 0.466151
\(582\) 0 0
\(583\) 20.3607 0.843253
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −26.2918 −1.08518 −0.542589 0.839998i \(-0.682556\pi\)
−0.542589 + 0.839998i \(0.682556\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.1246 0.867484 0.433742 0.901037i \(-0.357193\pi\)
0.433742 + 0.901037i \(0.357193\pi\)
\(594\) 0 0
\(595\) −10.4721 −0.429316
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.23607 0.0505044 0.0252522 0.999681i \(-0.491961\pi\)
0.0252522 + 0.999681i \(0.491961\pi\)
\(600\) 0 0
\(601\) 3.52786 0.143905 0.0719523 0.997408i \(-0.477077\pi\)
0.0719523 + 0.997408i \(0.477077\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −22.6525 −0.920954
\(606\) 0 0
\(607\) 14.8328 0.602045 0.301023 0.953617i \(-0.402672\pi\)
0.301023 + 0.953617i \(0.402672\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 21.3050 0.861906
\(612\) 0 0
\(613\) −44.4721 −1.79621 −0.898106 0.439778i \(-0.855057\pi\)
−0.898106 + 0.439778i \(0.855057\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.9443 0.601634 0.300817 0.953682i \(-0.402741\pi\)
0.300817 + 0.953682i \(0.402741\pi\)
\(618\) 0 0
\(619\) −12.0000 −0.482321 −0.241160 0.970485i \(-0.577528\pi\)
−0.241160 + 0.970485i \(0.577528\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.4721 0.419557
\(624\) 0 0
\(625\) −22.4164 −0.896656
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.4721 0.577042
\(630\) 0 0
\(631\) −24.3607 −0.969783 −0.484892 0.874574i \(-0.661141\pi\)
−0.484892 + 0.874574i \(0.661141\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −38.8328 −1.54103
\(636\) 0 0
\(637\) 4.47214 0.177192
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22.7639 −0.899121 −0.449561 0.893250i \(-0.648419\pi\)
−0.449561 + 0.893250i \(0.648419\pi\)
\(642\) 0 0
\(643\) −20.3607 −0.802947 −0.401473 0.915871i \(-0.631502\pi\)
−0.401473 + 0.915871i \(0.631502\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 40.5410 1.59383 0.796916 0.604090i \(-0.206463\pi\)
0.796916 + 0.604090i \(0.206463\pi\)
\(648\) 0 0
\(649\) −9.88854 −0.388159
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.00000 0.0782660 0.0391330 0.999234i \(-0.487540\pi\)
0.0391330 + 0.999234i \(0.487540\pi\)
\(654\) 0 0
\(655\) −26.4721 −1.03435
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.1803 1.64311 0.821556 0.570127i \(-0.193106\pi\)
0.821556 + 0.570127i \(0.193106\pi\)
\(660\) 0 0
\(661\) 3.52786 0.137218 0.0686090 0.997644i \(-0.478144\pi\)
0.0686090 + 0.997644i \(0.478144\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.23607 −0.125489
\(666\) 0 0
\(667\) 5.52786 0.214040
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −16.9443 −0.654126
\(672\) 0 0
\(673\) −3.52786 −0.135989 −0.0679946 0.997686i \(-0.521660\pi\)
−0.0679946 + 0.997686i \(0.521660\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −47.7771 −1.83622 −0.918111 0.396323i \(-0.870286\pi\)
−0.918111 + 0.396323i \(0.870286\pi\)
\(678\) 0 0
\(679\) 7.52786 0.288893
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.76393 −0.258815 −0.129407 0.991592i \(-0.541307\pi\)
−0.129407 + 0.991592i \(0.541307\pi\)
\(684\) 0 0
\(685\) 6.47214 0.247288
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 45.5279 1.73447
\(690\) 0 0
\(691\) 17.3050 0.658311 0.329156 0.944276i \(-0.393236\pi\)
0.329156 + 0.944276i \(0.393236\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.9443 −0.491004
\(696\) 0 0
\(697\) −8.00000 −0.303022
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.0557 0.493108 0.246554 0.969129i \(-0.420702\pi\)
0.246554 + 0.969129i \(0.420702\pi\)
\(702\) 0 0
\(703\) 4.47214 0.168670
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.70820 −0.214679
\(708\) 0 0
\(709\) −49.4164 −1.85587 −0.927936 0.372739i \(-0.878419\pi\)
−0.927936 + 0.372739i \(0.878419\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) 28.9443 1.08245
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.29180 0.0854696 0.0427348 0.999086i \(-0.486393\pi\)
0.0427348 + 0.999086i \(0.486393\pi\)
\(720\) 0 0
\(721\) −17.8885 −0.666204
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.1246 0.561714
\(726\) 0 0
\(727\) −40.3607 −1.49689 −0.748447 0.663194i \(-0.769200\pi\)
−0.748447 + 0.663194i \(0.769200\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.94427 0.182871
\(732\) 0 0
\(733\) −26.9443 −0.995209 −0.497605 0.867404i \(-0.665787\pi\)
−0.497605 + 0.867404i \(0.665787\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −25.8885 −0.953617
\(738\) 0 0
\(739\) −13.5279 −0.497631 −0.248815 0.968551i \(-0.580041\pi\)
−0.248815 + 0.968551i \(0.580041\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −42.1803 −1.54745 −0.773723 0.633524i \(-0.781608\pi\)
−0.773723 + 0.633524i \(0.781608\pi\)
\(744\) 0 0
\(745\) 40.3607 1.47870
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.76393 0.247149
\(750\) 0 0
\(751\) −6.47214 −0.236172 −0.118086 0.993003i \(-0.537676\pi\)
−0.118086 + 0.993003i \(0.537676\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −36.9443 −1.34454
\(756\) 0 0
\(757\) −42.7214 −1.55273 −0.776367 0.630281i \(-0.782940\pi\)
−0.776367 + 0.630281i \(0.782940\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.763932 −0.0276925 −0.0138463 0.999904i \(-0.504408\pi\)
−0.0138463 + 0.999904i \(0.504408\pi\)
\(762\) 0 0
\(763\) 9.41641 0.340897
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −22.1115 −0.798398
\(768\) 0 0
\(769\) 19.5279 0.704193 0.352096 0.935964i \(-0.385469\pi\)
0.352096 + 0.935964i \(0.385469\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.5279 0.486563 0.243282 0.969956i \(-0.421776\pi\)
0.243282 + 0.969956i \(0.421776\pi\)
\(774\) 0 0
\(775\) 21.8885 0.786260
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.47214 −0.0885735
\(780\) 0 0
\(781\) 5.52786 0.197803
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 14.4721 0.516533
\(786\) 0 0
\(787\) −14.8328 −0.528733 −0.264366 0.964422i \(-0.585163\pi\)
−0.264366 + 0.964422i \(0.585163\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.23607 −0.0439495
\(792\) 0 0
\(793\) −37.8885 −1.34546
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −46.2492 −1.63823 −0.819116 0.573628i \(-0.805535\pi\)
−0.819116 + 0.573628i \(0.805535\pi\)
\(798\) 0 0
\(799\) −15.4164 −0.545393
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) 6.47214 0.228113
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −40.8328 −1.43561 −0.717803 0.696247i \(-0.754852\pi\)
−0.717803 + 0.696247i \(0.754852\pi\)
\(810\) 0 0
\(811\) 26.8328 0.942228 0.471114 0.882072i \(-0.343852\pi\)
0.471114 + 0.882072i \(0.343852\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −33.8885 −1.18706
\(816\) 0 0
\(817\) 1.52786 0.0534532
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −53.4164 −1.86425 −0.932123 0.362142i \(-0.882045\pi\)
−0.932123 + 0.362142i \(0.882045\pi\)
\(822\) 0 0
\(823\) −48.3607 −1.68575 −0.842874 0.538112i \(-0.819138\pi\)
−0.842874 + 0.538112i \(0.819138\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −22.1803 −0.771286 −0.385643 0.922648i \(-0.626020\pi\)
−0.385643 + 0.922648i \(0.626020\pi\)
\(828\) 0 0
\(829\) −30.3607 −1.05447 −0.527235 0.849720i \(-0.676771\pi\)
−0.527235 + 0.849720i \(0.676771\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.23607 −0.112123
\(834\) 0 0
\(835\) −49.8885 −1.72646
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.0557 0.519781 0.259891 0.965638i \(-0.416313\pi\)
0.259891 + 0.965638i \(0.416313\pi\)
\(840\) 0 0
\(841\) −21.3607 −0.736575
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 22.6525 0.779269
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8.94427 −0.306606
\(852\) 0 0
\(853\) −3.16718 −0.108442 −0.0542212 0.998529i \(-0.517268\pi\)
−0.0542212 + 0.998529i \(0.517268\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.5279 −0.462103 −0.231052 0.972942i \(-0.574217\pi\)
−0.231052 + 0.972942i \(0.574217\pi\)
\(858\) 0 0
\(859\) −15.0557 −0.513695 −0.256847 0.966452i \(-0.582684\pi\)
−0.256847 + 0.966452i \(0.582684\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.59675 −0.326677 −0.163339 0.986570i \(-0.552226\pi\)
−0.163339 + 0.986570i \(0.552226\pi\)
\(864\) 0 0
\(865\) −43.7771 −1.48847
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.88854 0.0640645
\(870\) 0 0
\(871\) −57.8885 −1.96148
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.52786 0.0516512
\(876\) 0 0
\(877\) 20.8328 0.703474 0.351737 0.936099i \(-0.385591\pi\)
0.351737 + 0.936099i \(0.385591\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 19.5967 0.660231 0.330116 0.943941i \(-0.392912\pi\)
0.330116 + 0.943941i \(0.392912\pi\)
\(882\) 0 0
\(883\) 0.944272 0.0317773 0.0158886 0.999874i \(-0.494942\pi\)
0.0158886 + 0.999874i \(0.494942\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 25.3050 0.849657 0.424829 0.905274i \(-0.360334\pi\)
0.424829 + 0.905274i \(0.360334\pi\)
\(888\) 0 0
\(889\) −12.0000 −0.402467
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.76393 −0.159419
\(894\) 0 0
\(895\) 61.8885 2.06871
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11.0557 0.368729
\(900\) 0 0
\(901\) −32.9443 −1.09753
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.4164 0.379494
\(906\) 0 0
\(907\) −15.4164 −0.511893 −0.255947 0.966691i \(-0.582387\pi\)
−0.255947 + 0.966691i \(0.582387\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 41.2361 1.36621 0.683106 0.730319i \(-0.260629\pi\)
0.683106 + 0.730319i \(0.260629\pi\)
\(912\) 0 0
\(913\) 22.4721 0.743719
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8.18034 −0.270139
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.3607 0.406857
\(924\) 0 0
\(925\) −24.4721 −0.804639
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.5410 0.673929 0.336964 0.941517i \(-0.390600\pi\)
0.336964 + 0.941517i \(0.390600\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −20.9443 −0.684951
\(936\) 0 0
\(937\) 37.7771 1.23412 0.617062 0.786915i \(-0.288323\pi\)
0.617062 + 0.786915i \(0.288323\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −17.8885 −0.583150 −0.291575 0.956548i \(-0.594179\pi\)
−0.291575 + 0.956548i \(0.594179\pi\)
\(942\) 0 0
\(943\) 4.94427 0.161008
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −60.8328 −1.97680 −0.988400 0.151870i \(-0.951470\pi\)
−0.988400 + 0.151870i \(0.951470\pi\)
\(948\) 0 0
\(949\) 26.8328 0.871030
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38.5410 −1.24847 −0.624233 0.781238i \(-0.714588\pi\)
−0.624233 + 0.781238i \(0.714588\pi\)
\(954\) 0 0
\(955\) −48.3607 −1.56491
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.00000 0.0645834
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 66.2492 2.13264
\(966\) 0 0
\(967\) −19.4164 −0.624390 −0.312195 0.950018i \(-0.601064\pi\)
−0.312195 + 0.950018i \(0.601064\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.0557 −0.483161 −0.241581 0.970381i \(-0.577666\pi\)
−0.241581 + 0.970381i \(0.577666\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.29180 0.137307 0.0686534 0.997641i \(-0.478130\pi\)
0.0686534 + 0.997641i \(0.478130\pi\)
\(978\) 0 0
\(979\) 20.9443 0.669382
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −12.9443 −0.412858 −0.206429 0.978462i \(-0.566184\pi\)
−0.206429 + 0.978462i \(0.566184\pi\)
\(984\) 0 0
\(985\) 19.4164 0.618658
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.05573 −0.0971665
\(990\) 0 0
\(991\) −12.5836 −0.399731 −0.199865 0.979823i \(-0.564051\pi\)
−0.199865 + 0.979823i \(0.564051\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −46.8328 −1.48470
\(996\) 0 0
\(997\) 54.3607 1.72162 0.860810 0.508926i \(-0.169957\pi\)
0.860810 + 0.508926i \(0.169957\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.m.1.2 2
3.2 odd 2 1596.2.a.g.1.1 2
12.11 even 2 6384.2.a.bm.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1596.2.a.g.1.1 2 3.2 odd 2
4788.2.a.m.1.2 2 1.1 even 1 trivial
6384.2.a.bm.1.1 2 12.11 even 2