Properties

Label 4788.2.a.h.1.2
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1596)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{5} +1.00000 q^{7} -2.00000 q^{11} -2.82843 q^{13} -4.24264 q^{17} +1.00000 q^{19} +3.65685 q^{23} -3.00000 q^{25} -0.585786 q^{29} -4.82843 q^{31} +1.41421 q^{35} +10.4853 q^{37} +1.65685 q^{41} +2.00000 q^{43} -7.07107 q^{47} +1.00000 q^{49} -11.8995 q^{53} -2.82843 q^{55} -13.6569 q^{59} +0.828427 q^{61} -4.00000 q^{65} -4.48528 q^{67} -15.4142 q^{71} -11.6569 q^{73} -2.00000 q^{77} +9.17157 q^{79} -1.41421 q^{83} -6.00000 q^{85} +4.00000 q^{89} -2.82843 q^{91} +1.41421 q^{95} -3.65685 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{7} - 4 q^{11} + 2 q^{19} - 4 q^{23} - 6 q^{25} - 4 q^{29} - 4 q^{31} + 4 q^{37} - 8 q^{41} + 4 q^{43} + 2 q^{49} - 4 q^{53} - 16 q^{59} - 4 q^{61} - 8 q^{65} + 8 q^{67} - 28 q^{71} - 12 q^{73}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.41421 0.632456 0.316228 0.948683i \(-0.397584\pi\)
0.316228 + 0.948683i \(0.397584\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.24264 −1.02899 −0.514496 0.857493i \(-0.672021\pi\)
−0.514496 + 0.857493i \(0.672021\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.65685 0.762507 0.381253 0.924471i \(-0.375493\pi\)
0.381253 + 0.924471i \(0.375493\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.585786 −0.108778 −0.0543889 0.998520i \(-0.517321\pi\)
−0.0543889 + 0.998520i \(0.517321\pi\)
\(30\) 0 0
\(31\) −4.82843 −0.867211 −0.433606 0.901103i \(-0.642759\pi\)
−0.433606 + 0.901103i \(0.642759\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.41421 0.239046
\(36\) 0 0
\(37\) 10.4853 1.72377 0.861885 0.507104i \(-0.169284\pi\)
0.861885 + 0.507104i \(0.169284\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.65685 0.258757 0.129379 0.991595i \(-0.458702\pi\)
0.129379 + 0.991595i \(0.458702\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.07107 −1.03142 −0.515711 0.856763i \(-0.672472\pi\)
−0.515711 + 0.856763i \(0.672472\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.8995 −1.63452 −0.817261 0.576268i \(-0.804508\pi\)
−0.817261 + 0.576268i \(0.804508\pi\)
\(54\) 0 0
\(55\) −2.82843 −0.381385
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.6569 −1.77797 −0.888985 0.457935i \(-0.848589\pi\)
−0.888985 + 0.457935i \(0.848589\pi\)
\(60\) 0 0
\(61\) 0.828427 0.106069 0.0530346 0.998593i \(-0.483111\pi\)
0.0530346 + 0.998593i \(0.483111\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −4.48528 −0.547964 −0.273982 0.961735i \(-0.588341\pi\)
−0.273982 + 0.961735i \(0.588341\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −15.4142 −1.82933 −0.914665 0.404212i \(-0.867546\pi\)
−0.914665 + 0.404212i \(0.867546\pi\)
\(72\) 0 0
\(73\) −11.6569 −1.36433 −0.682166 0.731198i \(-0.738962\pi\)
−0.682166 + 0.731198i \(0.738962\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 9.17157 1.03188 0.515941 0.856624i \(-0.327442\pi\)
0.515941 + 0.856624i \(0.327442\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.41421 −0.155230 −0.0776151 0.996983i \(-0.524731\pi\)
−0.0776151 + 0.996983i \(0.524731\pi\)
\(84\) 0 0
\(85\) −6.00000 −0.650791
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) −2.82843 −0.296500
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.41421 0.145095
\(96\) 0 0
\(97\) −3.65685 −0.371297 −0.185649 0.982616i \(-0.559439\pi\)
−0.185649 + 0.982616i \(0.559439\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.242641 0.0241437 0.0120718 0.999927i \(-0.496157\pi\)
0.0120718 + 0.999927i \(0.496157\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.2426 −1.76358 −0.881791 0.471640i \(-0.843662\pi\)
−0.881791 + 0.471640i \(0.843662\pi\)
\(108\) 0 0
\(109\) 14.4853 1.38744 0.693719 0.720246i \(-0.255971\pi\)
0.693719 + 0.720246i \(0.255971\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.72792 0.632910 0.316455 0.948608i \(-0.397507\pi\)
0.316455 + 0.948608i \(0.397507\pi\)
\(114\) 0 0
\(115\) 5.17157 0.482252
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.24264 −0.388922
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.3137 −1.01193
\(126\) 0 0
\(127\) 19.7990 1.75688 0.878438 0.477856i \(-0.158586\pi\)
0.878438 + 0.477856i \(0.158586\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.928932 −0.0811612 −0.0405806 0.999176i \(-0.512921\pi\)
−0.0405806 + 0.999176i \(0.512921\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.6569 0.995912 0.497956 0.867202i \(-0.334084\pi\)
0.497956 + 0.867202i \(0.334084\pi\)
\(138\) 0 0
\(139\) 3.31371 0.281065 0.140533 0.990076i \(-0.455119\pi\)
0.140533 + 0.990076i \(0.455119\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.65685 0.473050
\(144\) 0 0
\(145\) −0.828427 −0.0687971
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −22.4853 −1.84207 −0.921033 0.389485i \(-0.872653\pi\)
−0.921033 + 0.389485i \(0.872653\pi\)
\(150\) 0 0
\(151\) 3.31371 0.269666 0.134833 0.990868i \(-0.456950\pi\)
0.134833 + 0.990868i \(0.456950\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.82843 −0.548472
\(156\) 0 0
\(157\) −22.4853 −1.79452 −0.897260 0.441502i \(-0.854446\pi\)
−0.897260 + 0.441502i \(0.854446\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.65685 0.288200
\(162\) 0 0
\(163\) 4.34315 0.340181 0.170091 0.985428i \(-0.445594\pi\)
0.170091 + 0.985428i \(0.445594\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.48528 0.656611 0.328305 0.944572i \(-0.393522\pi\)
0.328305 + 0.944572i \(0.393522\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.65685 0.125968 0.0629841 0.998015i \(-0.479938\pi\)
0.0629841 + 0.998015i \(0.479938\pi\)
\(174\) 0 0
\(175\) −3.00000 −0.226779
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.24264 0.167623 0.0838114 0.996482i \(-0.473291\pi\)
0.0838114 + 0.996482i \(0.473291\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 14.8284 1.09021
\(186\) 0 0
\(187\) 8.48528 0.620505
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.65685 −0.554031 −0.277015 0.960866i \(-0.589345\pi\)
−0.277015 + 0.960866i \(0.589345\pi\)
\(192\) 0 0
\(193\) −22.4853 −1.61853 −0.809263 0.587447i \(-0.800133\pi\)
−0.809263 + 0.587447i \(0.800133\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.34315 −0.309436 −0.154718 0.987959i \(-0.549447\pi\)
−0.154718 + 0.987959i \(0.549447\pi\)
\(198\) 0 0
\(199\) −8.48528 −0.601506 −0.300753 0.953702i \(-0.597238\pi\)
−0.300753 + 0.953702i \(0.597238\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.585786 −0.0411141
\(204\) 0 0
\(205\) 2.34315 0.163652
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) 10.3431 0.712052 0.356026 0.934476i \(-0.384132\pi\)
0.356026 + 0.934476i \(0.384132\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.82843 0.192897
\(216\) 0 0
\(217\) −4.82843 −0.327775
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 2.48528 0.166427 0.0832134 0.996532i \(-0.473482\pi\)
0.0832134 + 0.996532i \(0.473482\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.82843 0.453219 0.226609 0.973986i \(-0.427236\pi\)
0.226609 + 0.973986i \(0.427236\pi\)
\(228\) 0 0
\(229\) 25.7990 1.70485 0.852423 0.522853i \(-0.175132\pi\)
0.852423 + 0.522853i \(0.175132\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.1421 −0.795458 −0.397729 0.917503i \(-0.630202\pi\)
−0.397729 + 0.917503i \(0.630202\pi\)
\(234\) 0 0
\(235\) −10.0000 −0.652328
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.7990 0.892582 0.446291 0.894888i \(-0.352745\pi\)
0.446291 + 0.894888i \(0.352745\pi\)
\(240\) 0 0
\(241\) −12.3431 −0.795092 −0.397546 0.917582i \(-0.630138\pi\)
−0.397546 + 0.917582i \(0.630138\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.41421 0.0903508
\(246\) 0 0
\(247\) −2.82843 −0.179969
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.2426 1.02523 0.512613 0.858620i \(-0.328677\pi\)
0.512613 + 0.858620i \(0.328677\pi\)
\(252\) 0 0
\(253\) −7.31371 −0.459809
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.48528 −0.529297 −0.264649 0.964345i \(-0.585256\pi\)
−0.264649 + 0.964345i \(0.585256\pi\)
\(258\) 0 0
\(259\) 10.4853 0.651524
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.1716 0.688869 0.344434 0.938810i \(-0.388071\pi\)
0.344434 + 0.938810i \(0.388071\pi\)
\(264\) 0 0
\(265\) −16.8284 −1.03376
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −24.4853 −1.49289 −0.746447 0.665445i \(-0.768242\pi\)
−0.746447 + 0.665445i \(0.768242\pi\)
\(270\) 0 0
\(271\) 15.7990 0.959720 0.479860 0.877345i \(-0.340687\pi\)
0.479860 + 0.877345i \(0.340687\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 0.361814
\(276\) 0 0
\(277\) −28.9706 −1.74067 −0.870336 0.492458i \(-0.836099\pi\)
−0.870336 + 0.492458i \(0.836099\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −22.0416 −1.31489 −0.657447 0.753501i \(-0.728364\pi\)
−0.657447 + 0.753501i \(0.728364\pi\)
\(282\) 0 0
\(283\) 31.1127 1.84946 0.924729 0.380626i \(-0.124292\pi\)
0.924729 + 0.380626i \(0.124292\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.65685 0.0978010
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.00000 0.467365 0.233682 0.972313i \(-0.424922\pi\)
0.233682 + 0.972313i \(0.424922\pi\)
\(294\) 0 0
\(295\) −19.3137 −1.12449
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.3431 −0.598160
\(300\) 0 0
\(301\) 2.00000 0.115278
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.17157 0.0670841
\(306\) 0 0
\(307\) −15.1716 −0.865887 −0.432944 0.901421i \(-0.642525\pi\)
−0.432944 + 0.901421i \(0.642525\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −21.2132 −1.20289 −0.601445 0.798914i \(-0.705408\pi\)
−0.601445 + 0.798914i \(0.705408\pi\)
\(312\) 0 0
\(313\) −24.1421 −1.36459 −0.682297 0.731075i \(-0.739019\pi\)
−0.682297 + 0.731075i \(0.739019\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.7279 1.27653 0.638264 0.769818i \(-0.279653\pi\)
0.638264 + 0.769818i \(0.279653\pi\)
\(318\) 0 0
\(319\) 1.17157 0.0655955
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.24264 −0.236067
\(324\) 0 0
\(325\) 8.48528 0.470679
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.07107 −0.389841
\(330\) 0 0
\(331\) −3.31371 −0.182138 −0.0910689 0.995845i \(-0.529028\pi\)
−0.0910689 + 0.995845i \(0.529028\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.34315 −0.346563
\(336\) 0 0
\(337\) 0.142136 0.00774262 0.00387131 0.999993i \(-0.498768\pi\)
0.00387131 + 0.999993i \(0.498768\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.65685 0.522948
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.5147 0.725508 0.362754 0.931885i \(-0.381837\pi\)
0.362754 + 0.931885i \(0.381837\pi\)
\(348\) 0 0
\(349\) −22.9706 −1.22959 −0.614793 0.788688i \(-0.710760\pi\)
−0.614793 + 0.788688i \(0.710760\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.41421 −0.0752710 −0.0376355 0.999292i \(-0.511983\pi\)
−0.0376355 + 0.999292i \(0.511983\pi\)
\(354\) 0 0
\(355\) −21.7990 −1.15697
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −16.4853 −0.862879
\(366\) 0 0
\(367\) −28.4853 −1.48692 −0.743460 0.668781i \(-0.766817\pi\)
−0.743460 + 0.668781i \(0.766817\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −11.8995 −0.617791
\(372\) 0 0
\(373\) −18.9706 −0.982259 −0.491129 0.871087i \(-0.663416\pi\)
−0.491129 + 0.871087i \(0.663416\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.65685 0.0853323
\(378\) 0 0
\(379\) −24.2843 −1.24740 −0.623700 0.781664i \(-0.714371\pi\)
−0.623700 + 0.781664i \(0.714371\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.17157 0.264255 0.132128 0.991233i \(-0.457819\pi\)
0.132128 + 0.991233i \(0.457819\pi\)
\(384\) 0 0
\(385\) −2.82843 −0.144150
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 24.1421 1.22405 0.612027 0.790837i \(-0.290354\pi\)
0.612027 + 0.790837i \(0.290354\pi\)
\(390\) 0 0
\(391\) −15.5147 −0.784613
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.9706 0.652620
\(396\) 0 0
\(397\) 9.31371 0.467442 0.233721 0.972304i \(-0.424910\pi\)
0.233721 + 0.972304i \(0.424910\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −28.5858 −1.42751 −0.713753 0.700397i \(-0.753006\pi\)
−0.713753 + 0.700397i \(0.753006\pi\)
\(402\) 0 0
\(403\) 13.6569 0.680296
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.9706 −1.03947
\(408\) 0 0
\(409\) −9.17157 −0.453505 −0.226753 0.973952i \(-0.572811\pi\)
−0.226753 + 0.973952i \(0.572811\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −13.6569 −0.672010
\(414\) 0 0
\(415\) −2.00000 −0.0981761
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.24264 −0.402679 −0.201340 0.979521i \(-0.564530\pi\)
−0.201340 + 0.979521i \(0.564530\pi\)
\(420\) 0 0
\(421\) 34.2843 1.67091 0.835457 0.549556i \(-0.185203\pi\)
0.835457 + 0.549556i \(0.185203\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.7279 0.617395
\(426\) 0 0
\(427\) 0.828427 0.0400904
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.4142 1.51317 0.756585 0.653896i \(-0.226866\pi\)
0.756585 + 0.653896i \(0.226866\pi\)
\(432\) 0 0
\(433\) −10.6863 −0.513550 −0.256775 0.966471i \(-0.582660\pi\)
−0.256775 + 0.966471i \(0.582660\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.65685 0.174931
\(438\) 0 0
\(439\) 26.4853 1.26407 0.632037 0.774938i \(-0.282219\pi\)
0.632037 + 0.774938i \(0.282219\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.7990 0.655610 0.327805 0.944745i \(-0.393691\pi\)
0.327805 + 0.944745i \(0.393691\pi\)
\(444\) 0 0
\(445\) 5.65685 0.268161
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −14.2426 −0.672152 −0.336076 0.941835i \(-0.609100\pi\)
−0.336076 + 0.941835i \(0.609100\pi\)
\(450\) 0 0
\(451\) −3.31371 −0.156036
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) 19.3137 0.903457 0.451729 0.892155i \(-0.350808\pi\)
0.451729 + 0.892155i \(0.350808\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.92893 0.229563 0.114782 0.993391i \(-0.463383\pi\)
0.114782 + 0.993391i \(0.463383\pi\)
\(462\) 0 0
\(463\) 7.31371 0.339897 0.169948 0.985453i \(-0.445640\pi\)
0.169948 + 0.985453i \(0.445640\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.8701 −0.688104 −0.344052 0.938951i \(-0.611800\pi\)
−0.344052 + 0.938951i \(0.611800\pi\)
\(468\) 0 0
\(469\) −4.48528 −0.207111
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) −3.00000 −0.137649
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.928932 −0.0424440 −0.0212220 0.999775i \(-0.506756\pi\)
−0.0212220 + 0.999775i \(0.506756\pi\)
\(480\) 0 0
\(481\) −29.6569 −1.35224
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.17157 −0.234829
\(486\) 0 0
\(487\) 36.2843 1.64420 0.822099 0.569345i \(-0.192803\pi\)
0.822099 + 0.569345i \(0.192803\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.828427 0.0373864 0.0186932 0.999825i \(-0.494049\pi\)
0.0186932 + 0.999825i \(0.494049\pi\)
\(492\) 0 0
\(493\) 2.48528 0.111931
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.4142 −0.691422
\(498\) 0 0
\(499\) −7.31371 −0.327407 −0.163703 0.986510i \(-0.552344\pi\)
−0.163703 + 0.986510i \(0.552344\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 23.7574 1.05929 0.529644 0.848220i \(-0.322325\pi\)
0.529644 + 0.848220i \(0.322325\pi\)
\(504\) 0 0
\(505\) 0.343146 0.0152698
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 31.1127 1.37905 0.689523 0.724264i \(-0.257820\pi\)
0.689523 + 0.724264i \(0.257820\pi\)
\(510\) 0 0
\(511\) −11.6569 −0.515669
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.3137 0.498542
\(516\) 0 0
\(517\) 14.1421 0.621970
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 41.4558 1.81621 0.908107 0.418739i \(-0.137528\pi\)
0.908107 + 0.418739i \(0.137528\pi\)
\(522\) 0 0
\(523\) −5.79899 −0.253572 −0.126786 0.991930i \(-0.540466\pi\)
−0.126786 + 0.991930i \(0.540466\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.4853 0.892353
\(528\) 0 0
\(529\) −9.62742 −0.418583
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.68629 −0.202986
\(534\) 0 0
\(535\) −25.7990 −1.11539
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) −5.31371 −0.228454 −0.114227 0.993455i \(-0.536439\pi\)
−0.114227 + 0.993455i \(0.536439\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 20.4853 0.877493
\(546\) 0 0
\(547\) 24.4853 1.04692 0.523458 0.852052i \(-0.324642\pi\)
0.523458 + 0.852052i \(0.324642\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.585786 −0.0249553
\(552\) 0 0
\(553\) 9.17157 0.390015
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.79899 −0.415197 −0.207598 0.978214i \(-0.566565\pi\)
−0.207598 + 0.978214i \(0.566565\pi\)
\(558\) 0 0
\(559\) −5.65685 −0.239259
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −34.1421 −1.43892 −0.719460 0.694534i \(-0.755611\pi\)
−0.719460 + 0.694534i \(0.755611\pi\)
\(564\) 0 0
\(565\) 9.51472 0.400287
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.5858 0.695312 0.347656 0.937622i \(-0.386978\pi\)
0.347656 + 0.937622i \(0.386978\pi\)
\(570\) 0 0
\(571\) −20.2843 −0.848870 −0.424435 0.905458i \(-0.639527\pi\)
−0.424435 + 0.905458i \(0.639527\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −10.9706 −0.457504
\(576\) 0 0
\(577\) 6.48528 0.269986 0.134993 0.990847i \(-0.456899\pi\)
0.134993 + 0.990847i \(0.456899\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.41421 −0.0586715
\(582\) 0 0
\(583\) 23.7990 0.985653
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.9289 0.533634 0.266817 0.963747i \(-0.414028\pi\)
0.266817 + 0.963747i \(0.414028\pi\)
\(588\) 0 0
\(589\) −4.82843 −0.198952
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −42.8701 −1.76046 −0.880231 0.474545i \(-0.842613\pi\)
−0.880231 + 0.474545i \(0.842613\pi\)
\(594\) 0 0
\(595\) −6.00000 −0.245976
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −22.7279 −0.928638 −0.464319 0.885668i \(-0.653701\pi\)
−0.464319 + 0.885668i \(0.653701\pi\)
\(600\) 0 0
\(601\) 1.31371 0.0535873 0.0267936 0.999641i \(-0.491470\pi\)
0.0267936 + 0.999641i \(0.491470\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.89949 −0.402472
\(606\) 0 0
\(607\) −22.6274 −0.918419 −0.459209 0.888328i \(-0.651867\pi\)
−0.459209 + 0.888328i \(0.651867\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.0000 0.809113
\(612\) 0 0
\(613\) −36.2843 −1.46551 −0.732754 0.680494i \(-0.761765\pi\)
−0.732754 + 0.680494i \(0.761765\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.3137 0.535990 0.267995 0.963420i \(-0.413639\pi\)
0.267995 + 0.963420i \(0.413639\pi\)
\(618\) 0 0
\(619\) 43.3137 1.74092 0.870462 0.492235i \(-0.163820\pi\)
0.870462 + 0.492235i \(0.163820\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −44.4853 −1.77374
\(630\) 0 0
\(631\) −4.62742 −0.184215 −0.0921073 0.995749i \(-0.529360\pi\)
−0.0921073 + 0.995749i \(0.529360\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 28.0000 1.11115
\(636\) 0 0
\(637\) −2.82843 −0.112066
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −17.0711 −0.674267 −0.337133 0.941457i \(-0.609457\pi\)
−0.337133 + 0.941457i \(0.609457\pi\)
\(642\) 0 0
\(643\) −24.4853 −0.965605 −0.482803 0.875729i \(-0.660381\pi\)
−0.482803 + 0.875729i \(0.660381\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −39.0711 −1.53604 −0.768021 0.640425i \(-0.778758\pi\)
−0.768021 + 0.640425i \(0.778758\pi\)
\(648\) 0 0
\(649\) 27.3137 1.07216
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −31.9411 −1.24995 −0.624976 0.780644i \(-0.714891\pi\)
−0.624976 + 0.780644i \(0.714891\pi\)
\(654\) 0 0
\(655\) −1.31371 −0.0513308
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26.7279 1.04117 0.520586 0.853809i \(-0.325714\pi\)
0.520586 + 0.853809i \(0.325714\pi\)
\(660\) 0 0
\(661\) 27.7990 1.08126 0.540628 0.841262i \(-0.318187\pi\)
0.540628 + 0.841262i \(0.318187\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.41421 0.0548408
\(666\) 0 0
\(667\) −2.14214 −0.0829438
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.65685 −0.0639621
\(672\) 0 0
\(673\) 26.4853 1.02093 0.510466 0.859898i \(-0.329473\pi\)
0.510466 + 0.859898i \(0.329473\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 27.1127 1.04203 0.521013 0.853549i \(-0.325554\pi\)
0.521013 + 0.853549i \(0.325554\pi\)
\(678\) 0 0
\(679\) −3.65685 −0.140337
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 51.2132 1.95962 0.979809 0.199934i \(-0.0640727\pi\)
0.979809 + 0.199934i \(0.0640727\pi\)
\(684\) 0 0
\(685\) 16.4853 0.629870
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 33.6569 1.28222
\(690\) 0 0
\(691\) 19.7990 0.753189 0.376595 0.926378i \(-0.377095\pi\)
0.376595 + 0.926378i \(0.377095\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.68629 0.177761
\(696\) 0 0
\(697\) −7.02944 −0.266259
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.68629 −0.101460 −0.0507299 0.998712i \(-0.516155\pi\)
−0.0507299 + 0.998712i \(0.516155\pi\)
\(702\) 0 0
\(703\) 10.4853 0.395460
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.242641 0.00912544
\(708\) 0 0
\(709\) 43.5980 1.63736 0.818678 0.574252i \(-0.194707\pi\)
0.818678 + 0.574252i \(0.194707\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −17.6569 −0.661254
\(714\) 0 0
\(715\) 8.00000 0.299183
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −13.4142 −0.500266 −0.250133 0.968212i \(-0.580474\pi\)
−0.250133 + 0.968212i \(0.580474\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.75736 0.0652667
\(726\) 0 0
\(727\) −33.4558 −1.24081 −0.620404 0.784282i \(-0.713031\pi\)
−0.620404 + 0.784282i \(0.713031\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.48528 −0.313839
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.97056 0.330435
\(738\) 0 0
\(739\) 23.6569 0.870231 0.435116 0.900375i \(-0.356707\pi\)
0.435116 + 0.900375i \(0.356707\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.2426 −1.10949 −0.554747 0.832019i \(-0.687185\pi\)
−0.554747 + 0.832019i \(0.687185\pi\)
\(744\) 0 0
\(745\) −31.7990 −1.16502
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18.2426 −0.666572
\(750\) 0 0
\(751\) 22.6274 0.825686 0.412843 0.910802i \(-0.364536\pi\)
0.412843 + 0.910802i \(0.364536\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.68629 0.170552
\(756\) 0 0
\(757\) 26.9706 0.980262 0.490131 0.871649i \(-0.336949\pi\)
0.490131 + 0.871649i \(0.336949\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.58579 −0.0937347 −0.0468673 0.998901i \(-0.514924\pi\)
−0.0468673 + 0.998901i \(0.514924\pi\)
\(762\) 0 0
\(763\) 14.4853 0.524402
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 38.6274 1.39476
\(768\) 0 0
\(769\) 13.1127 0.472856 0.236428 0.971649i \(-0.424023\pi\)
0.236428 + 0.971649i \(0.424023\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.6274 −0.382242 −0.191121 0.981567i \(-0.561212\pi\)
−0.191121 + 0.981567i \(0.561212\pi\)
\(774\) 0 0
\(775\) 14.4853 0.520327
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.65685 0.0593630
\(780\) 0 0
\(781\) 30.8284 1.10313
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −31.7990 −1.13495
\(786\) 0 0
\(787\) −20.1421 −0.717990 −0.358995 0.933340i \(-0.616880\pi\)
−0.358995 + 0.933340i \(0.616880\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.72792 0.239217
\(792\) 0 0
\(793\) −2.34315 −0.0832075
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −33.9411 −1.20226 −0.601128 0.799153i \(-0.705282\pi\)
−0.601128 + 0.799153i \(0.705282\pi\)
\(798\) 0 0
\(799\) 30.0000 1.06132
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 23.3137 0.822723
\(804\) 0 0
\(805\) 5.17157 0.182274
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24.3431 0.855859 0.427930 0.903812i \(-0.359243\pi\)
0.427930 + 0.903812i \(0.359243\pi\)
\(810\) 0 0
\(811\) 10.6274 0.373179 0.186590 0.982438i \(-0.440257\pi\)
0.186590 + 0.982438i \(0.440257\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.14214 0.215150
\(816\) 0 0
\(817\) 2.00000 0.0699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.544156 −0.0189912 −0.00949559 0.999955i \(-0.503023\pi\)
−0.00949559 + 0.999955i \(0.503023\pi\)
\(822\) 0 0
\(823\) −16.3431 −0.569686 −0.284843 0.958574i \(-0.591942\pi\)
−0.284843 + 0.958574i \(0.591942\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.2426 0.356172 0.178086 0.984015i \(-0.443010\pi\)
0.178086 + 0.984015i \(0.443010\pi\)
\(828\) 0 0
\(829\) −11.9411 −0.414732 −0.207366 0.978263i \(-0.566489\pi\)
−0.207366 + 0.978263i \(0.566489\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.24264 −0.146999
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 20.9706 0.723984 0.361992 0.932181i \(-0.382097\pi\)
0.361992 + 0.932181i \(0.382097\pi\)
\(840\) 0 0
\(841\) −28.6569 −0.988167
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −7.07107 −0.243252
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 38.3431 1.31439
\(852\) 0 0
\(853\) −26.2843 −0.899956 −0.449978 0.893040i \(-0.648568\pi\)
−0.449978 + 0.893040i \(0.648568\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.3137 0.386469 0.193234 0.981153i \(-0.438102\pi\)
0.193234 + 0.981153i \(0.438102\pi\)
\(858\) 0 0
\(859\) 50.9117 1.73708 0.868542 0.495615i \(-0.165057\pi\)
0.868542 + 0.495615i \(0.165057\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 30.2426 1.02947 0.514736 0.857349i \(-0.327890\pi\)
0.514736 + 0.857349i \(0.327890\pi\)
\(864\) 0 0
\(865\) 2.34315 0.0796693
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −18.3431 −0.622249
\(870\) 0 0
\(871\) 12.6863 0.429859
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −11.3137 −0.382473
\(876\) 0 0
\(877\) −42.9706 −1.45101 −0.725506 0.688215i \(-0.758394\pi\)
−0.725506 + 0.688215i \(0.758394\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22.1838 0.747390 0.373695 0.927552i \(-0.378091\pi\)
0.373695 + 0.927552i \(0.378091\pi\)
\(882\) 0 0
\(883\) 0.284271 0.00956649 0.00478324 0.999989i \(-0.498477\pi\)
0.00478324 + 0.999989i \(0.498477\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.17157 0.173644 0.0868222 0.996224i \(-0.472329\pi\)
0.0868222 + 0.996224i \(0.472329\pi\)
\(888\) 0 0
\(889\) 19.7990 0.664037
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.07107 −0.236624
\(894\) 0 0
\(895\) 3.17157 0.106014
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.82843 0.0943333
\(900\) 0 0
\(901\) 50.4853 1.68191
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.48528 −0.282060
\(906\) 0 0
\(907\) 49.6569 1.64883 0.824414 0.565987i \(-0.191505\pi\)
0.824414 + 0.565987i \(0.191505\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 10.4437 0.346014 0.173007 0.984921i \(-0.444652\pi\)
0.173007 + 0.984921i \(0.444652\pi\)
\(912\) 0 0
\(913\) 2.82843 0.0936073
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.928932 −0.0306760
\(918\) 0 0
\(919\) −14.6274 −0.482514 −0.241257 0.970461i \(-0.577560\pi\)
−0.241257 + 0.970461i \(0.577560\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 43.5980 1.43504
\(924\) 0 0
\(925\) −31.4558 −1.03426
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −5.89949 −0.193556 −0.0967781 0.995306i \(-0.530854\pi\)
−0.0967781 + 0.995306i \(0.530854\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) −58.2843 −1.90406 −0.952032 0.305998i \(-0.901010\pi\)
−0.952032 + 0.305998i \(0.901010\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.14214 0.0698316 0.0349158 0.999390i \(-0.488884\pi\)
0.0349158 + 0.999390i \(0.488884\pi\)
\(942\) 0 0
\(943\) 6.05887 0.197304
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.6274 −0.670301 −0.335150 0.942165i \(-0.608787\pi\)
−0.335150 + 0.942165i \(0.608787\pi\)
\(948\) 0 0
\(949\) 32.9706 1.07027
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 41.3553 1.33963 0.669815 0.742528i \(-0.266373\pi\)
0.669815 + 0.742528i \(0.266373\pi\)
\(954\) 0 0
\(955\) −10.8284 −0.350400
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 11.6569 0.376419
\(960\) 0 0
\(961\) −7.68629 −0.247945
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −31.7990 −1.02365
\(966\) 0 0
\(967\) −40.6274 −1.30649 −0.653245 0.757147i \(-0.726593\pi\)
−0.653245 + 0.757147i \(0.726593\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19.5980 −0.628929 −0.314465 0.949269i \(-0.601825\pi\)
−0.314465 + 0.949269i \(0.601825\pi\)
\(972\) 0 0
\(973\) 3.31371 0.106233
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.24264 −0.0717484 −0.0358742 0.999356i \(-0.511422\pi\)
−0.0358742 + 0.999356i \(0.511422\pi\)
\(978\) 0 0
\(979\) −8.00000 −0.255681
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.0000 −0.637901 −0.318950 0.947771i \(-0.603330\pi\)
−0.318950 + 0.947771i \(0.603330\pi\)
\(984\) 0 0
\(985\) −6.14214 −0.195705
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.31371 0.232562
\(990\) 0 0
\(991\) 23.5980 0.749615 0.374807 0.927103i \(-0.377709\pi\)
0.374807 + 0.927103i \(0.377709\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −12.0000 −0.380426
\(996\) 0 0
\(997\) 13.7990 0.437018 0.218509 0.975835i \(-0.429881\pi\)
0.218509 + 0.975835i \(0.429881\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.h.1.2 2
3.2 odd 2 1596.2.a.h.1.1 2
12.11 even 2 6384.2.a.bp.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1596.2.a.h.1.1 2 3.2 odd 2
4788.2.a.h.1.2 2 1.1 even 1 trivial
6384.2.a.bp.1.1 2 12.11 even 2