Properties

Label 4788.2.a.l.1.2
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +1.00000 q^{7} +5.09017 q^{11} +2.23607 q^{13} +5.38197 q^{17} -1.00000 q^{19} -4.70820 q^{23} -4.00000 q^{25} +5.85410 q^{29} -4.61803 q^{31} +1.00000 q^{35} +6.70820 q^{37} +11.0902 q^{41} -0.472136 q^{43} +8.70820 q^{47} +1.00000 q^{49} -1.32624 q^{53} +5.09017 q^{55} -2.70820 q^{59} -3.47214 q^{61} +2.23607 q^{65} +9.09017 q^{67} -11.1803 q^{71} -12.0902 q^{73} +5.09017 q^{77} +10.9443 q^{79} -12.3820 q^{83} +5.38197 q^{85} -10.1803 q^{89} +2.23607 q^{91} -1.00000 q^{95} -4.70820 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 2 q^{7} - q^{11} + 13 q^{17} - 2 q^{19} + 4 q^{23} - 8 q^{25} + 5 q^{29} - 7 q^{31} + 2 q^{35} + 11 q^{41} + 8 q^{43} + 4 q^{47} + 2 q^{49} + 13 q^{53} - q^{55} + 8 q^{59} + 2 q^{61} + 7 q^{67}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.09017 1.53474 0.767372 0.641202i \(-0.221564\pi\)
0.767372 + 0.641202i \(0.221564\pi\)
\(12\) 0 0
\(13\) 2.23607 0.620174 0.310087 0.950708i \(-0.399642\pi\)
0.310087 + 0.950708i \(0.399642\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.38197 1.30532 0.652659 0.757652i \(-0.273653\pi\)
0.652659 + 0.757652i \(0.273653\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.70820 −0.981728 −0.490864 0.871236i \(-0.663319\pi\)
−0.490864 + 0.871236i \(0.663319\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.85410 1.08708 0.543540 0.839383i \(-0.317084\pi\)
0.543540 + 0.839383i \(0.317084\pi\)
\(30\) 0 0
\(31\) −4.61803 −0.829423 −0.414712 0.909953i \(-0.636118\pi\)
−0.414712 + 0.909953i \(0.636118\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 6.70820 1.10282 0.551411 0.834234i \(-0.314090\pi\)
0.551411 + 0.834234i \(0.314090\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.0902 1.73199 0.865997 0.500050i \(-0.166685\pi\)
0.865997 + 0.500050i \(0.166685\pi\)
\(42\) 0 0
\(43\) −0.472136 −0.0720001 −0.0360000 0.999352i \(-0.511462\pi\)
−0.0360000 + 0.999352i \(0.511462\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.70820 1.27022 0.635111 0.772421i \(-0.280954\pi\)
0.635111 + 0.772421i \(0.280954\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.32624 −0.182173 −0.0910864 0.995843i \(-0.529034\pi\)
−0.0910864 + 0.995843i \(0.529034\pi\)
\(54\) 0 0
\(55\) 5.09017 0.686358
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.70820 −0.352578 −0.176289 0.984338i \(-0.556409\pi\)
−0.176289 + 0.984338i \(0.556409\pi\)
\(60\) 0 0
\(61\) −3.47214 −0.444561 −0.222281 0.974983i \(-0.571350\pi\)
−0.222281 + 0.974983i \(0.571350\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.23607 0.277350
\(66\) 0 0
\(67\) 9.09017 1.11054 0.555271 0.831670i \(-0.312615\pi\)
0.555271 + 0.831670i \(0.312615\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.1803 −1.32686 −0.663431 0.748237i \(-0.730900\pi\)
−0.663431 + 0.748237i \(0.730900\pi\)
\(72\) 0 0
\(73\) −12.0902 −1.41505 −0.707524 0.706690i \(-0.750188\pi\)
−0.707524 + 0.706690i \(0.750188\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.09017 0.580079
\(78\) 0 0
\(79\) 10.9443 1.23133 0.615663 0.788009i \(-0.288888\pi\)
0.615663 + 0.788009i \(0.288888\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −12.3820 −1.35910 −0.679549 0.733630i \(-0.737824\pi\)
−0.679549 + 0.733630i \(0.737824\pi\)
\(84\) 0 0
\(85\) 5.38197 0.583756
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.1803 −1.07911 −0.539557 0.841949i \(-0.681408\pi\)
−0.539557 + 0.841949i \(0.681408\pi\)
\(90\) 0 0
\(91\) 2.23607 0.234404
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −4.70820 −0.478046 −0.239023 0.971014i \(-0.576827\pi\)
−0.239023 + 0.971014i \(0.576827\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.76393 0.374525 0.187263 0.982310i \(-0.440038\pi\)
0.187263 + 0.982310i \(0.440038\pi\)
\(102\) 0 0
\(103\) −12.2361 −1.20566 −0.602828 0.797871i \(-0.705959\pi\)
−0.602828 + 0.797871i \(0.705959\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.23607 −0.796211 −0.398105 0.917340i \(-0.630332\pi\)
−0.398105 + 0.917340i \(0.630332\pi\)
\(108\) 0 0
\(109\) −16.8885 −1.61763 −0.808815 0.588064i \(-0.799890\pi\)
−0.808815 + 0.588064i \(0.799890\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.3820 1.16480 0.582399 0.812903i \(-0.302114\pi\)
0.582399 + 0.812903i \(0.302114\pi\)
\(114\) 0 0
\(115\) −4.70820 −0.439042
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.38197 0.493364
\(120\) 0 0
\(121\) 14.9098 1.35544
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 10.7639 0.955145 0.477572 0.878592i \(-0.341517\pi\)
0.477572 + 0.878592i \(0.341517\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.61803 0.578220 0.289110 0.957296i \(-0.406641\pi\)
0.289110 + 0.957296i \(0.406641\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.4721 −1.06557 −0.532783 0.846252i \(-0.678854\pi\)
−0.532783 + 0.846252i \(0.678854\pi\)
\(138\) 0 0
\(139\) 17.1803 1.45722 0.728609 0.684930i \(-0.240167\pi\)
0.728609 + 0.684930i \(0.240167\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.3820 0.951808
\(144\) 0 0
\(145\) 5.85410 0.486157
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.00000 −0.573462 −0.286731 0.958011i \(-0.592569\pi\)
−0.286731 + 0.958011i \(0.592569\pi\)
\(150\) 0 0
\(151\) −6.61803 −0.538568 −0.269284 0.963061i \(-0.586787\pi\)
−0.269284 + 0.963061i \(0.586787\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.61803 −0.370929
\(156\) 0 0
\(157\) 11.3820 0.908380 0.454190 0.890905i \(-0.349929\pi\)
0.454190 + 0.890905i \(0.349929\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.70820 −0.371058
\(162\) 0 0
\(163\) 13.7984 1.08077 0.540386 0.841417i \(-0.318278\pi\)
0.540386 + 0.841417i \(0.318278\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.47214 0.578211 0.289106 0.957297i \(-0.406642\pi\)
0.289106 + 0.957297i \(0.406642\pi\)
\(168\) 0 0
\(169\) −8.00000 −0.615385
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 23.7082 1.80250 0.901251 0.433298i \(-0.142650\pi\)
0.901251 + 0.433298i \(0.142650\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.6180 0.943116 0.471558 0.881835i \(-0.343692\pi\)
0.471558 + 0.881835i \(0.343692\pi\)
\(180\) 0 0
\(181\) 24.5066 1.82156 0.910780 0.412892i \(-0.135481\pi\)
0.910780 + 0.412892i \(0.135481\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.70820 0.493197
\(186\) 0 0
\(187\) 27.3951 2.00333
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.0344 1.52200 0.760999 0.648753i \(-0.224709\pi\)
0.760999 + 0.648753i \(0.224709\pi\)
\(192\) 0 0
\(193\) −21.5623 −1.55209 −0.776044 0.630678i \(-0.782777\pi\)
−0.776044 + 0.630678i \(0.782777\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.7984 1.12559 0.562794 0.826597i \(-0.309727\pi\)
0.562794 + 0.826597i \(0.309727\pi\)
\(198\) 0 0
\(199\) −2.23607 −0.158511 −0.0792553 0.996854i \(-0.525254\pi\)
−0.0792553 + 0.996854i \(0.525254\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.85410 0.410877
\(204\) 0 0
\(205\) 11.0902 0.774571
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.09017 −0.352094
\(210\) 0 0
\(211\) −19.9787 −1.37539 −0.687696 0.725999i \(-0.741378\pi\)
−0.687696 + 0.725999i \(0.741378\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.472136 −0.0321994
\(216\) 0 0
\(217\) −4.61803 −0.313493
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0344 0.809524
\(222\) 0 0
\(223\) −11.9443 −0.799848 −0.399924 0.916548i \(-0.630963\pi\)
−0.399924 + 0.916548i \(0.630963\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.90983 −0.325877 −0.162938 0.986636i \(-0.552097\pi\)
−0.162938 + 0.986636i \(0.552097\pi\)
\(228\) 0 0
\(229\) −3.52786 −0.233128 −0.116564 0.993183i \(-0.537188\pi\)
−0.116564 + 0.993183i \(0.537188\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.32624 −0.545470 −0.272735 0.962089i \(-0.587928\pi\)
−0.272735 + 0.962089i \(0.587928\pi\)
\(234\) 0 0
\(235\) 8.70820 0.568061
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −22.1246 −1.43112 −0.715561 0.698550i \(-0.753829\pi\)
−0.715561 + 0.698550i \(0.753829\pi\)
\(240\) 0 0
\(241\) 10.2918 0.662953 0.331476 0.943463i \(-0.392453\pi\)
0.331476 + 0.943463i \(0.392453\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) −2.23607 −0.142278
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.3262 1.03050 0.515251 0.857039i \(-0.327699\pi\)
0.515251 + 0.857039i \(0.327699\pi\)
\(252\) 0 0
\(253\) −23.9656 −1.50670
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.2705 1.26444 0.632220 0.774789i \(-0.282144\pi\)
0.632220 + 0.774789i \(0.282144\pi\)
\(258\) 0 0
\(259\) 6.70820 0.416828
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.79837 0.357543 0.178772 0.983891i \(-0.442788\pi\)
0.178772 + 0.983891i \(0.442788\pi\)
\(264\) 0 0
\(265\) −1.32624 −0.0814701
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 19.7984 1.20713 0.603564 0.797314i \(-0.293747\pi\)
0.603564 + 0.797314i \(0.293747\pi\)
\(270\) 0 0
\(271\) −19.5623 −1.18833 −0.594163 0.804345i \(-0.702516\pi\)
−0.594163 + 0.804345i \(0.702516\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −20.3607 −1.22780
\(276\) 0 0
\(277\) 22.6525 1.36106 0.680528 0.732722i \(-0.261751\pi\)
0.680528 + 0.732722i \(0.261751\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.0000 0.656205 0.328102 0.944642i \(-0.393591\pi\)
0.328102 + 0.944642i \(0.393591\pi\)
\(282\) 0 0
\(283\) −16.3820 −0.973807 −0.486903 0.873456i \(-0.661874\pi\)
−0.486903 + 0.873456i \(0.661874\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.0902 0.654632
\(288\) 0 0
\(289\) 11.9656 0.703856
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.5279 0.615044 0.307522 0.951541i \(-0.400500\pi\)
0.307522 + 0.951541i \(0.400500\pi\)
\(294\) 0 0
\(295\) −2.70820 −0.157678
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.5279 −0.608842
\(300\) 0 0
\(301\) −0.472136 −0.0272135
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.47214 −0.198814
\(306\) 0 0
\(307\) −19.7426 −1.12677 −0.563386 0.826194i \(-0.690502\pi\)
−0.563386 + 0.826194i \(0.690502\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.3262 −0.698957 −0.349478 0.936944i \(-0.613641\pi\)
−0.349478 + 0.936944i \(0.613641\pi\)
\(312\) 0 0
\(313\) −8.18034 −0.462380 −0.231190 0.972909i \(-0.574262\pi\)
−0.231190 + 0.972909i \(0.574262\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.47214 0.251180 0.125590 0.992082i \(-0.459918\pi\)
0.125590 + 0.992082i \(0.459918\pi\)
\(318\) 0 0
\(319\) 29.7984 1.66839
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.38197 −0.299461
\(324\) 0 0
\(325\) −8.94427 −0.496139
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.70820 0.480099
\(330\) 0 0
\(331\) −34.2705 −1.88368 −0.941839 0.336065i \(-0.890904\pi\)
−0.941839 + 0.336065i \(0.890904\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.09017 0.496649
\(336\) 0 0
\(337\) 6.32624 0.344612 0.172306 0.985043i \(-0.444878\pi\)
0.172306 + 0.985043i \(0.444878\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −23.5066 −1.27295
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.56231 −0.459649 −0.229824 0.973232i \(-0.573815\pi\)
−0.229824 + 0.973232i \(0.573815\pi\)
\(348\) 0 0
\(349\) 30.2705 1.62034 0.810172 0.586193i \(-0.199374\pi\)
0.810172 + 0.586193i \(0.199374\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 19.3820 1.03160 0.515799 0.856710i \(-0.327495\pi\)
0.515799 + 0.856710i \(0.327495\pi\)
\(354\) 0 0
\(355\) −11.1803 −0.593391
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.5623 1.24357 0.621785 0.783188i \(-0.286408\pi\)
0.621785 + 0.783188i \(0.286408\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.0902 −0.632828
\(366\) 0 0
\(367\) −22.8885 −1.19477 −0.597386 0.801954i \(-0.703794\pi\)
−0.597386 + 0.801954i \(0.703794\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.32624 −0.0688548
\(372\) 0 0
\(373\) 21.5066 1.11357 0.556784 0.830657i \(-0.312035\pi\)
0.556784 + 0.830657i \(0.312035\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13.0902 0.674178
\(378\) 0 0
\(379\) 15.4721 0.794750 0.397375 0.917656i \(-0.369921\pi\)
0.397375 + 0.917656i \(0.369921\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.7639 0.601109 0.300554 0.953765i \(-0.402828\pi\)
0.300554 + 0.953765i \(0.402828\pi\)
\(384\) 0 0
\(385\) 5.09017 0.259419
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.38197 −0.171472 −0.0857362 0.996318i \(-0.527324\pi\)
−0.0857362 + 0.996318i \(0.527324\pi\)
\(390\) 0 0
\(391\) −25.3394 −1.28147
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.9443 0.550666
\(396\) 0 0
\(397\) −10.7639 −0.540226 −0.270113 0.962829i \(-0.587061\pi\)
−0.270113 + 0.962829i \(0.587061\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.7426 −0.786150 −0.393075 0.919506i \(-0.628589\pi\)
−0.393075 + 0.919506i \(0.628589\pi\)
\(402\) 0 0
\(403\) −10.3262 −0.514387
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 34.1459 1.69255
\(408\) 0 0
\(409\) 32.2705 1.59567 0.797837 0.602873i \(-0.205978\pi\)
0.797837 + 0.602873i \(0.205978\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.70820 −0.133262
\(414\) 0 0
\(415\) −12.3820 −0.607807
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.70820 −0.230011 −0.115005 0.993365i \(-0.536689\pi\)
−0.115005 + 0.993365i \(0.536689\pi\)
\(420\) 0 0
\(421\) 13.1803 0.642370 0.321185 0.947016i \(-0.395919\pi\)
0.321185 + 0.947016i \(0.395919\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −21.5279 −1.04425
\(426\) 0 0
\(427\) −3.47214 −0.168028
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.00000 −0.0963366 −0.0481683 0.998839i \(-0.515338\pi\)
−0.0481683 + 0.998839i \(0.515338\pi\)
\(432\) 0 0
\(433\) 22.5279 1.08262 0.541310 0.840823i \(-0.317929\pi\)
0.541310 + 0.840823i \(0.317929\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.70820 0.225224
\(438\) 0 0
\(439\) −16.3607 −0.780853 −0.390426 0.920634i \(-0.627672\pi\)
−0.390426 + 0.920634i \(0.627672\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.2016 −0.484694 −0.242347 0.970190i \(-0.577917\pi\)
−0.242347 + 0.970190i \(0.577917\pi\)
\(444\) 0 0
\(445\) −10.1803 −0.482594
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.61803 0.170746 0.0853728 0.996349i \(-0.472792\pi\)
0.0853728 + 0.996349i \(0.472792\pi\)
\(450\) 0 0
\(451\) 56.4508 2.65817
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.23607 0.104828
\(456\) 0 0
\(457\) −35.2148 −1.64728 −0.823639 0.567114i \(-0.808060\pi\)
−0.823639 + 0.567114i \(0.808060\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.03444 −0.234477 −0.117239 0.993104i \(-0.537404\pi\)
−0.117239 + 0.993104i \(0.537404\pi\)
\(462\) 0 0
\(463\) 30.7771 1.43033 0.715166 0.698954i \(-0.246351\pi\)
0.715166 + 0.698954i \(0.246351\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.1459 −0.608320 −0.304160 0.952621i \(-0.598376\pi\)
−0.304160 + 0.952621i \(0.598376\pi\)
\(468\) 0 0
\(469\) 9.09017 0.419745
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.40325 −0.110502
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −30.9787 −1.41545 −0.707727 0.706486i \(-0.750279\pi\)
−0.707727 + 0.706486i \(0.750279\pi\)
\(480\) 0 0
\(481\) 15.0000 0.683941
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.70820 −0.213789
\(486\) 0 0
\(487\) −7.29180 −0.330423 −0.165211 0.986258i \(-0.552831\pi\)
−0.165211 + 0.986258i \(0.552831\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −40.9443 −1.84779 −0.923895 0.382647i \(-0.875013\pi\)
−0.923895 + 0.382647i \(0.875013\pi\)
\(492\) 0 0
\(493\) 31.5066 1.41898
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.1803 −0.501507
\(498\) 0 0
\(499\) 18.0902 0.809827 0.404914 0.914355i \(-0.367302\pi\)
0.404914 + 0.914355i \(0.367302\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.9443 0.755508 0.377754 0.925906i \(-0.376697\pi\)
0.377754 + 0.925906i \(0.376697\pi\)
\(504\) 0 0
\(505\) 3.76393 0.167493
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.58359 −0.291813 −0.145906 0.989298i \(-0.546610\pi\)
−0.145906 + 0.989298i \(0.546610\pi\)
\(510\) 0 0
\(511\) −12.0902 −0.534838
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.2361 −0.539186
\(516\) 0 0
\(517\) 44.3262 1.94947
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.8885 1.26563 0.632815 0.774303i \(-0.281899\pi\)
0.632815 + 0.774303i \(0.281899\pi\)
\(522\) 0 0
\(523\) −22.4164 −0.980201 −0.490101 0.871666i \(-0.663040\pi\)
−0.490101 + 0.871666i \(0.663040\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −24.8541 −1.08266
\(528\) 0 0
\(529\) −0.832816 −0.0362094
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.7984 1.07414
\(534\) 0 0
\(535\) −8.23607 −0.356076
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.09017 0.219249
\(540\) 0 0
\(541\) −37.4164 −1.60866 −0.804329 0.594185i \(-0.797475\pi\)
−0.804329 + 0.594185i \(0.797475\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −16.8885 −0.723426
\(546\) 0 0
\(547\) 8.38197 0.358387 0.179193 0.983814i \(-0.442651\pi\)
0.179193 + 0.983814i \(0.442651\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.85410 −0.249393
\(552\) 0 0
\(553\) 10.9443 0.465398
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.0344 −0.594658 −0.297329 0.954775i \(-0.596096\pi\)
−0.297329 + 0.954775i \(0.596096\pi\)
\(558\) 0 0
\(559\) −1.05573 −0.0446525
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 29.5410 1.24501 0.622503 0.782618i \(-0.286116\pi\)
0.622503 + 0.782618i \(0.286116\pi\)
\(564\) 0 0
\(565\) 12.3820 0.520913
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26.7082 1.11967 0.559833 0.828605i \(-0.310865\pi\)
0.559833 + 0.828605i \(0.310865\pi\)
\(570\) 0 0
\(571\) 11.9443 0.499852 0.249926 0.968265i \(-0.419594\pi\)
0.249926 + 0.968265i \(0.419594\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.8328 0.785383
\(576\) 0 0
\(577\) 25.3262 1.05435 0.527173 0.849758i \(-0.323252\pi\)
0.527173 + 0.849758i \(0.323252\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.3820 −0.513691
\(582\) 0 0
\(583\) −6.75078 −0.279589
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.3607 −0.427631 −0.213816 0.976874i \(-0.568589\pi\)
−0.213816 + 0.976874i \(0.568589\pi\)
\(588\) 0 0
\(589\) 4.61803 0.190283
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −40.7082 −1.67169 −0.835843 0.548969i \(-0.815021\pi\)
−0.835843 + 0.548969i \(0.815021\pi\)
\(594\) 0 0
\(595\) 5.38197 0.220639
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −46.8541 −1.91441 −0.957203 0.289416i \(-0.906539\pi\)
−0.957203 + 0.289416i \(0.906539\pi\)
\(600\) 0 0
\(601\) −27.9787 −1.14128 −0.570638 0.821202i \(-0.693304\pi\)
−0.570638 + 0.821202i \(0.693304\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.9098 0.606171
\(606\) 0 0
\(607\) 12.5967 0.511286 0.255643 0.966771i \(-0.417713\pi\)
0.255643 + 0.966771i \(0.417713\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 19.4721 0.787758
\(612\) 0 0
\(613\) −27.0344 −1.09191 −0.545955 0.837814i \(-0.683833\pi\)
−0.545955 + 0.837814i \(0.683833\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.1459 0.811043 0.405522 0.914085i \(-0.367090\pi\)
0.405522 + 0.914085i \(0.367090\pi\)
\(618\) 0 0
\(619\) −22.2016 −0.892359 −0.446179 0.894944i \(-0.647216\pi\)
−0.446179 + 0.894944i \(0.647216\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.1803 −0.407867
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 36.1033 1.43953
\(630\) 0 0
\(631\) −34.8885 −1.38889 −0.694445 0.719545i \(-0.744350\pi\)
−0.694445 + 0.719545i \(0.744350\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.7639 0.427154
\(636\) 0 0
\(637\) 2.23607 0.0885962
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.61803 −0.340392 −0.170196 0.985410i \(-0.554440\pi\)
−0.170196 + 0.985410i \(0.554440\pi\)
\(642\) 0 0
\(643\) 1.47214 0.0580554 0.0290277 0.999579i \(-0.490759\pi\)
0.0290277 + 0.999579i \(0.490759\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.65248 −0.143594 −0.0717968 0.997419i \(-0.522873\pi\)
−0.0717968 + 0.997419i \(0.522873\pi\)
\(648\) 0 0
\(649\) −13.7852 −0.541117
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.1246 −0.709271 −0.354635 0.935005i \(-0.615395\pi\)
−0.354635 + 0.935005i \(0.615395\pi\)
\(654\) 0 0
\(655\) 6.61803 0.258588
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10.9098 −0.424987 −0.212493 0.977163i \(-0.568158\pi\)
−0.212493 + 0.977163i \(0.568158\pi\)
\(660\) 0 0
\(661\) 3.52786 0.137218 0.0686090 0.997644i \(-0.478144\pi\)
0.0686090 + 0.997644i \(0.478144\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.00000 −0.0387783
\(666\) 0 0
\(667\) −27.5623 −1.06722
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.6738 −0.682288
\(672\) 0 0
\(673\) −6.49342 −0.250303 −0.125152 0.992138i \(-0.539942\pi\)
−0.125152 + 0.992138i \(0.539942\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −16.9230 −0.650403 −0.325202 0.945645i \(-0.605432\pi\)
−0.325202 + 0.945645i \(0.605432\pi\)
\(678\) 0 0
\(679\) −4.70820 −0.180684
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −20.7082 −0.792377 −0.396189 0.918169i \(-0.629667\pi\)
−0.396189 + 0.918169i \(0.629667\pi\)
\(684\) 0 0
\(685\) −12.4721 −0.476536
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.96556 −0.112979
\(690\) 0 0
\(691\) 1.12461 0.0427822 0.0213911 0.999771i \(-0.493190\pi\)
0.0213911 + 0.999771i \(0.493190\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.1803 0.651687
\(696\) 0 0
\(697\) 59.6869 2.26080
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.47214 −0.0933713 −0.0466856 0.998910i \(-0.514866\pi\)
−0.0466856 + 0.998910i \(0.514866\pi\)
\(702\) 0 0
\(703\) −6.70820 −0.253005
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.76393 0.141557
\(708\) 0 0
\(709\) −9.29180 −0.348961 −0.174480 0.984661i \(-0.555825\pi\)
−0.174480 + 0.984661i \(0.555825\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.7426 0.814268
\(714\) 0 0
\(715\) 11.3820 0.425661
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.3607 0.610150 0.305075 0.952328i \(-0.401318\pi\)
0.305075 + 0.952328i \(0.401318\pi\)
\(720\) 0 0
\(721\) −12.2361 −0.455695
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −23.4164 −0.869664
\(726\) 0 0
\(727\) −27.4721 −1.01889 −0.509443 0.860505i \(-0.670148\pi\)
−0.509443 + 0.860505i \(0.670148\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.54102 −0.0939830
\(732\) 0 0
\(733\) −14.8328 −0.547863 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 46.2705 1.70440
\(738\) 0 0
\(739\) −19.1803 −0.705560 −0.352780 0.935706i \(-0.614764\pi\)
−0.352780 + 0.935706i \(0.614764\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 39.6525 1.45471 0.727354 0.686262i \(-0.240750\pi\)
0.727354 + 0.686262i \(0.240750\pi\)
\(744\) 0 0
\(745\) −7.00000 −0.256460
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −8.23607 −0.300939
\(750\) 0 0
\(751\) −35.6180 −1.29972 −0.649860 0.760054i \(-0.725173\pi\)
−0.649860 + 0.760054i \(0.725173\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.61803 −0.240855
\(756\) 0 0
\(757\) −24.8328 −0.902564 −0.451282 0.892381i \(-0.649033\pi\)
−0.451282 + 0.892381i \(0.649033\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.9443 −0.432980 −0.216490 0.976285i \(-0.569461\pi\)
−0.216490 + 0.976285i \(0.569461\pi\)
\(762\) 0 0
\(763\) −16.8885 −0.611406
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.05573 −0.218660
\(768\) 0 0
\(769\) 16.3607 0.589981 0.294991 0.955500i \(-0.404683\pi\)
0.294991 + 0.955500i \(0.404683\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.87539 0.103421 0.0517103 0.998662i \(-0.483533\pi\)
0.0517103 + 0.998662i \(0.483533\pi\)
\(774\) 0 0
\(775\) 18.4721 0.663539
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.0902 −0.397347
\(780\) 0 0
\(781\) −56.9098 −2.03639
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.3820 0.406240
\(786\) 0 0
\(787\) 44.3607 1.58129 0.790644 0.612276i \(-0.209746\pi\)
0.790644 + 0.612276i \(0.209746\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.3820 0.440252
\(792\) 0 0
\(793\) −7.76393 −0.275705
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 53.2705 1.88694 0.943469 0.331460i \(-0.107541\pi\)
0.943469 + 0.331460i \(0.107541\pi\)
\(798\) 0 0
\(799\) 46.8673 1.65804
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −61.5410 −2.17174
\(804\) 0 0
\(805\) −4.70820 −0.165942
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −43.0689 −1.51422 −0.757111 0.653287i \(-0.773390\pi\)
−0.757111 + 0.653287i \(0.773390\pi\)
\(810\) 0 0
\(811\) −27.8885 −0.979299 −0.489650 0.871919i \(-0.662875\pi\)
−0.489650 + 0.871919i \(0.662875\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 13.7984 0.483336
\(816\) 0 0
\(817\) 0.472136 0.0165179
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.41641 0.119233 0.0596167 0.998221i \(-0.481012\pi\)
0.0596167 + 0.998221i \(0.481012\pi\)
\(822\) 0 0
\(823\) −28.7639 −1.00265 −0.501324 0.865260i \(-0.667153\pi\)
−0.501324 + 0.865260i \(0.667153\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −47.1803 −1.64062 −0.820311 0.571918i \(-0.806199\pi\)
−0.820311 + 0.571918i \(0.806199\pi\)
\(828\) 0 0
\(829\) 42.2492 1.46738 0.733688 0.679486i \(-0.237797\pi\)
0.733688 + 0.679486i \(0.237797\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.38197 0.186474
\(834\) 0 0
\(835\) 7.47214 0.258584
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.36068 −0.288643 −0.144321 0.989531i \(-0.546100\pi\)
−0.144321 + 0.989531i \(0.546100\pi\)
\(840\) 0 0
\(841\) 5.27051 0.181742
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.00000 −0.275208
\(846\) 0 0
\(847\) 14.9098 0.512308
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −31.5836 −1.08267
\(852\) 0 0
\(853\) −13.2148 −0.452466 −0.226233 0.974073i \(-0.572641\pi\)
−0.226233 + 0.974073i \(0.572641\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.6180 −0.909255 −0.454627 0.890682i \(-0.650228\pi\)
−0.454627 + 0.890682i \(0.650228\pi\)
\(858\) 0 0
\(859\) −14.9787 −0.511067 −0.255534 0.966800i \(-0.582251\pi\)
−0.255534 + 0.966800i \(0.582251\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.03444 0.239455 0.119728 0.992807i \(-0.461798\pi\)
0.119728 + 0.992807i \(0.461798\pi\)
\(864\) 0 0
\(865\) 23.7082 0.806103
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 55.7082 1.88977
\(870\) 0 0
\(871\) 20.3262 0.688728
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −9.00000 −0.304256
\(876\) 0 0
\(877\) −24.2918 −0.820276 −0.410138 0.912024i \(-0.634519\pi\)
−0.410138 + 0.912024i \(0.634519\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 21.5066 0.724575 0.362288 0.932066i \(-0.381996\pi\)
0.362288 + 0.932066i \(0.381996\pi\)
\(882\) 0 0
\(883\) 2.12461 0.0714989 0.0357494 0.999361i \(-0.488618\pi\)
0.0357494 + 0.999361i \(0.488618\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.16718 0.0727669 0.0363835 0.999338i \(-0.488416\pi\)
0.0363835 + 0.999338i \(0.488416\pi\)
\(888\) 0 0
\(889\) 10.7639 0.361011
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.70820 −0.291409
\(894\) 0 0
\(895\) 12.6180 0.421774
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −27.0344 −0.901649
\(900\) 0 0
\(901\) −7.13777 −0.237794
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24.5066 0.814626
\(906\) 0 0
\(907\) −28.3050 −0.939850 −0.469925 0.882706i \(-0.655719\pi\)
−0.469925 + 0.882706i \(0.655719\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 8.47214 0.280694 0.140347 0.990102i \(-0.455178\pi\)
0.140347 + 0.990102i \(0.455178\pi\)
\(912\) 0 0
\(913\) −63.0263 −2.08587
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.61803 0.218547
\(918\) 0 0
\(919\) −13.3607 −0.440728 −0.220364 0.975418i \(-0.570725\pi\)
−0.220364 + 0.975418i \(0.570725\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −25.0000 −0.822885
\(924\) 0 0
\(925\) −26.8328 −0.882258
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22.2705 −0.730672 −0.365336 0.930876i \(-0.619046\pi\)
−0.365336 + 0.930876i \(0.619046\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 27.3951 0.895916
\(936\) 0 0
\(937\) −23.8541 −0.779280 −0.389640 0.920967i \(-0.627400\pi\)
−0.389640 + 0.920967i \(0.627400\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12.1115 −0.394822 −0.197411 0.980321i \(-0.563253\pi\)
−0.197411 + 0.980321i \(0.563253\pi\)
\(942\) 0 0
\(943\) −52.2148 −1.70035
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.03444 0.0986061 0.0493031 0.998784i \(-0.484300\pi\)
0.0493031 + 0.998784i \(0.484300\pi\)
\(948\) 0 0
\(949\) −27.0344 −0.877575
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38.2148 1.23790 0.618949 0.785431i \(-0.287559\pi\)
0.618949 + 0.785431i \(0.287559\pi\)
\(954\) 0 0
\(955\) 21.0344 0.680659
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.4721 −0.402746
\(960\) 0 0
\(961\) −9.67376 −0.312057
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −21.5623 −0.694115
\(966\) 0 0
\(967\) 47.0902 1.51432 0.757159 0.653231i \(-0.226587\pi\)
0.757159 + 0.653231i \(0.226587\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −26.2361 −0.841955 −0.420978 0.907071i \(-0.638313\pi\)
−0.420978 + 0.907071i \(0.638313\pi\)
\(972\) 0 0
\(973\) 17.1803 0.550776
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −16.7639 −0.536326 −0.268163 0.963374i \(-0.586417\pi\)
−0.268163 + 0.963374i \(0.586417\pi\)
\(978\) 0 0
\(979\) −51.8197 −1.65616
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.8197 −0.727834 −0.363917 0.931431i \(-0.618561\pi\)
−0.363917 + 0.931431i \(0.618561\pi\)
\(984\) 0 0
\(985\) 15.7984 0.503378
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.22291 0.0706845
\(990\) 0 0
\(991\) 29.1246 0.925174 0.462587 0.886574i \(-0.346921\pi\)
0.462587 + 0.886574i \(0.346921\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.23607 −0.0708881
\(996\) 0 0
\(997\) −57.7984 −1.83049 −0.915246 0.402894i \(-0.868004\pi\)
−0.915246 + 0.402894i \(0.868004\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.l.1.2 2
3.2 odd 2 532.2.a.b.1.2 2
12.11 even 2 2128.2.a.m.1.1 2
21.20 even 2 3724.2.a.g.1.1 2
24.5 odd 2 8512.2.a.bg.1.1 2
24.11 even 2 8512.2.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.a.b.1.2 2 3.2 odd 2
2128.2.a.m.1.1 2 12.11 even 2
3724.2.a.g.1.1 2 21.20 even 2
4788.2.a.l.1.2 2 1.1 even 1 trivial
8512.2.a.k.1.2 2 24.11 even 2
8512.2.a.bg.1.1 2 24.5 odd 2