Properties

Label 4788.2.a.k.1.2
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1596)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.64575 q^{5} -1.00000 q^{7} -5.29150 q^{11} -0.354249 q^{17} +1.00000 q^{19} -5.29150 q^{23} +8.29150 q^{25} +9.64575 q^{29} -6.00000 q^{31} -3.64575 q^{35} +5.29150 q^{37} +3.29150 q^{41} -1.29150 q^{43} +4.35425 q^{47} +1.00000 q^{49} +13.6458 q^{53} -19.2915 q^{55} +8.00000 q^{59} +9.29150 q^{61} +7.29150 q^{67} +8.93725 q^{71} -2.00000 q^{73} +5.29150 q^{77} -3.29150 q^{79} +14.9373 q^{83} -1.29150 q^{85} +3.29150 q^{89} +3.64575 q^{95} +4.58301 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{7} - 6 q^{17} + 2 q^{19} + 6 q^{25} + 14 q^{29} - 12 q^{31} - 2 q^{35} - 4 q^{41} + 8 q^{43} + 14 q^{47} + 2 q^{49} + 22 q^{53} - 28 q^{55} + 16 q^{59} + 8 q^{61} + 4 q^{67} + 2 q^{71}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.64575 1.63043 0.815215 0.579159i \(-0.196619\pi\)
0.815215 + 0.579159i \(0.196619\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.29150 −1.59545 −0.797724 0.603023i \(-0.793963\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.354249 −0.0859179 −0.0429590 0.999077i \(-0.513678\pi\)
−0.0429590 + 0.999077i \(0.513678\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.29150 −1.10335 −0.551677 0.834058i \(-0.686012\pi\)
−0.551677 + 0.834058i \(0.686012\pi\)
\(24\) 0 0
\(25\) 8.29150 1.65830
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 9.64575 1.79117 0.895586 0.444889i \(-0.146757\pi\)
0.895586 + 0.444889i \(0.146757\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.64575 −0.616244
\(36\) 0 0
\(37\) 5.29150 0.869918 0.434959 0.900450i \(-0.356763\pi\)
0.434959 + 0.900450i \(0.356763\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.29150 0.514046 0.257023 0.966405i \(-0.417258\pi\)
0.257023 + 0.966405i \(0.417258\pi\)
\(42\) 0 0
\(43\) −1.29150 −0.196952 −0.0984762 0.995139i \(-0.531397\pi\)
−0.0984762 + 0.995139i \(0.531397\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.35425 0.635132 0.317566 0.948236i \(-0.397134\pi\)
0.317566 + 0.948236i \(0.397134\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 13.6458 1.87439 0.937194 0.348808i \(-0.113414\pi\)
0.937194 + 0.348808i \(0.113414\pi\)
\(54\) 0 0
\(55\) −19.2915 −2.60127
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 9.29150 1.18966 0.594828 0.803853i \(-0.297220\pi\)
0.594828 + 0.803853i \(0.297220\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.29150 0.890799 0.445399 0.895332i \(-0.353062\pi\)
0.445399 + 0.895332i \(0.353062\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.93725 1.06066 0.530328 0.847792i \(-0.322069\pi\)
0.530328 + 0.847792i \(0.322069\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.29150 0.603023
\(78\) 0 0
\(79\) −3.29150 −0.370323 −0.185161 0.982708i \(-0.559281\pi\)
−0.185161 + 0.982708i \(0.559281\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.9373 1.63958 0.819788 0.572667i \(-0.194091\pi\)
0.819788 + 0.572667i \(0.194091\pi\)
\(84\) 0 0
\(85\) −1.29150 −0.140083
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.29150 0.348899 0.174449 0.984666i \(-0.444185\pi\)
0.174449 + 0.984666i \(0.444185\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.64575 0.374046
\(96\) 0 0
\(97\) 4.58301 0.465334 0.232667 0.972556i \(-0.425255\pi\)
0.232667 + 0.972556i \(0.425255\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.3542 1.22929 0.614647 0.788802i \(-0.289299\pi\)
0.614647 + 0.788802i \(0.289299\pi\)
\(102\) 0 0
\(103\) 14.5830 1.43691 0.718453 0.695575i \(-0.244850\pi\)
0.718453 + 0.695575i \(0.244850\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.6458 1.31918 0.659592 0.751624i \(-0.270729\pi\)
0.659592 + 0.751624i \(0.270729\pi\)
\(108\) 0 0
\(109\) −17.2915 −1.65623 −0.828113 0.560562i \(-0.810585\pi\)
−0.828113 + 0.560562i \(0.810585\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.93725 −0.840746 −0.420373 0.907351i \(-0.638101\pi\)
−0.420373 + 0.907351i \(0.638101\pi\)
\(114\) 0 0
\(115\) −19.2915 −1.79894
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.354249 0.0324739
\(120\) 0 0
\(121\) 17.0000 1.54545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −3.29150 −0.292074 −0.146037 0.989279i \(-0.546652\pi\)
−0.146037 + 0.989279i \(0.546652\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.6458 1.36698 0.683488 0.729962i \(-0.260462\pi\)
0.683488 + 0.729962i \(0.260462\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −23.1660 −1.97921 −0.989603 0.143826i \(-0.954059\pi\)
−0.989603 + 0.143826i \(0.954059\pi\)
\(138\) 0 0
\(139\) 10.5830 0.897639 0.448819 0.893622i \(-0.351845\pi\)
0.448819 + 0.893622i \(0.351845\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 35.1660 2.92038
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −21.2915 −1.74427 −0.872134 0.489267i \(-0.837264\pi\)
−0.872134 + 0.489267i \(0.837264\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −21.8745 −1.75700
\(156\) 0 0
\(157\) −1.29150 −0.103073 −0.0515366 0.998671i \(-0.516412\pi\)
−0.0515366 + 0.998671i \(0.516412\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.29150 0.417029
\(162\) 0 0
\(163\) −7.87451 −0.616779 −0.308390 0.951260i \(-0.599790\pi\)
−0.308390 + 0.951260i \(0.599790\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.29150 −0.564233 −0.282117 0.959380i \(-0.591037\pi\)
−0.282117 + 0.959380i \(0.591037\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.70850 0.357980 0.178990 0.983851i \(-0.442717\pi\)
0.178990 + 0.983851i \(0.442717\pi\)
\(174\) 0 0
\(175\) −8.29150 −0.626779
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.3542 0.773913 0.386956 0.922098i \(-0.373526\pi\)
0.386956 + 0.922098i \(0.373526\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 19.2915 1.41834
\(186\) 0 0
\(187\) 1.87451 0.137078
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.29150 0.672310 0.336155 0.941807i \(-0.390873\pi\)
0.336155 + 0.941807i \(0.390873\pi\)
\(192\) 0 0
\(193\) −7.87451 −0.566819 −0.283410 0.958999i \(-0.591466\pi\)
−0.283410 + 0.958999i \(0.591466\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.58301 0.326526 0.163263 0.986583i \(-0.447798\pi\)
0.163263 + 0.986583i \(0.447798\pi\)
\(198\) 0 0
\(199\) −13.8745 −0.983538 −0.491769 0.870726i \(-0.663650\pi\)
−0.491769 + 0.870726i \(0.663650\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.64575 −0.676999
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.29150 −0.366021
\(210\) 0 0
\(211\) −10.5830 −0.728564 −0.364282 0.931289i \(-0.618686\pi\)
−0.364282 + 0.931289i \(0.618686\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.70850 −0.321117
\(216\) 0 0
\(217\) 6.00000 0.407307
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −23.1660 −1.55131 −0.775655 0.631157i \(-0.782581\pi\)
−0.775655 + 0.631157i \(0.782581\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −27.2915 −1.81140 −0.905700 0.423919i \(-0.860654\pi\)
−0.905700 + 0.423919i \(0.860654\pi\)
\(228\) 0 0
\(229\) −23.8745 −1.57767 −0.788836 0.614604i \(-0.789316\pi\)
−0.788836 + 0.614604i \(0.789316\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.29150 0.0846091 0.0423046 0.999105i \(-0.486530\pi\)
0.0423046 + 0.999105i \(0.486530\pi\)
\(234\) 0 0
\(235\) 15.8745 1.03554
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) −4.58301 −0.295217 −0.147609 0.989046i \(-0.547158\pi\)
−0.147609 + 0.989046i \(0.547158\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.64575 0.232919
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 22.9373 1.44779 0.723893 0.689912i \(-0.242351\pi\)
0.723893 + 0.689912i \(0.242351\pi\)
\(252\) 0 0
\(253\) 28.0000 1.76034
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −5.29150 −0.328798
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.0000 1.10993 0.554964 0.831875i \(-0.312732\pi\)
0.554964 + 0.831875i \(0.312732\pi\)
\(264\) 0 0
\(265\) 49.7490 3.05606
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.41699 0.0863957 0.0431978 0.999067i \(-0.486245\pi\)
0.0431978 + 0.999067i \(0.486245\pi\)
\(270\) 0 0
\(271\) 15.2915 0.928893 0.464446 0.885601i \(-0.346253\pi\)
0.464446 + 0.885601i \(0.346253\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −43.8745 −2.64573
\(276\) 0 0
\(277\) −20.4575 −1.22917 −0.614586 0.788850i \(-0.710677\pi\)
−0.614586 + 0.788850i \(0.710677\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −28.2288 −1.68399 −0.841993 0.539488i \(-0.818618\pi\)
−0.841993 + 0.539488i \(0.818618\pi\)
\(282\) 0 0
\(283\) −5.87451 −0.349203 −0.174602 0.984639i \(-0.555864\pi\)
−0.174602 + 0.984639i \(0.555864\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.29150 −0.194291
\(288\) 0 0
\(289\) −16.8745 −0.992618
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.70850 0.508756 0.254378 0.967105i \(-0.418129\pi\)
0.254378 + 0.967105i \(0.418129\pi\)
\(294\) 0 0
\(295\) 29.1660 1.69811
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.29150 0.0744410
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 33.8745 1.93965
\(306\) 0 0
\(307\) −20.5830 −1.17473 −0.587367 0.809321i \(-0.699835\pi\)
−0.587367 + 0.809321i \(0.699835\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −14.9373 −0.847014 −0.423507 0.905893i \(-0.639201\pi\)
−0.423507 + 0.905893i \(0.639201\pi\)
\(312\) 0 0
\(313\) 25.2915 1.42956 0.714780 0.699349i \(-0.246527\pi\)
0.714780 + 0.699349i \(0.246527\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.9373 −0.951291 −0.475645 0.879637i \(-0.657785\pi\)
−0.475645 + 0.879637i \(0.657785\pi\)
\(318\) 0 0
\(319\) −51.0405 −2.85772
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.354249 −0.0197109
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.35425 −0.240058
\(330\) 0 0
\(331\) −9.41699 −0.517605 −0.258802 0.965930i \(-0.583328\pi\)
−0.258802 + 0.965930i \(0.583328\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 26.5830 1.45238
\(336\) 0 0
\(337\) 33.2915 1.81350 0.906752 0.421665i \(-0.138554\pi\)
0.906752 + 0.421665i \(0.138554\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 31.7490 1.71931
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 31.1660 1.67308 0.836540 0.547907i \(-0.184575\pi\)
0.836540 + 0.547907i \(0.184575\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.0627 −0.695260 −0.347630 0.937632i \(-0.613013\pi\)
−0.347630 + 0.937632i \(0.613013\pi\)
\(354\) 0 0
\(355\) 32.5830 1.72933
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.4575 1.60749 0.803743 0.594977i \(-0.202839\pi\)
0.803743 + 0.594977i \(0.202839\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.29150 −0.381655
\(366\) 0 0
\(367\) 17.8745 0.933042 0.466521 0.884510i \(-0.345507\pi\)
0.466521 + 0.884510i \(0.345507\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.6458 −0.708452
\(372\) 0 0
\(373\) 4.58301 0.237299 0.118650 0.992936i \(-0.462144\pi\)
0.118650 + 0.992936i \(0.462144\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 10.5830 0.543612 0.271806 0.962352i \(-0.412379\pi\)
0.271806 + 0.962352i \(0.412379\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −29.8745 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(384\) 0 0
\(385\) 19.2915 0.983186
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −26.4575 −1.34145 −0.670725 0.741707i \(-0.734017\pi\)
−0.670725 + 0.741707i \(0.734017\pi\)
\(390\) 0 0
\(391\) 1.87451 0.0947979
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) 30.0000 1.50566 0.752828 0.658217i \(-0.228689\pi\)
0.752828 + 0.658217i \(0.228689\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.93725 −0.246555 −0.123277 0.992372i \(-0.539340\pi\)
−0.123277 + 0.992372i \(0.539340\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −28.0000 −1.38791
\(408\) 0 0
\(409\) 2.58301 0.127721 0.0638607 0.997959i \(-0.479659\pi\)
0.0638607 + 0.997959i \(0.479659\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.00000 −0.393654
\(414\) 0 0
\(415\) 54.4575 2.67321
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.06275 0.0519185 0.0259593 0.999663i \(-0.491736\pi\)
0.0259593 + 0.999663i \(0.491736\pi\)
\(420\) 0 0
\(421\) 0.583005 0.0284139 0.0142070 0.999899i \(-0.495478\pi\)
0.0142070 + 0.999899i \(0.495478\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.93725 −0.142478
\(426\) 0 0
\(427\) −9.29150 −0.449647
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.64575 0.0792731 0.0396365 0.999214i \(-0.487380\pi\)
0.0396365 + 0.999214i \(0.487380\pi\)
\(432\) 0 0
\(433\) −3.41699 −0.164210 −0.0821051 0.996624i \(-0.526164\pi\)
−0.0821051 + 0.996624i \(0.526164\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.29150 −0.253127
\(438\) 0 0
\(439\) −31.1660 −1.48747 −0.743736 0.668473i \(-0.766948\pi\)
−0.743736 + 0.668473i \(0.766948\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.1660 0.530513 0.265257 0.964178i \(-0.414543\pi\)
0.265257 + 0.964178i \(0.414543\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 41.3948 1.95354 0.976770 0.214291i \(-0.0687440\pi\)
0.976770 + 0.214291i \(0.0687440\pi\)
\(450\) 0 0
\(451\) −17.4170 −0.820134
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12.7085 0.594478 0.297239 0.954803i \(-0.403934\pi\)
0.297239 + 0.954803i \(0.403934\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.52026 0.0708055 0.0354028 0.999373i \(-0.488729\pi\)
0.0354028 + 0.999373i \(0.488729\pi\)
\(462\) 0 0
\(463\) 17.1660 0.797772 0.398886 0.917000i \(-0.369397\pi\)
0.398886 + 0.917000i \(0.369397\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.2288 0.473330 0.236665 0.971591i \(-0.423946\pi\)
0.236665 + 0.971591i \(0.423946\pi\)
\(468\) 0 0
\(469\) −7.29150 −0.336690
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.83399 0.314227
\(474\) 0 0
\(475\) 8.29150 0.380440
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −25.5203 −1.16605 −0.583025 0.812454i \(-0.698131\pi\)
−0.583025 + 0.812454i \(0.698131\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.7085 0.758694
\(486\) 0 0
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.00000 −0.270776 −0.135388 0.990793i \(-0.543228\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(492\) 0 0
\(493\) −3.41699 −0.153894
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.93725 −0.400891
\(498\) 0 0
\(499\) 34.5830 1.54815 0.774074 0.633095i \(-0.218216\pi\)
0.774074 + 0.633095i \(0.218216\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.22876 0.0993753 0.0496877 0.998765i \(-0.484177\pi\)
0.0496877 + 0.998765i \(0.484177\pi\)
\(504\) 0 0
\(505\) 45.0405 2.00428
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 30.5830 1.35557 0.677784 0.735261i \(-0.262940\pi\)
0.677784 + 0.735261i \(0.262940\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 53.1660 2.34277
\(516\) 0 0
\(517\) −23.0405 −1.01332
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.58301 −0.288407 −0.144203 0.989548i \(-0.546062\pi\)
−0.144203 + 0.989548i \(0.546062\pi\)
\(522\) 0 0
\(523\) 15.1660 0.663163 0.331582 0.943427i \(-0.392418\pi\)
0.331582 + 0.943427i \(0.392418\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.12549 0.0925879
\(528\) 0 0
\(529\) 5.00000 0.217391
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 49.7490 2.15084
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.29150 −0.227921
\(540\) 0 0
\(541\) 19.1660 0.824011 0.412006 0.911181i \(-0.364828\pi\)
0.412006 + 0.911181i \(0.364828\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −63.0405 −2.70036
\(546\) 0 0
\(547\) −28.4575 −1.21676 −0.608378 0.793648i \(-0.708179\pi\)
−0.608378 + 0.793648i \(0.708179\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.64575 0.410923
\(552\) 0 0
\(553\) 3.29150 0.139969
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.8745 1.01160 0.505798 0.862652i \(-0.331198\pi\)
0.505798 + 0.862652i \(0.331198\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.2915 0.813040 0.406520 0.913642i \(-0.366742\pi\)
0.406520 + 0.913642i \(0.366742\pi\)
\(564\) 0 0
\(565\) −32.5830 −1.37078
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.06275 −0.296086 −0.148043 0.988981i \(-0.547297\pi\)
−0.148043 + 0.988981i \(0.547297\pi\)
\(570\) 0 0
\(571\) 13.1660 0.550980 0.275490 0.961304i \(-0.411160\pi\)
0.275490 + 0.961304i \(0.411160\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −43.8745 −1.82969
\(576\) 0 0
\(577\) −11.8745 −0.494342 −0.247171 0.968972i \(-0.579501\pi\)
−0.247171 + 0.968972i \(0.579501\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −14.9373 −0.619702
\(582\) 0 0
\(583\) −72.2065 −2.99049
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.77124 0.0731070 0.0365535 0.999332i \(-0.488362\pi\)
0.0365535 + 0.999332i \(0.488362\pi\)
\(588\) 0 0
\(589\) −6.00000 −0.247226
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 26.2288 1.07709 0.538543 0.842598i \(-0.318975\pi\)
0.538543 + 0.842598i \(0.318975\pi\)
\(594\) 0 0
\(595\) 1.29150 0.0529464
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.77124 0.154089 0.0770444 0.997028i \(-0.475452\pi\)
0.0770444 + 0.997028i \(0.475452\pi\)
\(600\) 0 0
\(601\) −15.4170 −0.628872 −0.314436 0.949279i \(-0.601815\pi\)
−0.314436 + 0.949279i \(0.601815\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 61.9778 2.51975
\(606\) 0 0
\(607\) 17.4170 0.706934 0.353467 0.935447i \(-0.385003\pi\)
0.353467 + 0.935447i \(0.385003\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −16.4575 −0.664713 −0.332356 0.943154i \(-0.607844\pi\)
−0.332356 + 0.943154i \(0.607844\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.833990 −0.0335752 −0.0167876 0.999859i \(-0.505344\pi\)
−0.0167876 + 0.999859i \(0.505344\pi\)
\(618\) 0 0
\(619\) 47.7490 1.91919 0.959597 0.281376i \(-0.0907909\pi\)
0.959597 + 0.281376i \(0.0907909\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.29150 −0.131871
\(624\) 0 0
\(625\) 2.29150 0.0916601
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.87451 −0.0747415
\(630\) 0 0
\(631\) −7.87451 −0.313479 −0.156740 0.987640i \(-0.550098\pi\)
−0.156740 + 0.987640i \(0.550098\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12.0000 −0.476205
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −28.2288 −1.11497 −0.557484 0.830187i \(-0.688233\pi\)
−0.557484 + 0.830187i \(0.688233\pi\)
\(642\) 0 0
\(643\) −44.4575 −1.75323 −0.876617 0.481190i \(-0.840205\pi\)
−0.876617 + 0.481190i \(0.840205\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −32.8118 −1.28996 −0.644982 0.764198i \(-0.723135\pi\)
−0.644982 + 0.764198i \(0.723135\pi\)
\(648\) 0 0
\(649\) −42.3320 −1.66168
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.7490 −1.00764 −0.503818 0.863810i \(-0.668072\pi\)
−0.503818 + 0.863810i \(0.668072\pi\)
\(654\) 0 0
\(655\) 57.0405 2.22876
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 49.3948 1.92415 0.962073 0.272790i \(-0.0879466\pi\)
0.962073 + 0.272790i \(0.0879466\pi\)
\(660\) 0 0
\(661\) −32.0000 −1.24466 −0.622328 0.782757i \(-0.713813\pi\)
−0.622328 + 0.782757i \(0.713813\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.64575 −0.141376
\(666\) 0 0
\(667\) −51.0405 −1.97630
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −49.1660 −1.89803
\(672\) 0 0
\(673\) −12.1255 −0.467403 −0.233702 0.972308i \(-0.575084\pi\)
−0.233702 + 0.972308i \(0.575084\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 36.0000 1.38359 0.691796 0.722093i \(-0.256820\pi\)
0.691796 + 0.722093i \(0.256820\pi\)
\(678\) 0 0
\(679\) −4.58301 −0.175880
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.06275 −0.270248 −0.135124 0.990829i \(-0.543143\pi\)
−0.135124 + 0.990829i \(0.543143\pi\)
\(684\) 0 0
\(685\) −84.4575 −3.22696
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 11.2915 0.429549 0.214775 0.976664i \(-0.431098\pi\)
0.214775 + 0.976664i \(0.431098\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 38.5830 1.46354
\(696\) 0 0
\(697\) −1.16601 −0.0441658
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −22.0000 −0.830929 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(702\) 0 0
\(703\) 5.29150 0.199573
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.3542 −0.464629
\(708\) 0 0
\(709\) −13.8745 −0.521068 −0.260534 0.965465i \(-0.583899\pi\)
−0.260534 + 0.965465i \(0.583899\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 31.7490 1.18901
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.6458 −0.732663 −0.366331 0.930484i \(-0.619386\pi\)
−0.366331 + 0.930484i \(0.619386\pi\)
\(720\) 0 0
\(721\) −14.5830 −0.543099
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 79.9778 2.97030
\(726\) 0 0
\(727\) −35.2915 −1.30889 −0.654445 0.756110i \(-0.727098\pi\)
−0.654445 + 0.756110i \(0.727098\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.457513 0.0169217
\(732\) 0 0
\(733\) 48.5830 1.79445 0.897227 0.441569i \(-0.145578\pi\)
0.897227 + 0.441569i \(0.145578\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −38.5830 −1.42122
\(738\) 0 0
\(739\) 10.4575 0.384686 0.192343 0.981328i \(-0.438391\pi\)
0.192343 + 0.981328i \(0.438391\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.0627 0.699344 0.349672 0.936872i \(-0.386293\pi\)
0.349672 + 0.936872i \(0.386293\pi\)
\(744\) 0 0
\(745\) −77.6235 −2.84391
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.6458 −0.498605
\(750\) 0 0
\(751\) 10.8340 0.395338 0.197669 0.980269i \(-0.436663\pi\)
0.197669 + 0.980269i \(0.436663\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −29.1660 −1.06146
\(756\) 0 0
\(757\) −12.5830 −0.457337 −0.228669 0.973504i \(-0.573437\pi\)
−0.228669 + 0.973504i \(0.573437\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.9373 −1.12147 −0.560737 0.827994i \(-0.689482\pi\)
−0.560737 + 0.827994i \(0.689482\pi\)
\(762\) 0 0
\(763\) 17.2915 0.625994
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1.29150 0.0465728 0.0232864 0.999729i \(-0.492587\pi\)
0.0232864 + 0.999729i \(0.492587\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −39.0405 −1.40419 −0.702095 0.712083i \(-0.747752\pi\)
−0.702095 + 0.712083i \(0.747752\pi\)
\(774\) 0 0
\(775\) −49.7490 −1.78704
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.29150 0.117930
\(780\) 0 0
\(781\) −47.2915 −1.69222
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.70850 −0.168053
\(786\) 0 0
\(787\) −7.16601 −0.255441 −0.127720 0.991810i \(-0.540766\pi\)
−0.127720 + 0.991810i \(0.540766\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.93725 0.317772
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35.0405 −1.24120 −0.620599 0.784128i \(-0.713111\pi\)
−0.620599 + 0.784128i \(0.713111\pi\)
\(798\) 0 0
\(799\) −1.54249 −0.0545693
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.5830 0.373466
\(804\) 0 0
\(805\) 19.2915 0.679936
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 44.5830 1.56745 0.783727 0.621105i \(-0.213316\pi\)
0.783727 + 0.621105i \(0.213316\pi\)
\(810\) 0 0
\(811\) 23.7490 0.833941 0.416970 0.908920i \(-0.363092\pi\)
0.416970 + 0.908920i \(0.363092\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −28.7085 −1.00561
\(816\) 0 0
\(817\) −1.29150 −0.0451840
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13.2915 0.463877 0.231938 0.972730i \(-0.425493\pi\)
0.231938 + 0.972730i \(0.425493\pi\)
\(822\) 0 0
\(823\) 43.8745 1.52937 0.764685 0.644405i \(-0.222895\pi\)
0.764685 + 0.644405i \(0.222895\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.9373 1.00625 0.503123 0.864215i \(-0.332184\pi\)
0.503123 + 0.864215i \(0.332184\pi\)
\(828\) 0 0
\(829\) 36.3320 1.26186 0.630932 0.775838i \(-0.282673\pi\)
0.630932 + 0.775838i \(0.282673\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.354249 −0.0122740
\(834\) 0 0
\(835\) −26.5830 −0.919943
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.4170 0.739397 0.369698 0.929152i \(-0.379461\pi\)
0.369698 + 0.929152i \(0.379461\pi\)
\(840\) 0 0
\(841\) 64.0405 2.20829
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −47.3948 −1.63043
\(846\) 0 0
\(847\) −17.0000 −0.584127
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −28.0000 −0.959828
\(852\) 0 0
\(853\) −35.1660 −1.20406 −0.602031 0.798473i \(-0.705641\pi\)
−0.602031 + 0.798473i \(0.705641\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45.8745 1.56704 0.783522 0.621364i \(-0.213421\pi\)
0.783522 + 0.621364i \(0.213421\pi\)
\(858\) 0 0
\(859\) −2.83399 −0.0966945 −0.0483472 0.998831i \(-0.515395\pi\)
−0.0483472 + 0.998831i \(0.515395\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −37.3948 −1.27293 −0.636466 0.771304i \(-0.719605\pi\)
−0.636466 + 0.771304i \(0.719605\pi\)
\(864\) 0 0
\(865\) 17.1660 0.583662
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 17.4170 0.590831
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) 4.58301 0.154757 0.0773785 0.997002i \(-0.475345\pi\)
0.0773785 + 0.997002i \(0.475345\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 54.6863 1.84243 0.921214 0.389057i \(-0.127199\pi\)
0.921214 + 0.389057i \(0.127199\pi\)
\(882\) 0 0
\(883\) −41.1660 −1.38535 −0.692673 0.721252i \(-0.743567\pi\)
−0.692673 + 0.721252i \(0.743567\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.12549 −0.0713670 −0.0356835 0.999363i \(-0.511361\pi\)
−0.0356835 + 0.999363i \(0.511361\pi\)
\(888\) 0 0
\(889\) 3.29150 0.110393
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.35425 0.145709
\(894\) 0 0
\(895\) 37.7490 1.26181
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −57.8745 −1.93022
\(900\) 0 0
\(901\) −4.83399 −0.161044
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 21.8745 0.727133
\(906\) 0 0
\(907\) 26.3320 0.874340 0.437170 0.899379i \(-0.355981\pi\)
0.437170 + 0.899379i \(0.355981\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −52.9373 −1.75389 −0.876945 0.480591i \(-0.840422\pi\)
−0.876945 + 0.480591i \(0.840422\pi\)
\(912\) 0 0
\(913\) −79.0405 −2.61586
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.6458 −0.516668
\(918\) 0 0
\(919\) −56.0000 −1.84727 −0.923635 0.383274i \(-0.874797\pi\)
−0.923635 + 0.383274i \(0.874797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 43.8745 1.44258
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −54.6863 −1.79420 −0.897099 0.441829i \(-0.854330\pi\)
−0.897099 + 0.441829i \(0.854330\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.83399 0.223495
\(936\) 0 0
\(937\) −17.7490 −0.579835 −0.289918 0.957052i \(-0.593628\pi\)
−0.289918 + 0.957052i \(0.593628\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 15.7490 0.513403 0.256702 0.966491i \(-0.417364\pi\)
0.256702 + 0.966491i \(0.417364\pi\)
\(942\) 0 0
\(943\) −17.4170 −0.567175
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.1255 −0.394026 −0.197013 0.980401i \(-0.563124\pi\)
−0.197013 + 0.980401i \(0.563124\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −31.5203 −1.02104 −0.510521 0.859865i \(-0.670547\pi\)
−0.510521 + 0.859865i \(0.670547\pi\)
\(954\) 0 0
\(955\) 33.8745 1.09615
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 23.1660 0.748069
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −28.7085 −0.924159
\(966\) 0 0
\(967\) 10.7085 0.344362 0.172181 0.985065i \(-0.444919\pi\)
0.172181 + 0.985065i \(0.444919\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −31.7490 −1.01887 −0.509437 0.860508i \(-0.670146\pi\)
−0.509437 + 0.860508i \(0.670146\pi\)
\(972\) 0 0
\(973\) −10.5830 −0.339276
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.8118 0.473870 0.236935 0.971525i \(-0.423857\pi\)
0.236935 + 0.971525i \(0.423857\pi\)
\(978\) 0 0
\(979\) −17.4170 −0.556650
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.74902 0.247155 0.123578 0.992335i \(-0.460563\pi\)
0.123578 + 0.992335i \(0.460563\pi\)
\(984\) 0 0
\(985\) 16.7085 0.532377
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.83399 0.217308
\(990\) 0 0
\(991\) −30.3320 −0.963528 −0.481764 0.876301i \(-0.660004\pi\)
−0.481764 + 0.876301i \(0.660004\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −50.5830 −1.60359
\(996\) 0 0
\(997\) 55.6235 1.76161 0.880807 0.473475i \(-0.157001\pi\)
0.880807 + 0.473475i \(0.157001\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.k.1.2 2
3.2 odd 2 1596.2.a.f.1.1 2
12.11 even 2 6384.2.a.bo.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1596.2.a.f.1.1 2 3.2 odd 2
4788.2.a.k.1.2 2 1.1 even 1 trivial
6384.2.a.bo.1.1 2 12.11 even 2