Properties

Label 4788.2.a.j.1.1
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1596)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.732051 q^{5} -1.00000 q^{7} +O(q^{10})\) \(q-0.732051 q^{5} -1.00000 q^{7} +3.46410 q^{11} -4.00000 q^{13} +6.19615 q^{17} -1.00000 q^{19} +0.535898 q^{23} -4.46410 q^{25} -4.19615 q^{29} -8.92820 q^{31} +0.732051 q^{35} -0.535898 q^{37} +2.53590 q^{41} +3.46410 q^{43} +0.732051 q^{47} +1.00000 q^{49} -5.26795 q^{53} -2.53590 q^{55} -2.92820 q^{59} +6.39230 q^{61} +2.92820 q^{65} -5.46410 q^{67} +0.196152 q^{71} +11.8564 q^{73} -3.46410 q^{77} -6.53590 q^{79} +4.73205 q^{83} -4.53590 q^{85} -2.53590 q^{89} +4.00000 q^{91} +0.732051 q^{95} -6.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} - 2 q^{7} - 8 q^{13} + 2 q^{17} - 2 q^{19} + 8 q^{23} - 2 q^{25} + 2 q^{29} - 4 q^{31} - 2 q^{35} - 8 q^{37} + 12 q^{41} - 2 q^{47} + 2 q^{49} - 14 q^{53} - 12 q^{55} + 8 q^{59} - 8 q^{61} - 8 q^{65} - 4 q^{67} - 10 q^{71} - 4 q^{73} - 20 q^{79} + 6 q^{83} - 16 q^{85} - 12 q^{89} + 8 q^{91} - 2 q^{95} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.732051 −0.327383 −0.163692 0.986512i \(-0.552340\pi\)
−0.163692 + 0.986512i \(0.552340\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.46410 1.04447 0.522233 0.852803i \(-0.325099\pi\)
0.522233 + 0.852803i \(0.325099\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.19615 1.50279 0.751394 0.659854i \(-0.229382\pi\)
0.751394 + 0.659854i \(0.229382\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.535898 0.111743 0.0558713 0.998438i \(-0.482206\pi\)
0.0558713 + 0.998438i \(0.482206\pi\)
\(24\) 0 0
\(25\) −4.46410 −0.892820
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.19615 −0.779206 −0.389603 0.920983i \(-0.627388\pi\)
−0.389603 + 0.920983i \(0.627388\pi\)
\(30\) 0 0
\(31\) −8.92820 −1.60355 −0.801776 0.597624i \(-0.796111\pi\)
−0.801776 + 0.597624i \(0.796111\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.732051 0.123739
\(36\) 0 0
\(37\) −0.535898 −0.0881012 −0.0440506 0.999029i \(-0.514026\pi\)
−0.0440506 + 0.999029i \(0.514026\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.53590 0.396041 0.198020 0.980198i \(-0.436549\pi\)
0.198020 + 0.980198i \(0.436549\pi\)
\(42\) 0 0
\(43\) 3.46410 0.528271 0.264135 0.964486i \(-0.414913\pi\)
0.264135 + 0.964486i \(0.414913\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.732051 0.106781 0.0533903 0.998574i \(-0.482997\pi\)
0.0533903 + 0.998574i \(0.482997\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.26795 −0.723608 −0.361804 0.932254i \(-0.617839\pi\)
−0.361804 + 0.932254i \(0.617839\pi\)
\(54\) 0 0
\(55\) −2.53590 −0.341940
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.92820 −0.381220 −0.190610 0.981666i \(-0.561047\pi\)
−0.190610 + 0.981666i \(0.561047\pi\)
\(60\) 0 0
\(61\) 6.39230 0.818451 0.409225 0.912433i \(-0.365799\pi\)
0.409225 + 0.912433i \(0.365799\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.92820 0.363199
\(66\) 0 0
\(67\) −5.46410 −0.667546 −0.333773 0.942653i \(-0.608322\pi\)
−0.333773 + 0.942653i \(0.608322\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.196152 0.0232790 0.0116395 0.999932i \(-0.496295\pi\)
0.0116395 + 0.999932i \(0.496295\pi\)
\(72\) 0 0
\(73\) 11.8564 1.38769 0.693844 0.720126i \(-0.255916\pi\)
0.693844 + 0.720126i \(0.255916\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.46410 −0.394771
\(78\) 0 0
\(79\) −6.53590 −0.735346 −0.367673 0.929955i \(-0.619845\pi\)
−0.367673 + 0.929955i \(0.619845\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.73205 0.519410 0.259705 0.965688i \(-0.416375\pi\)
0.259705 + 0.965688i \(0.416375\pi\)
\(84\) 0 0
\(85\) −4.53590 −0.491987
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.53590 −0.268805 −0.134402 0.990927i \(-0.542911\pi\)
−0.134402 + 0.990927i \(0.542911\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.732051 0.0751068
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.80385 0.577504 0.288752 0.957404i \(-0.406760\pi\)
0.288752 + 0.957404i \(0.406760\pi\)
\(102\) 0 0
\(103\) 2.92820 0.288524 0.144262 0.989539i \(-0.453919\pi\)
0.144262 + 0.989539i \(0.453919\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.66025 0.547197 0.273599 0.961844i \(-0.411786\pi\)
0.273599 + 0.961844i \(0.411786\pi\)
\(108\) 0 0
\(109\) −3.46410 −0.331801 −0.165900 0.986143i \(-0.553053\pi\)
−0.165900 + 0.986143i \(0.553053\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.2679 −1.24814 −0.624072 0.781367i \(-0.714523\pi\)
−0.624072 + 0.781367i \(0.714523\pi\)
\(114\) 0 0
\(115\) −0.392305 −0.0365826
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.19615 −0.568000
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) −12.3923 −1.09964 −0.549820 0.835283i \(-0.685304\pi\)
−0.549820 + 0.835283i \(0.685304\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.80385 −0.157603 −0.0788014 0.996890i \(-0.525109\pi\)
−0.0788014 + 0.996890i \(0.525109\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) −9.07180 −0.769460 −0.384730 0.923029i \(-0.625705\pi\)
−0.384730 + 0.923029i \(0.625705\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −13.8564 −1.15873
\(144\) 0 0
\(145\) 3.07180 0.255099
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.3923 −0.851371 −0.425685 0.904871i \(-0.639967\pi\)
−0.425685 + 0.904871i \(0.639967\pi\)
\(150\) 0 0
\(151\) −14.9282 −1.21484 −0.607420 0.794381i \(-0.707795\pi\)
−0.607420 + 0.794381i \(0.707795\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.53590 0.524976
\(156\) 0 0
\(157\) −14.3923 −1.14863 −0.574315 0.818634i \(-0.694732\pi\)
−0.574315 + 0.818634i \(0.694732\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.535898 −0.0422347
\(162\) 0 0
\(163\) 8.53590 0.668583 0.334292 0.942470i \(-0.391503\pi\)
0.334292 + 0.942470i \(0.391503\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.3923 −0.958945 −0.479473 0.877557i \(-0.659172\pi\)
−0.479473 + 0.877557i \(0.659172\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.392305 0.0298264 0.0149132 0.999889i \(-0.495253\pi\)
0.0149132 + 0.999889i \(0.495253\pi\)
\(174\) 0 0
\(175\) 4.46410 0.337454
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.33975 0.174881 0.0874404 0.996170i \(-0.472131\pi\)
0.0874404 + 0.996170i \(0.472131\pi\)
\(180\) 0 0
\(181\) −22.7846 −1.69357 −0.846783 0.531938i \(-0.821464\pi\)
−0.846783 + 0.531938i \(0.821464\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.392305 0.0288428
\(186\) 0 0
\(187\) 21.4641 1.56961
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.46410 −0.540083 −0.270042 0.962849i \(-0.587037\pi\)
−0.270042 + 0.962849i \(0.587037\pi\)
\(192\) 0 0
\(193\) −14.3923 −1.03598 −0.517990 0.855386i \(-0.673320\pi\)
−0.517990 + 0.855386i \(0.673320\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) −15.3205 −1.08604 −0.543021 0.839719i \(-0.682720\pi\)
−0.543021 + 0.839719i \(0.682720\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.19615 0.294512
\(204\) 0 0
\(205\) −1.85641 −0.129657
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.46410 −0.239617
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.53590 −0.172947
\(216\) 0 0
\(217\) 8.92820 0.606086
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −24.7846 −1.66719
\(222\) 0 0
\(223\) 8.92820 0.597877 0.298938 0.954272i \(-0.403368\pi\)
0.298938 + 0.954272i \(0.403368\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.39230 −0.557017 −0.278508 0.960434i \(-0.589840\pi\)
−0.278508 + 0.960434i \(0.589840\pi\)
\(228\) 0 0
\(229\) 2.39230 0.158088 0.0790440 0.996871i \(-0.474813\pi\)
0.0790440 + 0.996871i \(0.474813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.3205 1.13470 0.567352 0.823475i \(-0.307968\pi\)
0.567352 + 0.823475i \(0.307968\pi\)
\(234\) 0 0
\(235\) −0.535898 −0.0349582
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.9282 1.09499 0.547497 0.836808i \(-0.315581\pi\)
0.547497 + 0.836808i \(0.315581\pi\)
\(240\) 0 0
\(241\) 25.7128 1.65631 0.828154 0.560501i \(-0.189391\pi\)
0.828154 + 0.560501i \(0.189391\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.732051 −0.0467690
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.8038 1.12377 0.561884 0.827216i \(-0.310077\pi\)
0.561884 + 0.827216i \(0.310077\pi\)
\(252\) 0 0
\(253\) 1.85641 0.116711
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.9282 −1.18071 −0.590354 0.807144i \(-0.701012\pi\)
−0.590354 + 0.807144i \(0.701012\pi\)
\(258\) 0 0
\(259\) 0.535898 0.0332991
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.00000 0.123325 0.0616626 0.998097i \(-0.480360\pi\)
0.0616626 + 0.998097i \(0.480360\pi\)
\(264\) 0 0
\(265\) 3.85641 0.236897
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.8564 0.844840 0.422420 0.906400i \(-0.361181\pi\)
0.422420 + 0.906400i \(0.361181\pi\)
\(270\) 0 0
\(271\) −15.3205 −0.930655 −0.465327 0.885139i \(-0.654063\pi\)
−0.465327 + 0.885139i \(0.654063\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.4641 −0.932520
\(276\) 0 0
\(277\) −8.39230 −0.504245 −0.252122 0.967695i \(-0.581129\pi\)
−0.252122 + 0.967695i \(0.581129\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −21.6603 −1.29214 −0.646071 0.763277i \(-0.723589\pi\)
−0.646071 + 0.763277i \(0.723589\pi\)
\(282\) 0 0
\(283\) −1.46410 −0.0870318 −0.0435159 0.999053i \(-0.513856\pi\)
−0.0435159 + 0.999053i \(0.513856\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.53590 −0.149689
\(288\) 0 0
\(289\) 21.3923 1.25837
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.46410 0.552899 0.276449 0.961028i \(-0.410842\pi\)
0.276449 + 0.961028i \(0.410842\pi\)
\(294\) 0 0
\(295\) 2.14359 0.124805
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.14359 −0.123967
\(300\) 0 0
\(301\) −3.46410 −0.199667
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.67949 −0.267947
\(306\) 0 0
\(307\) −0.143594 −0.00819532 −0.00409766 0.999992i \(-0.501304\pi\)
−0.00409766 + 0.999992i \(0.501304\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.2679 0.638947 0.319473 0.947595i \(-0.396494\pi\)
0.319473 + 0.947595i \(0.396494\pi\)
\(312\) 0 0
\(313\) −9.60770 −0.543059 −0.271530 0.962430i \(-0.587529\pi\)
−0.271530 + 0.962430i \(0.587529\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −27.1244 −1.52346 −0.761728 0.647897i \(-0.775649\pi\)
−0.761728 + 0.647897i \(0.775649\pi\)
\(318\) 0 0
\(319\) −14.5359 −0.813854
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.19615 −0.344763
\(324\) 0 0
\(325\) 17.8564 0.990495
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.732051 −0.0403593
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 13.6077 0.741258 0.370629 0.928781i \(-0.379142\pi\)
0.370629 + 0.928781i \(0.379142\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −30.9282 −1.67486
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 −0.322097 −0.161048 0.986947i \(-0.551488\pi\)
−0.161048 + 0.986947i \(0.551488\pi\)
\(348\) 0 0
\(349\) 4.14359 0.221801 0.110901 0.993831i \(-0.464626\pi\)
0.110901 + 0.993831i \(0.464626\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −32.0526 −1.70599 −0.852993 0.521923i \(-0.825215\pi\)
−0.852993 + 0.521923i \(0.825215\pi\)
\(354\) 0 0
\(355\) −0.143594 −0.00762115
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.3923 −0.970709 −0.485354 0.874318i \(-0.661309\pi\)
−0.485354 + 0.874318i \(0.661309\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −8.67949 −0.454305
\(366\) 0 0
\(367\) −14.2487 −0.743777 −0.371888 0.928277i \(-0.621290\pi\)
−0.371888 + 0.928277i \(0.621290\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.26795 0.273498
\(372\) 0 0
\(373\) −18.7846 −0.972630 −0.486315 0.873784i \(-0.661659\pi\)
−0.486315 + 0.873784i \(0.661659\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.7846 0.864451
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 28.3923 1.45078 0.725390 0.688339i \(-0.241660\pi\)
0.725390 + 0.688339i \(0.241660\pi\)
\(384\) 0 0
\(385\) 2.53590 0.129241
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −35.1769 −1.78354 −0.891770 0.452489i \(-0.850536\pi\)
−0.891770 + 0.452489i \(0.850536\pi\)
\(390\) 0 0
\(391\) 3.32051 0.167925
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.78461 0.240740
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −34.0526 −1.70050 −0.850252 0.526376i \(-0.823550\pi\)
−0.850252 + 0.526376i \(0.823550\pi\)
\(402\) 0 0
\(403\) 35.7128 1.77898
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.85641 −0.0920187
\(408\) 0 0
\(409\) 5.07180 0.250784 0.125392 0.992107i \(-0.459981\pi\)
0.125392 + 0.992107i \(0.459981\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.92820 0.144087
\(414\) 0 0
\(415\) −3.46410 −0.170046
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 28.0526 1.37046 0.685229 0.728328i \(-0.259702\pi\)
0.685229 + 0.728328i \(0.259702\pi\)
\(420\) 0 0
\(421\) 28.9282 1.40987 0.704937 0.709270i \(-0.250975\pi\)
0.704937 + 0.709270i \(0.250975\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −27.6603 −1.34172
\(426\) 0 0
\(427\) −6.39230 −0.309345
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.5167 1.51810 0.759052 0.651030i \(-0.225663\pi\)
0.759052 + 0.651030i \(0.225663\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.535898 −0.0256355
\(438\) 0 0
\(439\) 8.92820 0.426120 0.213060 0.977039i \(-0.431657\pi\)
0.213060 + 0.977039i \(0.431657\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.0718 0.526037 0.263018 0.964791i \(-0.415282\pi\)
0.263018 + 0.964791i \(0.415282\pi\)
\(444\) 0 0
\(445\) 1.85641 0.0880021
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −32.1962 −1.51943 −0.759715 0.650256i \(-0.774662\pi\)
−0.759715 + 0.650256i \(0.774662\pi\)
\(450\) 0 0
\(451\) 8.78461 0.413651
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.92820 −0.137276
\(456\) 0 0
\(457\) 3.60770 0.168761 0.0843804 0.996434i \(-0.473109\pi\)
0.0843804 + 0.996434i \(0.473109\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 35.6603 1.66086 0.830432 0.557120i \(-0.188094\pi\)
0.830432 + 0.557120i \(0.188094\pi\)
\(462\) 0 0
\(463\) 25.8564 1.20165 0.600825 0.799381i \(-0.294839\pi\)
0.600825 + 0.799381i \(0.294839\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −36.4449 −1.68647 −0.843234 0.537547i \(-0.819351\pi\)
−0.843234 + 0.537547i \(0.819351\pi\)
\(468\) 0 0
\(469\) 5.46410 0.252309
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.0000 0.551761
\(474\) 0 0
\(475\) 4.46410 0.204827
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 18.9808 0.867253 0.433627 0.901093i \(-0.357234\pi\)
0.433627 + 0.901093i \(0.357234\pi\)
\(480\) 0 0
\(481\) 2.14359 0.0977395
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.39230 0.199444
\(486\) 0 0
\(487\) 2.92820 0.132690 0.0663448 0.997797i \(-0.478866\pi\)
0.0663448 + 0.997797i \(0.478866\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.0000 0.812329 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(492\) 0 0
\(493\) −26.0000 −1.17098
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.196152 −0.00879864
\(498\) 0 0
\(499\) 6.92820 0.310149 0.155074 0.987903i \(-0.450438\pi\)
0.155074 + 0.987903i \(0.450438\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.2679 0.680764 0.340382 0.940287i \(-0.389444\pi\)
0.340382 + 0.940287i \(0.389444\pi\)
\(504\) 0 0
\(505\) −4.24871 −0.189065
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.78461 0.389371 0.194685 0.980866i \(-0.437631\pi\)
0.194685 + 0.980866i \(0.437631\pi\)
\(510\) 0 0
\(511\) −11.8564 −0.524497
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.14359 −0.0944580
\(516\) 0 0
\(517\) 2.53590 0.111529
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16.0000 0.700973 0.350486 0.936568i \(-0.386016\pi\)
0.350486 + 0.936568i \(0.386016\pi\)
\(522\) 0 0
\(523\) 18.7846 0.821394 0.410697 0.911772i \(-0.365285\pi\)
0.410697 + 0.911772i \(0.365285\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −55.3205 −2.40980
\(528\) 0 0
\(529\) −22.7128 −0.987514
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.1436 −0.439368
\(534\) 0 0
\(535\) −4.14359 −0.179143
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.46410 0.149209
\(540\) 0 0
\(541\) 11.8564 0.509747 0.254873 0.966974i \(-0.417966\pi\)
0.254873 + 0.966974i \(0.417966\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.53590 0.108626
\(546\) 0 0
\(547\) 3.32051 0.141975 0.0709873 0.997477i \(-0.477385\pi\)
0.0709873 + 0.997477i \(0.477385\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.19615 0.178762
\(552\) 0 0
\(553\) 6.53590 0.277935
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.3923 0.609822 0.304911 0.952381i \(-0.401373\pi\)
0.304911 + 0.952381i \(0.401373\pi\)
\(558\) 0 0
\(559\) −13.8564 −0.586064
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 27.3205 1.15142 0.575711 0.817653i \(-0.304725\pi\)
0.575711 + 0.817653i \(0.304725\pi\)
\(564\) 0 0
\(565\) 9.71281 0.408621
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 27.9090 1.17000 0.585002 0.811032i \(-0.301094\pi\)
0.585002 + 0.811032i \(0.301094\pi\)
\(570\) 0 0
\(571\) −2.14359 −0.0897066 −0.0448533 0.998994i \(-0.514282\pi\)
−0.0448533 + 0.998994i \(0.514282\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.39230 −0.0997660
\(576\) 0 0
\(577\) −27.1769 −1.13139 −0.565695 0.824615i \(-0.691392\pi\)
−0.565695 + 0.824615i \(0.691392\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.73205 −0.196319
\(582\) 0 0
\(583\) −18.2487 −0.755784
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 37.5167 1.54848 0.774239 0.632893i \(-0.218133\pi\)
0.774239 + 0.632893i \(0.218133\pi\)
\(588\) 0 0
\(589\) 8.92820 0.367880
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −17.5167 −0.719323 −0.359662 0.933083i \(-0.617108\pi\)
−0.359662 + 0.933083i \(0.617108\pi\)
\(594\) 0 0
\(595\) 4.53590 0.185954
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.26795 0.215243 0.107621 0.994192i \(-0.465677\pi\)
0.107621 + 0.994192i \(0.465677\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.732051 −0.0297621
\(606\) 0 0
\(607\) −32.7846 −1.33069 −0.665343 0.746538i \(-0.731715\pi\)
−0.665343 + 0.746538i \(0.731715\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.92820 −0.118462
\(612\) 0 0
\(613\) −20.3923 −0.823637 −0.411819 0.911266i \(-0.635106\pi\)
−0.411819 + 0.911266i \(0.635106\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.7128 1.19619 0.598096 0.801424i \(-0.295924\pi\)
0.598096 + 0.801424i \(0.295924\pi\)
\(618\) 0 0
\(619\) 44.7846 1.80005 0.900023 0.435843i \(-0.143550\pi\)
0.900023 + 0.435843i \(0.143550\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.53590 0.101599
\(624\) 0 0
\(625\) 17.2487 0.689948
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.32051 −0.132397
\(630\) 0 0
\(631\) 12.2487 0.487613 0.243807 0.969824i \(-0.421604\pi\)
0.243807 + 0.969824i \(0.421604\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.07180 0.360003
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22.4449 −0.886519 −0.443259 0.896393i \(-0.646178\pi\)
−0.443259 + 0.896393i \(0.646178\pi\)
\(642\) 0 0
\(643\) −32.1051 −1.26610 −0.633051 0.774110i \(-0.718198\pi\)
−0.633051 + 0.774110i \(0.718198\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −34.9808 −1.37524 −0.687618 0.726073i \(-0.741344\pi\)
−0.687618 + 0.726073i \(0.741344\pi\)
\(648\) 0 0
\(649\) −10.1436 −0.398171
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.7128 −1.00622 −0.503110 0.864222i \(-0.667811\pi\)
−0.503110 + 0.864222i \(0.667811\pi\)
\(654\) 0 0
\(655\) 1.32051 0.0515965
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.94744 0.0758615 0.0379308 0.999280i \(-0.487923\pi\)
0.0379308 + 0.999280i \(0.487923\pi\)
\(660\) 0 0
\(661\) −12.0000 −0.466746 −0.233373 0.972387i \(-0.574976\pi\)
−0.233373 + 0.972387i \(0.574976\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.732051 −0.0283877
\(666\) 0 0
\(667\) −2.24871 −0.0870704
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 22.1436 0.854844
\(672\) 0 0
\(673\) 16.2487 0.626342 0.313171 0.949697i \(-0.398609\pi\)
0.313171 + 0.949697i \(0.398609\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.9282 −1.18867 −0.594334 0.804219i \(-0.702584\pi\)
−0.594334 + 0.804219i \(0.702584\pi\)
\(678\) 0 0
\(679\) 6.00000 0.230259
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.58846 −0.328628 −0.164314 0.986408i \(-0.552541\pi\)
−0.164314 + 0.986408i \(0.552541\pi\)
\(684\) 0 0
\(685\) 13.1769 0.503464
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 21.0718 0.802772
\(690\) 0 0
\(691\) 34.5359 1.31381 0.656904 0.753974i \(-0.271866\pi\)
0.656904 + 0.753974i \(0.271866\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.64102 0.251908
\(696\) 0 0
\(697\) 15.7128 0.595165
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 50.7846 1.91811 0.959054 0.283223i \(-0.0914036\pi\)
0.959054 + 0.283223i \(0.0914036\pi\)
\(702\) 0 0
\(703\) 0.535898 0.0202118
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.80385 −0.218276
\(708\) 0 0
\(709\) −43.3205 −1.62694 −0.813468 0.581610i \(-0.802423\pi\)
−0.813468 + 0.581610i \(0.802423\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.78461 −0.179185
\(714\) 0 0
\(715\) 10.1436 0.379349
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −40.0526 −1.49371 −0.746854 0.664988i \(-0.768437\pi\)
−0.746854 + 0.664988i \(0.768437\pi\)
\(720\) 0 0
\(721\) −2.92820 −0.109052
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 18.7321 0.695691
\(726\) 0 0
\(727\) 13.4641 0.499356 0.249678 0.968329i \(-0.419675\pi\)
0.249678 + 0.968329i \(0.419675\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21.4641 0.793878
\(732\) 0 0
\(733\) −52.6410 −1.94434 −0.972170 0.234276i \(-0.924728\pi\)
−0.972170 + 0.234276i \(0.924728\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −18.9282 −0.697229
\(738\) 0 0
\(739\) −23.4641 −0.863141 −0.431570 0.902079i \(-0.642040\pi\)
−0.431570 + 0.902079i \(0.642040\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.5885 0.755317 0.377659 0.925945i \(-0.376729\pi\)
0.377659 + 0.925945i \(0.376729\pi\)
\(744\) 0 0
\(745\) 7.60770 0.278724
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.66025 −0.206821
\(750\) 0 0
\(751\) 12.7846 0.466517 0.233259 0.972415i \(-0.425061\pi\)
0.233259 + 0.972415i \(0.425061\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.9282 0.397718
\(756\) 0 0
\(757\) 4.92820 0.179119 0.0895593 0.995981i \(-0.471454\pi\)
0.0895593 + 0.995981i \(0.471454\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.80385 −0.0653894 −0.0326947 0.999465i \(-0.510409\pi\)
−0.0326947 + 0.999465i \(0.510409\pi\)
\(762\) 0 0
\(763\) 3.46410 0.125409
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.7128 0.422925
\(768\) 0 0
\(769\) −53.3205 −1.92279 −0.961393 0.275178i \(-0.911263\pi\)
−0.961393 + 0.275178i \(0.911263\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 45.4641 1.63523 0.817615 0.575765i \(-0.195296\pi\)
0.817615 + 0.575765i \(0.195296\pi\)
\(774\) 0 0
\(775\) 39.8564 1.43168
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.53590 −0.0908580
\(780\) 0 0
\(781\) 0.679492 0.0243141
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 10.5359 0.376042
\(786\) 0 0
\(787\) −42.7846 −1.52511 −0.762553 0.646925i \(-0.776055\pi\)
−0.762553 + 0.646925i \(0.776055\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 13.2679 0.471754
\(792\) 0 0
\(793\) −25.5692 −0.907990
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.1769 −0.750125 −0.375062 0.927000i \(-0.622379\pi\)
−0.375062 + 0.927000i \(0.622379\pi\)
\(798\) 0 0
\(799\) 4.53590 0.160469
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 41.0718 1.44939
\(804\) 0 0
\(805\) 0.392305 0.0138269
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14.0000 0.492214 0.246107 0.969243i \(-0.420849\pi\)
0.246107 + 0.969243i \(0.420849\pi\)
\(810\) 0 0
\(811\) −46.9282 −1.64787 −0.823936 0.566683i \(-0.808227\pi\)
−0.823936 + 0.566683i \(0.808227\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.24871 −0.218883
\(816\) 0 0
\(817\) −3.46410 −0.121194
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 57.0333 1.99048 0.995238 0.0974715i \(-0.0310755\pi\)
0.995238 + 0.0974715i \(0.0310755\pi\)
\(822\) 0 0
\(823\) −44.5359 −1.55242 −0.776212 0.630472i \(-0.782861\pi\)
−0.776212 + 0.630472i \(0.782861\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.0526 0.905936 0.452968 0.891527i \(-0.350365\pi\)
0.452968 + 0.891527i \(0.350365\pi\)
\(828\) 0 0
\(829\) −7.07180 −0.245614 −0.122807 0.992431i \(-0.539190\pi\)
−0.122807 + 0.992431i \(0.539190\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.19615 0.214684
\(834\) 0 0
\(835\) 9.07180 0.313942
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30.9282 1.06776 0.533880 0.845560i \(-0.320733\pi\)
0.533880 + 0.845560i \(0.320733\pi\)
\(840\) 0 0
\(841\) −11.3923 −0.392838
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.19615 −0.0755499
\(846\) 0 0
\(847\) −1.00000 −0.0343604
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.287187 −0.00984465
\(852\) 0 0
\(853\) −0.143594 −0.00491655 −0.00245827 0.999997i \(-0.500782\pi\)
−0.00245827 + 0.999997i \(0.500782\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.679492 0.0232110 0.0116055 0.999933i \(-0.496306\pi\)
0.0116055 + 0.999933i \(0.496306\pi\)
\(858\) 0 0
\(859\) −49.5692 −1.69128 −0.845640 0.533754i \(-0.820781\pi\)
−0.845640 + 0.533754i \(0.820781\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22.7321 −0.773808 −0.386904 0.922120i \(-0.626456\pi\)
−0.386904 + 0.922120i \(0.626456\pi\)
\(864\) 0 0
\(865\) −0.287187 −0.00976465
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −22.6410 −0.768044
\(870\) 0 0
\(871\) 21.8564 0.740576
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6.92820 −0.234216
\(876\) 0 0
\(877\) 28.6410 0.967138 0.483569 0.875306i \(-0.339340\pi\)
0.483569 + 0.875306i \(0.339340\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −31.2679 −1.05344 −0.526722 0.850038i \(-0.676579\pi\)
−0.526722 + 0.850038i \(0.676579\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.2487 0.612732 0.306366 0.951914i \(-0.400887\pi\)
0.306366 + 0.951914i \(0.400887\pi\)
\(888\) 0 0
\(889\) 12.3923 0.415625
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.732051 −0.0244971
\(894\) 0 0
\(895\) −1.71281 −0.0572530
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 37.4641 1.24950
\(900\) 0 0
\(901\) −32.6410 −1.08743
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16.6795 0.554445
\(906\) 0 0
\(907\) 46.9282 1.55823 0.779113 0.626884i \(-0.215670\pi\)
0.779113 + 0.626884i \(0.215670\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 29.3731 0.973173 0.486587 0.873632i \(-0.338242\pi\)
0.486587 + 0.873632i \(0.338242\pi\)
\(912\) 0 0
\(913\) 16.3923 0.542506
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.80385 0.0595683
\(918\) 0 0
\(919\) 51.7128 1.70585 0.852924 0.522035i \(-0.174827\pi\)
0.852924 + 0.522035i \(0.174827\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.784610 −0.0258257
\(924\) 0 0
\(925\) 2.39230 0.0786585
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.33975 0.142382 0.0711912 0.997463i \(-0.477320\pi\)
0.0711912 + 0.997463i \(0.477320\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −15.7128 −0.513864
\(936\) 0 0
\(937\) 20.9282 0.683695 0.341847 0.939756i \(-0.388947\pi\)
0.341847 + 0.939756i \(0.388947\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 50.6410 1.65085 0.825425 0.564512i \(-0.190936\pi\)
0.825425 + 0.564512i \(0.190936\pi\)
\(942\) 0 0
\(943\) 1.35898 0.0442546
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −55.1769 −1.79301 −0.896504 0.443035i \(-0.853902\pi\)
−0.896504 + 0.443035i \(0.853902\pi\)
\(948\) 0 0
\(949\) −47.4256 −1.53950
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.73205 0.0884998 0.0442499 0.999020i \(-0.485910\pi\)
0.0442499 + 0.999020i \(0.485910\pi\)
\(954\) 0 0
\(955\) 5.46410 0.176814
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 18.0000 0.581250
\(960\) 0 0
\(961\) 48.7128 1.57138
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.5359 0.339163
\(966\) 0 0
\(967\) −6.39230 −0.205563 −0.102781 0.994704i \(-0.532774\pi\)
−0.102781 + 0.994704i \(0.532774\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 39.7128 1.27444 0.637222 0.770680i \(-0.280083\pi\)
0.637222 + 0.770680i \(0.280083\pi\)
\(972\) 0 0
\(973\) 9.07180 0.290828
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −49.2679 −1.57622 −0.788111 0.615534i \(-0.788941\pi\)
−0.788111 + 0.615534i \(0.788941\pi\)
\(978\) 0 0
\(979\) −8.78461 −0.280757
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 47.7128 1.52180 0.760901 0.648868i \(-0.224757\pi\)
0.760901 + 0.648868i \(0.224757\pi\)
\(984\) 0 0
\(985\) 7.32051 0.233251
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.85641 0.0590303
\(990\) 0 0
\(991\) −46.6410 −1.48160 −0.740800 0.671725i \(-0.765554\pi\)
−0.740800 + 0.671725i \(0.765554\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.2154 0.355552
\(996\) 0 0
\(997\) −25.3205 −0.801909 −0.400954 0.916098i \(-0.631321\pi\)
−0.400954 + 0.916098i \(0.631321\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.j.1.1 2
3.2 odd 2 1596.2.a.i.1.2 2
12.11 even 2 6384.2.a.bj.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1596.2.a.i.1.2 2 3.2 odd 2
4788.2.a.j.1.1 2 1.1 even 1 trivial
6384.2.a.bj.1.2 2 12.11 even 2