Properties

Label 4788.2.a.l.1.1
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +1.00000 q^{7} -6.09017 q^{11} -2.23607 q^{13} +7.61803 q^{17} -1.00000 q^{19} +8.70820 q^{23} -4.00000 q^{25} -0.854102 q^{29} -2.38197 q^{31} +1.00000 q^{35} -6.70820 q^{37} -0.0901699 q^{41} +8.47214 q^{43} -4.70820 q^{47} +1.00000 q^{49} +14.3262 q^{53} -6.09017 q^{55} +10.7082 q^{59} +5.47214 q^{61} -2.23607 q^{65} -2.09017 q^{67} +11.1803 q^{71} -0.909830 q^{73} -6.09017 q^{77} -6.94427 q^{79} -14.6180 q^{83} +7.61803 q^{85} +12.1803 q^{89} -2.23607 q^{91} -1.00000 q^{95} +8.70820 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 2 q^{7} - q^{11} + 13 q^{17} - 2 q^{19} + 4 q^{23} - 8 q^{25} + 5 q^{29} - 7 q^{31} + 2 q^{35} + 11 q^{41} + 8 q^{43} + 4 q^{47} + 2 q^{49} + 13 q^{53} - q^{55} + 8 q^{59} + 2 q^{61} + 7 q^{67}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.09017 −1.83626 −0.918128 0.396285i \(-0.870299\pi\)
−0.918128 + 0.396285i \(0.870299\pi\)
\(12\) 0 0
\(13\) −2.23607 −0.620174 −0.310087 0.950708i \(-0.600358\pi\)
−0.310087 + 0.950708i \(0.600358\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.61803 1.84764 0.923822 0.382822i \(-0.125048\pi\)
0.923822 + 0.382822i \(0.125048\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.70820 1.81579 0.907893 0.419202i \(-0.137690\pi\)
0.907893 + 0.419202i \(0.137690\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.854102 −0.158603 −0.0793014 0.996851i \(-0.525269\pi\)
−0.0793014 + 0.996851i \(0.525269\pi\)
\(30\) 0 0
\(31\) −2.38197 −0.427814 −0.213907 0.976854i \(-0.568619\pi\)
−0.213907 + 0.976854i \(0.568619\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −6.70820 −1.10282 −0.551411 0.834234i \(-0.685910\pi\)
−0.551411 + 0.834234i \(0.685910\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.0901699 −0.0140822 −0.00704109 0.999975i \(-0.502241\pi\)
−0.00704109 + 0.999975i \(0.502241\pi\)
\(42\) 0 0
\(43\) 8.47214 1.29199 0.645994 0.763342i \(-0.276443\pi\)
0.645994 + 0.763342i \(0.276443\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.70820 −0.686762 −0.343381 0.939196i \(-0.611572\pi\)
−0.343381 + 0.939196i \(0.611572\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 14.3262 1.96786 0.983930 0.178554i \(-0.0571420\pi\)
0.983930 + 0.178554i \(0.0571420\pi\)
\(54\) 0 0
\(55\) −6.09017 −0.821198
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.7082 1.39409 0.697045 0.717028i \(-0.254498\pi\)
0.697045 + 0.717028i \(0.254498\pi\)
\(60\) 0 0
\(61\) 5.47214 0.700635 0.350318 0.936631i \(-0.386074\pi\)
0.350318 + 0.936631i \(0.386074\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.23607 −0.277350
\(66\) 0 0
\(67\) −2.09017 −0.255355 −0.127677 0.991816i \(-0.540752\pi\)
−0.127677 + 0.991816i \(0.540752\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.1803 1.32686 0.663431 0.748237i \(-0.269100\pi\)
0.663431 + 0.748237i \(0.269100\pi\)
\(72\) 0 0
\(73\) −0.909830 −0.106488 −0.0532438 0.998582i \(-0.516956\pi\)
−0.0532438 + 0.998582i \(0.516956\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.09017 −0.694039
\(78\) 0 0
\(79\) −6.94427 −0.781292 −0.390646 0.920541i \(-0.627748\pi\)
−0.390646 + 0.920541i \(0.627748\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −14.6180 −1.60454 −0.802269 0.596963i \(-0.796374\pi\)
−0.802269 + 0.596963i \(0.796374\pi\)
\(84\) 0 0
\(85\) 7.61803 0.826292
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.1803 1.29111 0.645557 0.763712i \(-0.276625\pi\)
0.645557 + 0.763712i \(0.276625\pi\)
\(90\) 0 0
\(91\) −2.23607 −0.234404
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 8.70820 0.884184 0.442092 0.896970i \(-0.354236\pi\)
0.442092 + 0.896970i \(0.354236\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.23607 0.819519 0.409760 0.912194i \(-0.365613\pi\)
0.409760 + 0.912194i \(0.365613\pi\)
\(102\) 0 0
\(103\) −7.76393 −0.765003 −0.382501 0.923955i \(-0.624937\pi\)
−0.382501 + 0.923955i \(0.624937\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.76393 −0.363873 −0.181937 0.983310i \(-0.558237\pi\)
−0.181937 + 0.983310i \(0.558237\pi\)
\(108\) 0 0
\(109\) 18.8885 1.80919 0.904597 0.426267i \(-0.140172\pi\)
0.904597 + 0.426267i \(0.140172\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.6180 1.37515 0.687574 0.726114i \(-0.258675\pi\)
0.687574 + 0.726114i \(0.258675\pi\)
\(114\) 0 0
\(115\) 8.70820 0.812044
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.61803 0.698344
\(120\) 0 0
\(121\) 26.0902 2.37183
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 15.2361 1.35198 0.675991 0.736910i \(-0.263716\pi\)
0.675991 + 0.736910i \(0.263716\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.38197 0.382854 0.191427 0.981507i \(-0.438688\pi\)
0.191427 + 0.981507i \(0.438688\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.52786 −0.301406 −0.150703 0.988579i \(-0.548154\pi\)
−0.150703 + 0.988579i \(0.548154\pi\)
\(138\) 0 0
\(139\) −5.18034 −0.439391 −0.219695 0.975569i \(-0.570506\pi\)
−0.219695 + 0.975569i \(0.570506\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 13.6180 1.13880
\(144\) 0 0
\(145\) −0.854102 −0.0709293
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.00000 −0.573462 −0.286731 0.958011i \(-0.592569\pi\)
−0.286731 + 0.958011i \(0.592569\pi\)
\(150\) 0 0
\(151\) −4.38197 −0.356599 −0.178300 0.983976i \(-0.557060\pi\)
−0.178300 + 0.983976i \(0.557060\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.38197 −0.191324
\(156\) 0 0
\(157\) 13.6180 1.08684 0.543419 0.839462i \(-0.317130\pi\)
0.543419 + 0.839462i \(0.317130\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.70820 0.686303
\(162\) 0 0
\(163\) −10.7984 −0.845794 −0.422897 0.906178i \(-0.638987\pi\)
−0.422897 + 0.906178i \(0.638987\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.47214 −0.113917 −0.0569587 0.998377i \(-0.518140\pi\)
−0.0569587 + 0.998377i \(0.518140\pi\)
\(168\) 0 0
\(169\) −8.00000 −0.615385
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.2918 0.782471 0.391235 0.920291i \(-0.372048\pi\)
0.391235 + 0.920291i \(0.372048\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.3820 0.775985 0.387992 0.921663i \(-0.373169\pi\)
0.387992 + 0.921663i \(0.373169\pi\)
\(180\) 0 0
\(181\) −13.5066 −1.00394 −0.501968 0.864886i \(-0.667390\pi\)
−0.501968 + 0.864886i \(0.667390\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.70820 −0.493197
\(186\) 0 0
\(187\) −46.3951 −3.39275
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.03444 −0.581352 −0.290676 0.956822i \(-0.593880\pi\)
−0.290676 + 0.956822i \(0.593880\pi\)
\(192\) 0 0
\(193\) −1.43769 −0.103487 −0.0517437 0.998660i \(-0.516478\pi\)
−0.0517437 + 0.998660i \(0.516478\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.79837 −0.626858 −0.313429 0.949612i \(-0.601478\pi\)
−0.313429 + 0.949612i \(0.601478\pi\)
\(198\) 0 0
\(199\) 2.23607 0.158511 0.0792553 0.996854i \(-0.474746\pi\)
0.0792553 + 0.996854i \(0.474746\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.854102 −0.0599462
\(204\) 0 0
\(205\) −0.0901699 −0.00629774
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.09017 0.421266
\(210\) 0 0
\(211\) 26.9787 1.85729 0.928646 0.370968i \(-0.120974\pi\)
0.928646 + 0.370968i \(0.120974\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.47214 0.577795
\(216\) 0 0
\(217\) −2.38197 −0.161698
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −17.0344 −1.14586
\(222\) 0 0
\(223\) 5.94427 0.398058 0.199029 0.979994i \(-0.436221\pi\)
0.199029 + 0.979994i \(0.436221\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.0902 −1.06794 −0.533971 0.845503i \(-0.679301\pi\)
−0.533971 + 0.845503i \(0.679301\pi\)
\(228\) 0 0
\(229\) −12.4721 −0.824182 −0.412091 0.911143i \(-0.635201\pi\)
−0.412091 + 0.911143i \(0.635201\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.32624 0.479958 0.239979 0.970778i \(-0.422859\pi\)
0.239979 + 0.970778i \(0.422859\pi\)
\(234\) 0 0
\(235\) −4.70820 −0.307129
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.1246 1.17238 0.586192 0.810172i \(-0.300626\pi\)
0.586192 + 0.810172i \(0.300626\pi\)
\(240\) 0 0
\(241\) 23.7082 1.52718 0.763590 0.645702i \(-0.223435\pi\)
0.763590 + 0.645702i \(0.223435\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) 2.23607 0.142278
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.673762 0.0425275 0.0212637 0.999774i \(-0.493231\pi\)
0.0212637 + 0.999774i \(0.493231\pi\)
\(252\) 0 0
\(253\) −53.0344 −3.33425
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.2705 −0.827792 −0.413896 0.910324i \(-0.635832\pi\)
−0.413896 + 0.910324i \(0.635832\pi\)
\(258\) 0 0
\(259\) −6.70820 −0.416828
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.7984 −1.15916 −0.579579 0.814916i \(-0.696783\pi\)
−0.579579 + 0.814916i \(0.696783\pi\)
\(264\) 0 0
\(265\) 14.3262 0.880054
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.79837 −0.292562 −0.146281 0.989243i \(-0.546730\pi\)
−0.146281 + 0.989243i \(0.546730\pi\)
\(270\) 0 0
\(271\) 0.562306 0.0341577 0.0170788 0.999854i \(-0.494563\pi\)
0.0170788 + 0.999854i \(0.494563\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 24.3607 1.46900
\(276\) 0 0
\(277\) −8.65248 −0.519877 −0.259938 0.965625i \(-0.583702\pi\)
−0.259938 + 0.965625i \(0.583702\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.0000 0.656205 0.328102 0.944642i \(-0.393591\pi\)
0.328102 + 0.944642i \(0.393591\pi\)
\(282\) 0 0
\(283\) −18.6180 −1.10673 −0.553364 0.832940i \(-0.686656\pi\)
−0.553364 + 0.832940i \(0.686656\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.0901699 −0.00532256
\(288\) 0 0
\(289\) 41.0344 2.41379
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 19.4721 1.13757 0.568787 0.822485i \(-0.307413\pi\)
0.568787 + 0.822485i \(0.307413\pi\)
\(294\) 0 0
\(295\) 10.7082 0.623456
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −19.4721 −1.12610
\(300\) 0 0
\(301\) 8.47214 0.488326
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.47214 0.313334
\(306\) 0 0
\(307\) 22.7426 1.29799 0.648996 0.760792i \(-0.275189\pi\)
0.648996 + 0.760792i \(0.275189\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.32624 0.188614 0.0943068 0.995543i \(-0.469937\pi\)
0.0943068 + 0.995543i \(0.469937\pi\)
\(312\) 0 0
\(313\) 14.1803 0.801520 0.400760 0.916183i \(-0.368746\pi\)
0.400760 + 0.916183i \(0.368746\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.47214 −0.251180 −0.125590 0.992082i \(-0.540082\pi\)
−0.125590 + 0.992082i \(0.540082\pi\)
\(318\) 0 0
\(319\) 5.20163 0.291235
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.61803 −0.423879
\(324\) 0 0
\(325\) 8.94427 0.496139
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.70820 −0.259572
\(330\) 0 0
\(331\) −0.729490 −0.0400964 −0.0200482 0.999799i \(-0.506382\pi\)
−0.0200482 + 0.999799i \(0.506382\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.09017 −0.114198
\(336\) 0 0
\(337\) −9.32624 −0.508033 −0.254016 0.967200i \(-0.581752\pi\)
−0.254016 + 0.967200i \(0.581752\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 14.5066 0.785575
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.5623 0.620697 0.310349 0.950623i \(-0.399554\pi\)
0.310349 + 0.950623i \(0.399554\pi\)
\(348\) 0 0
\(349\) −3.27051 −0.175066 −0.0875332 0.996162i \(-0.527898\pi\)
−0.0875332 + 0.996162i \(0.527898\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 21.6180 1.15061 0.575306 0.817938i \(-0.304883\pi\)
0.575306 + 0.817938i \(0.304883\pi\)
\(354\) 0 0
\(355\) 11.1803 0.593391
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.43769 0.181435 0.0907173 0.995877i \(-0.471084\pi\)
0.0907173 + 0.995877i \(0.471084\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.909830 −0.0476227
\(366\) 0 0
\(367\) 12.8885 0.672777 0.336388 0.941723i \(-0.390795\pi\)
0.336388 + 0.941723i \(0.390795\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14.3262 0.743781
\(372\) 0 0
\(373\) −16.5066 −0.854678 −0.427339 0.904091i \(-0.640549\pi\)
−0.427339 + 0.904091i \(0.640549\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.90983 0.0983613
\(378\) 0 0
\(379\) 6.52786 0.335314 0.167657 0.985845i \(-0.446380\pi\)
0.167657 + 0.985845i \(0.446380\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.2361 0.829624 0.414812 0.909907i \(-0.363847\pi\)
0.414812 + 0.909907i \(0.363847\pi\)
\(384\) 0 0
\(385\) −6.09017 −0.310384
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.61803 −0.284846 −0.142423 0.989806i \(-0.545489\pi\)
−0.142423 + 0.989806i \(0.545489\pi\)
\(390\) 0 0
\(391\) 66.3394 3.35493
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.94427 −0.349404
\(396\) 0 0
\(397\) −15.2361 −0.764676 −0.382338 0.924022i \(-0.624881\pi\)
−0.382338 + 0.924022i \(0.624881\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.7426 1.33546 0.667732 0.744402i \(-0.267265\pi\)
0.667732 + 0.744402i \(0.267265\pi\)
\(402\) 0 0
\(403\) 5.32624 0.265319
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 40.8541 2.02506
\(408\) 0 0
\(409\) −1.27051 −0.0628227 −0.0314113 0.999507i \(-0.510000\pi\)
−0.0314113 + 0.999507i \(0.510000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.7082 0.526916
\(414\) 0 0
\(415\) −14.6180 −0.717571
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.70820 0.425424 0.212712 0.977115i \(-0.431770\pi\)
0.212712 + 0.977115i \(0.431770\pi\)
\(420\) 0 0
\(421\) −9.18034 −0.447422 −0.223711 0.974655i \(-0.571817\pi\)
−0.223711 + 0.974655i \(0.571817\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −30.4721 −1.47812
\(426\) 0 0
\(427\) 5.47214 0.264815
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.00000 −0.0963366 −0.0481683 0.998839i \(-0.515338\pi\)
−0.0481683 + 0.998839i \(0.515338\pi\)
\(432\) 0 0
\(433\) 31.4721 1.51245 0.756227 0.654309i \(-0.227040\pi\)
0.756227 + 0.654309i \(0.227040\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.70820 −0.416570
\(438\) 0 0
\(439\) 28.3607 1.35358 0.676791 0.736175i \(-0.263370\pi\)
0.676791 + 0.736175i \(0.263370\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −34.7984 −1.65332 −0.826660 0.562701i \(-0.809762\pi\)
−0.826660 + 0.562701i \(0.809762\pi\)
\(444\) 0 0
\(445\) 12.1803 0.577403
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.38197 0.0652190 0.0326095 0.999468i \(-0.489618\pi\)
0.0326095 + 0.999468i \(0.489618\pi\)
\(450\) 0 0
\(451\) 0.549150 0.0258585
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.23607 −0.104828
\(456\) 0 0
\(457\) 16.2148 0.758495 0.379248 0.925295i \(-0.376183\pi\)
0.379248 + 0.925295i \(0.376183\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 24.0344 1.11940 0.559698 0.828697i \(-0.310917\pi\)
0.559698 + 0.828697i \(0.310917\pi\)
\(462\) 0 0
\(463\) −40.7771 −1.89507 −0.947536 0.319649i \(-0.896435\pi\)
−0.947536 + 0.319649i \(0.896435\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.8541 −0.918738 −0.459369 0.888245i \(-0.651924\pi\)
−0.459369 + 0.888245i \(0.651924\pi\)
\(468\) 0 0
\(469\) −2.09017 −0.0965151
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −51.5967 −2.37242
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.9787 0.730086 0.365043 0.930991i \(-0.381054\pi\)
0.365043 + 0.930991i \(0.381054\pi\)
\(480\) 0 0
\(481\) 15.0000 0.683941
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.70820 0.395419
\(486\) 0 0
\(487\) −20.7082 −0.938378 −0.469189 0.883098i \(-0.655454\pi\)
−0.469189 + 0.883098i \(0.655454\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −23.0557 −1.04049 −0.520245 0.854017i \(-0.674159\pi\)
−0.520245 + 0.854017i \(0.674159\pi\)
\(492\) 0 0
\(493\) −6.50658 −0.293042
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11.1803 0.501507
\(498\) 0 0
\(499\) 6.90983 0.309326 0.154663 0.987967i \(-0.450571\pi\)
0.154663 + 0.987967i \(0.450571\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −0.944272 −0.0421030 −0.0210515 0.999778i \(-0.506701\pi\)
−0.0210515 + 0.999778i \(0.506701\pi\)
\(504\) 0 0
\(505\) 8.23607 0.366500
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −33.4164 −1.48116 −0.740578 0.671970i \(-0.765448\pi\)
−0.740578 + 0.671970i \(0.765448\pi\)
\(510\) 0 0
\(511\) −0.909830 −0.0402485
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.76393 −0.342120
\(516\) 0 0
\(517\) 28.6738 1.26107
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.88854 −0.301793 −0.150896 0.988550i \(-0.548216\pi\)
−0.150896 + 0.988550i \(0.548216\pi\)
\(522\) 0 0
\(523\) 4.41641 0.193116 0.0965580 0.995327i \(-0.469217\pi\)
0.0965580 + 0.995327i \(0.469217\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18.1459 −0.790448
\(528\) 0 0
\(529\) 52.8328 2.29708
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.201626 0.00873340
\(534\) 0 0
\(535\) −3.76393 −0.162729
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.09017 −0.262322
\(540\) 0 0
\(541\) −10.5836 −0.455024 −0.227512 0.973775i \(-0.573059\pi\)
−0.227512 + 0.973775i \(0.573059\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 18.8885 0.809096
\(546\) 0 0
\(547\) 10.6180 0.453994 0.226997 0.973895i \(-0.427109\pi\)
0.226997 + 0.973895i \(0.427109\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.854102 0.0363860
\(552\) 0 0
\(553\) −6.94427 −0.295300
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.0344 0.637030 0.318515 0.947918i \(-0.396816\pi\)
0.318515 + 0.947918i \(0.396816\pi\)
\(558\) 0 0
\(559\) −18.9443 −0.801257
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −37.5410 −1.58217 −0.791083 0.611709i \(-0.790482\pi\)
−0.791083 + 0.611709i \(0.790482\pi\)
\(564\) 0 0
\(565\) 14.6180 0.614985
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.2918 0.557221 0.278611 0.960404i \(-0.410126\pi\)
0.278611 + 0.960404i \(0.410126\pi\)
\(570\) 0 0
\(571\) −5.94427 −0.248760 −0.124380 0.992235i \(-0.539694\pi\)
−0.124380 + 0.992235i \(0.539694\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −34.8328 −1.45263
\(576\) 0 0
\(577\) 9.67376 0.402724 0.201362 0.979517i \(-0.435463\pi\)
0.201362 + 0.979517i \(0.435463\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −14.6180 −0.606458
\(582\) 0 0
\(583\) −87.2492 −3.61349
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 34.3607 1.41822 0.709109 0.705099i \(-0.249098\pi\)
0.709109 + 0.705099i \(0.249098\pi\)
\(588\) 0 0
\(589\) 2.38197 0.0981472
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −27.2918 −1.12074 −0.560370 0.828242i \(-0.689341\pi\)
−0.560370 + 0.828242i \(0.689341\pi\)
\(594\) 0 0
\(595\) 7.61803 0.312309
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −40.1459 −1.64032 −0.820158 0.572136i \(-0.806115\pi\)
−0.820158 + 0.572136i \(0.806115\pi\)
\(600\) 0 0
\(601\) 18.9787 0.774158 0.387079 0.922047i \(-0.373484\pi\)
0.387079 + 0.922047i \(0.373484\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 26.0902 1.06072
\(606\) 0 0
\(607\) −36.5967 −1.48542 −0.742708 0.669615i \(-0.766459\pi\)
−0.742708 + 0.669615i \(0.766459\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.5279 0.425912
\(612\) 0 0
\(613\) 2.03444 0.0821703 0.0410852 0.999156i \(-0.486919\pi\)
0.0410852 + 0.999156i \(0.486919\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.8541 1.08111 0.540553 0.841310i \(-0.318215\pi\)
0.540553 + 0.841310i \(0.318215\pi\)
\(618\) 0 0
\(619\) −46.7984 −1.88099 −0.940493 0.339814i \(-0.889636\pi\)
−0.940493 + 0.339814i \(0.889636\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.1803 0.487995
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −51.1033 −2.03762
\(630\) 0 0
\(631\) 0.888544 0.0353724 0.0176862 0.999844i \(-0.494370\pi\)
0.0176862 + 0.999844i \(0.494370\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.2361 0.604625
\(636\) 0 0
\(637\) −2.23607 −0.0885962
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.38197 −0.252073 −0.126036 0.992026i \(-0.540226\pi\)
−0.126036 + 0.992026i \(0.540226\pi\)
\(642\) 0 0
\(643\) −7.47214 −0.294672 −0.147336 0.989086i \(-0.547070\pi\)
−0.147336 + 0.989086i \(0.547070\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 27.6525 1.08713 0.543566 0.839367i \(-0.317074\pi\)
0.543566 + 0.839367i \(0.317074\pi\)
\(648\) 0 0
\(649\) −65.2148 −2.55990
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.1246 0.865803 0.432901 0.901441i \(-0.357490\pi\)
0.432901 + 0.901441i \(0.357490\pi\)
\(654\) 0 0
\(655\) 4.38197 0.171218
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −22.0902 −0.860511 −0.430255 0.902707i \(-0.641577\pi\)
−0.430255 + 0.902707i \(0.641577\pi\)
\(660\) 0 0
\(661\) 12.4721 0.485110 0.242555 0.970138i \(-0.422015\pi\)
0.242555 + 0.970138i \(0.422015\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.00000 −0.0387783
\(666\) 0 0
\(667\) −7.43769 −0.287989
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −33.3262 −1.28655
\(672\) 0 0
\(673\) −44.5066 −1.71560 −0.857801 0.513982i \(-0.828170\pi\)
−0.857801 + 0.513982i \(0.828170\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 47.9230 1.84183 0.920915 0.389764i \(-0.127443\pi\)
0.920915 + 0.389764i \(0.127443\pi\)
\(678\) 0 0
\(679\) 8.70820 0.334190
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.29180 −0.279013 −0.139506 0.990221i \(-0.544552\pi\)
−0.139506 + 0.990221i \(0.544552\pi\)
\(684\) 0 0
\(685\) −3.52786 −0.134793
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −32.0344 −1.22042
\(690\) 0 0
\(691\) −39.1246 −1.48837 −0.744185 0.667973i \(-0.767162\pi\)
−0.744185 + 0.667973i \(0.767162\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.18034 −0.196501
\(696\) 0 0
\(697\) −0.686918 −0.0260189
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.47214 0.244449 0.122225 0.992502i \(-0.460997\pi\)
0.122225 + 0.992502i \(0.460997\pi\)
\(702\) 0 0
\(703\) 6.70820 0.253005
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.23607 0.309749
\(708\) 0 0
\(709\) −22.7082 −0.852824 −0.426412 0.904529i \(-0.640223\pi\)
−0.426412 + 0.904529i \(0.640223\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.7426 −0.776818
\(714\) 0 0
\(715\) 13.6180 0.509286
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −28.3607 −1.05767 −0.528837 0.848723i \(-0.677372\pi\)
−0.528837 + 0.848723i \(0.677372\pi\)
\(720\) 0 0
\(721\) −7.76393 −0.289144
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.41641 0.126882
\(726\) 0 0
\(727\) −18.5279 −0.687160 −0.343580 0.939123i \(-0.611640\pi\)
−0.343580 + 0.939123i \(0.611640\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 64.5410 2.38714
\(732\) 0 0
\(733\) 38.8328 1.43432 0.717161 0.696907i \(-0.245441\pi\)
0.717161 + 0.696907i \(0.245441\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.7295 0.468897
\(738\) 0 0
\(739\) 3.18034 0.116991 0.0584953 0.998288i \(-0.481370\pi\)
0.0584953 + 0.998288i \(0.481370\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.34752 0.306241 0.153120 0.988208i \(-0.451068\pi\)
0.153120 + 0.988208i \(0.451068\pi\)
\(744\) 0 0
\(745\) −7.00000 −0.256460
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.76393 −0.137531
\(750\) 0 0
\(751\) −33.3820 −1.21813 −0.609063 0.793122i \(-0.708454\pi\)
−0.609063 + 0.793122i \(0.708454\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.38197 −0.159476
\(756\) 0 0
\(757\) 28.8328 1.04795 0.523973 0.851735i \(-0.324449\pi\)
0.523973 + 0.851735i \(0.324449\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.94427 0.215480 0.107740 0.994179i \(-0.465639\pi\)
0.107740 + 0.994179i \(0.465639\pi\)
\(762\) 0 0
\(763\) 18.8885 0.683811
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.9443 −0.864578
\(768\) 0 0
\(769\) −28.3607 −1.02271 −0.511356 0.859369i \(-0.670857\pi\)
−0.511356 + 0.859369i \(0.670857\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 43.1246 1.55108 0.775542 0.631296i \(-0.217477\pi\)
0.775542 + 0.631296i \(0.217477\pi\)
\(774\) 0 0
\(775\) 9.52786 0.342251
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.0901699 0.00323067
\(780\) 0 0
\(781\) −68.0902 −2.43646
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.6180 0.486048
\(786\) 0 0
\(787\) −0.360680 −0.0128568 −0.00642842 0.999979i \(-0.502046\pi\)
−0.00642842 + 0.999979i \(0.502046\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 14.6180 0.519757
\(792\) 0 0
\(793\) −12.2361 −0.434516
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.7295 0.698854 0.349427 0.936964i \(-0.386376\pi\)
0.349427 + 0.936964i \(0.386376\pi\)
\(798\) 0 0
\(799\) −35.8673 −1.26889
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.54102 0.195538
\(804\) 0 0
\(805\) 8.70820 0.306924
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 15.0689 0.529794 0.264897 0.964277i \(-0.414662\pi\)
0.264897 + 0.964277i \(0.414662\pi\)
\(810\) 0 0
\(811\) 7.88854 0.277004 0.138502 0.990362i \(-0.455771\pi\)
0.138502 + 0.990362i \(0.455771\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.7984 −0.378251
\(816\) 0 0
\(817\) −8.47214 −0.296403
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.4164 −0.817238 −0.408619 0.912705i \(-0.633990\pi\)
−0.408619 + 0.912705i \(0.633990\pi\)
\(822\) 0 0
\(823\) −33.2361 −1.15854 −0.579268 0.815137i \(-0.696662\pi\)
−0.579268 + 0.815137i \(0.696662\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.8197 −0.863064 −0.431532 0.902098i \(-0.642027\pi\)
−0.431532 + 0.902098i \(0.642027\pi\)
\(828\) 0 0
\(829\) −38.2492 −1.32845 −0.664225 0.747533i \(-0.731238\pi\)
−0.664225 + 0.747533i \(0.731238\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 7.61803 0.263949
\(834\) 0 0
\(835\) −1.47214 −0.0509454
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 36.3607 1.25531 0.627655 0.778492i \(-0.284015\pi\)
0.627655 + 0.778492i \(0.284015\pi\)
\(840\) 0 0
\(841\) −28.2705 −0.974845
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.00000 −0.275208
\(846\) 0 0
\(847\) 26.0902 0.896469
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −58.4164 −2.00249
\(852\) 0 0
\(853\) 38.2148 1.30845 0.654225 0.756300i \(-0.272995\pi\)
0.654225 + 0.756300i \(0.272995\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.3820 −0.832872 −0.416436 0.909165i \(-0.636721\pi\)
−0.416436 + 0.909165i \(0.636721\pi\)
\(858\) 0 0
\(859\) 31.9787 1.09110 0.545550 0.838078i \(-0.316321\pi\)
0.545550 + 0.838078i \(0.316321\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22.0344 −0.750061 −0.375031 0.927012i \(-0.622368\pi\)
−0.375031 + 0.927012i \(0.622368\pi\)
\(864\) 0 0
\(865\) 10.2918 0.349932
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 42.2918 1.43465
\(870\) 0 0
\(871\) 4.67376 0.158364
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −9.00000 −0.304256
\(876\) 0 0
\(877\) −37.7082 −1.27332 −0.636658 0.771146i \(-0.719684\pi\)
−0.636658 + 0.771146i \(0.719684\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −16.5066 −0.556121 −0.278060 0.960564i \(-0.589692\pi\)
−0.278060 + 0.960564i \(0.589692\pi\)
\(882\) 0 0
\(883\) −38.1246 −1.28300 −0.641498 0.767125i \(-0.721687\pi\)
−0.641498 + 0.767125i \(0.721687\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 55.8328 1.87468 0.937341 0.348413i \(-0.113279\pi\)
0.937341 + 0.348413i \(0.113279\pi\)
\(888\) 0 0
\(889\) 15.2361 0.511001
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.70820 0.157554
\(894\) 0 0
\(895\) 10.3820 0.347031
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.03444 0.0678524
\(900\) 0 0
\(901\) 109.138 3.63591
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.5066 −0.448974
\(906\) 0 0
\(907\) 34.3050 1.13908 0.569539 0.821965i \(-0.307122\pi\)
0.569539 + 0.821965i \(0.307122\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.472136 −0.0156426 −0.00782128 0.999969i \(-0.502490\pi\)
−0.00782128 + 0.999969i \(0.502490\pi\)
\(912\) 0 0
\(913\) 89.0263 2.94634
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.38197 0.144705
\(918\) 0 0
\(919\) 31.3607 1.03449 0.517247 0.855836i \(-0.326957\pi\)
0.517247 + 0.855836i \(0.326957\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −25.0000 −0.822885
\(924\) 0 0
\(925\) 26.8328 0.882258
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11.2705 0.369773 0.184887 0.982760i \(-0.440808\pi\)
0.184887 + 0.982760i \(0.440808\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −46.3951 −1.51728
\(936\) 0 0
\(937\) −17.1459 −0.560132 −0.280066 0.959981i \(-0.590356\pi\)
−0.280066 + 0.959981i \(0.590356\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −47.8885 −1.56112 −0.780561 0.625080i \(-0.785066\pi\)
−0.780561 + 0.625080i \(0.785066\pi\)
\(942\) 0 0
\(943\) −0.785218 −0.0255702
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −26.0344 −0.846006 −0.423003 0.906128i \(-0.639024\pi\)
−0.423003 + 0.906128i \(0.639024\pi\)
\(948\) 0 0
\(949\) 2.03444 0.0660408
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −13.2148 −0.428069 −0.214034 0.976826i \(-0.568660\pi\)
−0.214034 + 0.976826i \(0.568660\pi\)
\(954\) 0 0
\(955\) −8.03444 −0.259988
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.52786 −0.113921
\(960\) 0 0
\(961\) −25.3262 −0.816975
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.43769 −0.0462810
\(966\) 0 0
\(967\) 35.9098 1.15478 0.577391 0.816468i \(-0.304071\pi\)
0.577391 + 0.816468i \(0.304071\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −21.7639 −0.698438 −0.349219 0.937041i \(-0.613553\pi\)
−0.349219 + 0.937041i \(0.613553\pi\)
\(972\) 0 0
\(973\) −5.18034 −0.166074
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.2361 −0.679402 −0.339701 0.940533i \(-0.610326\pi\)
−0.339701 + 0.940533i \(0.610326\pi\)
\(978\) 0 0
\(979\) −74.1803 −2.37081
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −45.1803 −1.44103 −0.720515 0.693440i \(-0.756094\pi\)
−0.720515 + 0.693440i \(0.756094\pi\)
\(984\) 0 0
\(985\) −8.79837 −0.280340
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 73.7771 2.34597
\(990\) 0 0
\(991\) −11.1246 −0.353385 −0.176692 0.984266i \(-0.556540\pi\)
−0.176692 + 0.984266i \(0.556540\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.23607 0.0708881
\(996\) 0 0
\(997\) −33.2016 −1.05151 −0.525753 0.850637i \(-0.676216\pi\)
−0.525753 + 0.850637i \(0.676216\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.l.1.1 2
3.2 odd 2 532.2.a.b.1.1 2
12.11 even 2 2128.2.a.m.1.2 2
21.20 even 2 3724.2.a.g.1.2 2
24.5 odd 2 8512.2.a.bg.1.2 2
24.11 even 2 8512.2.a.k.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.a.b.1.1 2 3.2 odd 2
2128.2.a.m.1.2 2 12.11 even 2
3724.2.a.g.1.2 2 21.20 even 2
4788.2.a.l.1.1 2 1.1 even 1 trivial
8512.2.a.k.1.1 2 24.11 even 2
8512.2.a.bg.1.2 2 24.5 odd 2