Properties

Label 4788.2.a.h.1.1
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1596)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{5} +1.00000 q^{7} -2.00000 q^{11} +2.82843 q^{13} +4.24264 q^{17} +1.00000 q^{19} -7.65685 q^{23} -3.00000 q^{25} -3.41421 q^{29} +0.828427 q^{31} -1.41421 q^{35} -6.48528 q^{37} -9.65685 q^{41} +2.00000 q^{43} +7.07107 q^{47} +1.00000 q^{49} +7.89949 q^{53} +2.82843 q^{55} -2.34315 q^{59} -4.82843 q^{61} -4.00000 q^{65} +12.4853 q^{67} -12.5858 q^{71} -0.343146 q^{73} -2.00000 q^{77} +14.8284 q^{79} +1.41421 q^{83} -6.00000 q^{85} +4.00000 q^{89} +2.82843 q^{91} -1.41421 q^{95} +7.65685 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{7} - 4 q^{11} + 2 q^{19} - 4 q^{23} - 6 q^{25} - 4 q^{29} - 4 q^{31} + 4 q^{37} - 8 q^{41} + 4 q^{43} + 2 q^{49} - 4 q^{53} - 16 q^{59} - 4 q^{61} - 8 q^{65} + 8 q^{67} - 28 q^{71} - 12 q^{73}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.41421 −0.632456 −0.316228 0.948683i \(-0.602416\pi\)
−0.316228 + 0.948683i \(0.602416\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.24264 1.02899 0.514496 0.857493i \(-0.327979\pi\)
0.514496 + 0.857493i \(0.327979\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.65685 −1.59656 −0.798282 0.602284i \(-0.794258\pi\)
−0.798282 + 0.602284i \(0.794258\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.41421 −0.634004 −0.317002 0.948425i \(-0.602676\pi\)
−0.317002 + 0.948425i \(0.602676\pi\)
\(30\) 0 0
\(31\) 0.828427 0.148790 0.0743950 0.997229i \(-0.476297\pi\)
0.0743950 + 0.997229i \(0.476297\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.41421 −0.239046
\(36\) 0 0
\(37\) −6.48528 −1.06617 −0.533087 0.846061i \(-0.678968\pi\)
−0.533087 + 0.846061i \(0.678968\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.65685 −1.50815 −0.754074 0.656790i \(-0.771914\pi\)
−0.754074 + 0.656790i \(0.771914\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.07107 1.03142 0.515711 0.856763i \(-0.327528\pi\)
0.515711 + 0.856763i \(0.327528\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.89949 1.08508 0.542540 0.840030i \(-0.317463\pi\)
0.542540 + 0.840030i \(0.317463\pi\)
\(54\) 0 0
\(55\) 2.82843 0.381385
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.34315 −0.305052 −0.152526 0.988299i \(-0.548741\pi\)
−0.152526 + 0.988299i \(0.548741\pi\)
\(60\) 0 0
\(61\) −4.82843 −0.618217 −0.309108 0.951027i \(-0.600031\pi\)
−0.309108 + 0.951027i \(0.600031\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 12.4853 1.52532 0.762660 0.646800i \(-0.223893\pi\)
0.762660 + 0.646800i \(0.223893\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.5858 −1.49366 −0.746829 0.665016i \(-0.768425\pi\)
−0.746829 + 0.665016i \(0.768425\pi\)
\(72\) 0 0
\(73\) −0.343146 −0.0401622 −0.0200811 0.999798i \(-0.506392\pi\)
−0.0200811 + 0.999798i \(0.506392\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 14.8284 1.66833 0.834164 0.551516i \(-0.185951\pi\)
0.834164 + 0.551516i \(0.185951\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.41421 0.155230 0.0776151 0.996983i \(-0.475269\pi\)
0.0776151 + 0.996983i \(0.475269\pi\)
\(84\) 0 0
\(85\) −6.00000 −0.650791
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) 2.82843 0.296500
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.41421 −0.145095
\(96\) 0 0
\(97\) 7.65685 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.24264 −0.820173 −0.410087 0.912047i \(-0.634502\pi\)
−0.410087 + 0.912047i \(0.634502\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.75736 −0.943280 −0.471640 0.881791i \(-0.656338\pi\)
−0.471640 + 0.881791i \(0.656338\pi\)
\(108\) 0 0
\(109\) −2.48528 −0.238047 −0.119023 0.992891i \(-0.537976\pi\)
−0.119023 + 0.992891i \(0.537976\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.7279 −1.76177 −0.880887 0.473326i \(-0.843053\pi\)
−0.880887 + 0.473326i \(0.843053\pi\)
\(114\) 0 0
\(115\) 10.8284 1.00976
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.24264 0.388922
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3137 1.01193
\(126\) 0 0
\(127\) −19.7990 −1.75688 −0.878438 0.477856i \(-0.841414\pi\)
−0.878438 + 0.477856i \(0.841414\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −15.0711 −1.31677 −0.658383 0.752683i \(-0.728759\pi\)
−0.658383 + 0.752683i \(0.728759\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.343146 0.0293169 0.0146585 0.999893i \(-0.495334\pi\)
0.0146585 + 0.999893i \(0.495334\pi\)
\(138\) 0 0
\(139\) −19.3137 −1.63817 −0.819084 0.573674i \(-0.805518\pi\)
−0.819084 + 0.573674i \(0.805518\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.65685 −0.473050
\(144\) 0 0
\(145\) 4.82843 0.400979
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.51472 −0.451783 −0.225892 0.974152i \(-0.572530\pi\)
−0.225892 + 0.974152i \(0.572530\pi\)
\(150\) 0 0
\(151\) −19.3137 −1.57173 −0.785864 0.618400i \(-0.787781\pi\)
−0.785864 + 0.618400i \(0.787781\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.17157 −0.0941030
\(156\) 0 0
\(157\) −5.51472 −0.440122 −0.220061 0.975486i \(-0.570626\pi\)
−0.220061 + 0.975486i \(0.570626\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.65685 −0.603445
\(162\) 0 0
\(163\) 15.6569 1.22634 0.613170 0.789951i \(-0.289894\pi\)
0.613170 + 0.789951i \(0.289894\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.48528 −0.656611 −0.328305 0.944572i \(-0.606478\pi\)
−0.328305 + 0.944572i \(0.606478\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.65685 −0.734197 −0.367099 0.930182i \(-0.619649\pi\)
−0.367099 + 0.930182i \(0.619649\pi\)
\(174\) 0 0
\(175\) −3.00000 −0.226779
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.24264 −0.466597 −0.233298 0.972405i \(-0.574952\pi\)
−0.233298 + 0.972405i \(0.574952\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.17157 0.674307
\(186\) 0 0
\(187\) −8.48528 −0.620505
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.65685 0.264601 0.132300 0.991210i \(-0.457764\pi\)
0.132300 + 0.991210i \(0.457764\pi\)
\(192\) 0 0
\(193\) −5.51472 −0.396958 −0.198479 0.980105i \(-0.563600\pi\)
−0.198479 + 0.980105i \(0.563600\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.6569 −1.11550 −0.557752 0.830007i \(-0.688336\pi\)
−0.557752 + 0.830007i \(0.688336\pi\)
\(198\) 0 0
\(199\) 8.48528 0.601506 0.300753 0.953702i \(-0.402762\pi\)
0.300753 + 0.953702i \(0.402762\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.41421 −0.239631
\(204\) 0 0
\(205\) 13.6569 0.953836
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) 21.6569 1.49092 0.745460 0.666551i \(-0.232230\pi\)
0.745460 + 0.666551i \(0.232230\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.82843 −0.192897
\(216\) 0 0
\(217\) 0.828427 0.0562373
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) −14.4853 −0.970006 −0.485003 0.874512i \(-0.661182\pi\)
−0.485003 + 0.874512i \(0.661182\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.17157 0.0777600 0.0388800 0.999244i \(-0.487621\pi\)
0.0388800 + 0.999244i \(0.487621\pi\)
\(228\) 0 0
\(229\) −13.7990 −0.911863 −0.455931 0.890015i \(-0.650694\pi\)
−0.455931 + 0.890015i \(0.650694\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.1421 1.05751 0.528753 0.848776i \(-0.322660\pi\)
0.528753 + 0.848776i \(0.322660\pi\)
\(234\) 0 0
\(235\) −10.0000 −0.652328
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −25.7990 −1.66880 −0.834399 0.551161i \(-0.814185\pi\)
−0.834399 + 0.551161i \(0.814185\pi\)
\(240\) 0 0
\(241\) −23.6569 −1.52387 −0.761936 0.647652i \(-0.775751\pi\)
−0.761936 + 0.647652i \(0.775751\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.41421 −0.0903508
\(246\) 0 0
\(247\) 2.82843 0.179969
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.75736 0.489640 0.244820 0.969569i \(-0.421271\pi\)
0.244820 + 0.969569i \(0.421271\pi\)
\(252\) 0 0
\(253\) 15.3137 0.962765
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.48528 0.529297 0.264649 0.964345i \(-0.414744\pi\)
0.264649 + 0.964345i \(0.414744\pi\)
\(258\) 0 0
\(259\) −6.48528 −0.402976
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.8284 1.03769 0.518843 0.854870i \(-0.326363\pi\)
0.518843 + 0.854870i \(0.326363\pi\)
\(264\) 0 0
\(265\) −11.1716 −0.686264
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.51472 −0.458180 −0.229090 0.973405i \(-0.573575\pi\)
−0.229090 + 0.973405i \(0.573575\pi\)
\(270\) 0 0
\(271\) −23.7990 −1.44569 −0.722843 0.691012i \(-0.757165\pi\)
−0.722843 + 0.691012i \(0.757165\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 0.361814
\(276\) 0 0
\(277\) 4.97056 0.298652 0.149326 0.988788i \(-0.452290\pi\)
0.149326 + 0.988788i \(0.452290\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.0416 1.55351 0.776757 0.629801i \(-0.216863\pi\)
0.776757 + 0.629801i \(0.216863\pi\)
\(282\) 0 0
\(283\) −31.1127 −1.84946 −0.924729 0.380626i \(-0.875708\pi\)
−0.924729 + 0.380626i \(0.875708\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.65685 −0.570026
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.00000 0.467365 0.233682 0.972313i \(-0.424922\pi\)
0.233682 + 0.972313i \(0.424922\pi\)
\(294\) 0 0
\(295\) 3.31371 0.192932
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −21.6569 −1.25245
\(300\) 0 0
\(301\) 2.00000 0.115278
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.82843 0.390995
\(306\) 0 0
\(307\) −20.8284 −1.18874 −0.594371 0.804191i \(-0.702599\pi\)
−0.594371 + 0.804191i \(0.702599\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 21.2132 1.20289 0.601445 0.798914i \(-0.294592\pi\)
0.601445 + 0.798914i \(0.294592\pi\)
\(312\) 0 0
\(313\) 4.14214 0.234127 0.117064 0.993124i \(-0.462652\pi\)
0.117064 + 0.993124i \(0.462652\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.72792 −0.153215 −0.0766077 0.997061i \(-0.524409\pi\)
−0.0766077 + 0.997061i \(0.524409\pi\)
\(318\) 0 0
\(319\) 6.82843 0.382319
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.24264 0.236067
\(324\) 0 0
\(325\) −8.48528 −0.470679
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.07107 0.389841
\(330\) 0 0
\(331\) 19.3137 1.06158 0.530789 0.847504i \(-0.321896\pi\)
0.530789 + 0.847504i \(0.321896\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.6569 −0.964697
\(336\) 0 0
\(337\) −28.1421 −1.53300 −0.766500 0.642244i \(-0.778003\pi\)
−0.766500 + 0.642244i \(0.778003\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.65685 −0.0897237
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 30.4853 1.63654 0.818268 0.574837i \(-0.194935\pi\)
0.818268 + 0.574837i \(0.194935\pi\)
\(348\) 0 0
\(349\) 10.9706 0.587241 0.293620 0.955922i \(-0.405140\pi\)
0.293620 + 0.955922i \(0.405140\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.41421 0.0752710 0.0376355 0.999292i \(-0.488017\pi\)
0.0376355 + 0.999292i \(0.488017\pi\)
\(354\) 0 0
\(355\) 17.7990 0.944672
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.485281 0.0254008
\(366\) 0 0
\(367\) −11.5147 −0.601063 −0.300532 0.953772i \(-0.597164\pi\)
−0.300532 + 0.953772i \(0.597164\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.89949 0.410121
\(372\) 0 0
\(373\) 14.9706 0.775146 0.387573 0.921839i \(-0.373313\pi\)
0.387573 + 0.921839i \(0.373313\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.65685 −0.497353
\(378\) 0 0
\(379\) 32.2843 1.65833 0.829166 0.559003i \(-0.188816\pi\)
0.829166 + 0.559003i \(0.188816\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.8284 0.553307 0.276653 0.960970i \(-0.410775\pi\)
0.276653 + 0.960970i \(0.410775\pi\)
\(384\) 0 0
\(385\) 2.82843 0.144150
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.14214 −0.210015 −0.105007 0.994471i \(-0.533487\pi\)
−0.105007 + 0.994471i \(0.533487\pi\)
\(390\) 0 0
\(391\) −32.4853 −1.64285
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −20.9706 −1.05514
\(396\) 0 0
\(397\) −13.3137 −0.668196 −0.334098 0.942538i \(-0.608432\pi\)
−0.334098 + 0.942538i \(0.608432\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −31.4142 −1.56875 −0.784375 0.620286i \(-0.787016\pi\)
−0.784375 + 0.620286i \(0.787016\pi\)
\(402\) 0 0
\(403\) 2.34315 0.116720
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.9706 0.642927
\(408\) 0 0
\(409\) −14.8284 −0.733219 −0.366609 0.930375i \(-0.619481\pi\)
−0.366609 + 0.930375i \(0.619481\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.34315 −0.115299
\(414\) 0 0
\(415\) −2.00000 −0.0981761
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.242641 0.0118538 0.00592689 0.999982i \(-0.498113\pi\)
0.00592689 + 0.999982i \(0.498113\pi\)
\(420\) 0 0
\(421\) −22.2843 −1.08607 −0.543034 0.839710i \(-0.682725\pi\)
−0.543034 + 0.839710i \(0.682725\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.7279 −0.617395
\(426\) 0 0
\(427\) −4.82843 −0.233664
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.5858 1.37693 0.688464 0.725270i \(-0.258285\pi\)
0.688464 + 0.725270i \(0.258285\pi\)
\(432\) 0 0
\(433\) −33.3137 −1.60095 −0.800477 0.599363i \(-0.795421\pi\)
−0.800477 + 0.599363i \(0.795421\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.65685 −0.366277
\(438\) 0 0
\(439\) 9.51472 0.454113 0.227056 0.973882i \(-0.427090\pi\)
0.227056 + 0.973882i \(0.427090\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.7990 −1.22575 −0.612873 0.790181i \(-0.709986\pi\)
−0.612873 + 0.790181i \(0.709986\pi\)
\(444\) 0 0
\(445\) −5.65685 −0.268161
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.75736 −0.271707 −0.135853 0.990729i \(-0.543378\pi\)
−0.135853 + 0.990729i \(0.543378\pi\)
\(450\) 0 0
\(451\) 19.3137 0.909447
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) −3.31371 −0.155009 −0.0775044 0.996992i \(-0.524695\pi\)
−0.0775044 + 0.996992i \(0.524695\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 19.0711 0.888228 0.444114 0.895970i \(-0.353518\pi\)
0.444114 + 0.895970i \(0.353518\pi\)
\(462\) 0 0
\(463\) −15.3137 −0.711688 −0.355844 0.934545i \(-0.615807\pi\)
−0.355844 + 0.934545i \(0.615807\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 38.8701 1.79869 0.899346 0.437238i \(-0.144043\pi\)
0.899346 + 0.437238i \(0.144043\pi\)
\(468\) 0 0
\(469\) 12.4853 0.576517
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) −3.00000 −0.137649
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.0711 −0.688615 −0.344307 0.938857i \(-0.611886\pi\)
−0.344307 + 0.938857i \(0.611886\pi\)
\(480\) 0 0
\(481\) −18.3431 −0.836375
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.8284 −0.491694
\(486\) 0 0
\(487\) −20.2843 −0.919168 −0.459584 0.888134i \(-0.652001\pi\)
−0.459584 + 0.888134i \(0.652001\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.82843 −0.217904 −0.108952 0.994047i \(-0.534749\pi\)
−0.108952 + 0.994047i \(0.534749\pi\)
\(492\) 0 0
\(493\) −14.4853 −0.652384
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.5858 −0.564550
\(498\) 0 0
\(499\) 15.3137 0.685536 0.342768 0.939420i \(-0.388636\pi\)
0.342768 + 0.939420i \(0.388636\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 32.2426 1.43763 0.718814 0.695202i \(-0.244685\pi\)
0.718814 + 0.695202i \(0.244685\pi\)
\(504\) 0 0
\(505\) 11.6569 0.518723
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −31.1127 −1.37905 −0.689523 0.724264i \(-0.742180\pi\)
−0.689523 + 0.724264i \(0.742180\pi\)
\(510\) 0 0
\(511\) −0.343146 −0.0151799
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −11.3137 −0.498542
\(516\) 0 0
\(517\) −14.1421 −0.621970
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.45584 −0.414268 −0.207134 0.978313i \(-0.566414\pi\)
−0.207134 + 0.978313i \(0.566414\pi\)
\(522\) 0 0
\(523\) 33.7990 1.47793 0.738963 0.673746i \(-0.235316\pi\)
0.738963 + 0.673746i \(0.235316\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.51472 0.153104
\(528\) 0 0
\(529\) 35.6274 1.54902
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −27.3137 −1.18309
\(534\) 0 0
\(535\) 13.7990 0.596582
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) 17.3137 0.744374 0.372187 0.928158i \(-0.378608\pi\)
0.372187 + 0.928158i \(0.378608\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.51472 0.150554
\(546\) 0 0
\(547\) 7.51472 0.321306 0.160653 0.987011i \(-0.448640\pi\)
0.160653 + 0.987011i \(0.448640\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.41421 −0.145450
\(552\) 0 0
\(553\) 14.8284 0.630569
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.7990 1.26262 0.631312 0.775529i \(-0.282517\pi\)
0.631312 + 0.775529i \(0.282517\pi\)
\(558\) 0 0
\(559\) 5.65685 0.239259
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.85786 −0.246880 −0.123440 0.992352i \(-0.539393\pi\)
−0.123440 + 0.992352i \(0.539393\pi\)
\(564\) 0 0
\(565\) 26.4853 1.11424
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.4142 0.813886 0.406943 0.913454i \(-0.366595\pi\)
0.406943 + 0.913454i \(0.366595\pi\)
\(570\) 0 0
\(571\) 36.2843 1.51845 0.759225 0.650829i \(-0.225578\pi\)
0.759225 + 0.650829i \(0.225578\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 22.9706 0.957939
\(576\) 0 0
\(577\) −10.4853 −0.436508 −0.218254 0.975892i \(-0.570036\pi\)
−0.218254 + 0.975892i \(0.570036\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.41421 0.0586715
\(582\) 0 0
\(583\) −15.7990 −0.654327
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27.0711 1.11734 0.558671 0.829389i \(-0.311311\pi\)
0.558671 + 0.829389i \(0.311311\pi\)
\(588\) 0 0
\(589\) 0.828427 0.0341347
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10.8701 0.446380 0.223190 0.974775i \(-0.428353\pi\)
0.223190 + 0.974775i \(0.428353\pi\)
\(594\) 0 0
\(595\) −6.00000 −0.245976
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.72792 0.111460 0.0557299 0.998446i \(-0.482251\pi\)
0.0557299 + 0.998446i \(0.482251\pi\)
\(600\) 0 0
\(601\) −21.3137 −0.869404 −0.434702 0.900574i \(-0.643146\pi\)
−0.434702 + 0.900574i \(0.643146\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.89949 0.402472
\(606\) 0 0
\(607\) 22.6274 0.918419 0.459209 0.888328i \(-0.348133\pi\)
0.459209 + 0.888328i \(0.348133\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.0000 0.809113
\(612\) 0 0
\(613\) 20.2843 0.819274 0.409637 0.912249i \(-0.365655\pi\)
0.409637 + 0.912249i \(0.365655\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.31371 −0.374956 −0.187478 0.982269i \(-0.560031\pi\)
−0.187478 + 0.982269i \(0.560031\pi\)
\(618\) 0 0
\(619\) 20.6863 0.831452 0.415726 0.909490i \(-0.363527\pi\)
0.415726 + 0.909490i \(0.363527\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −27.5147 −1.09708
\(630\) 0 0
\(631\) 40.6274 1.61735 0.808676 0.588254i \(-0.200185\pi\)
0.808676 + 0.588254i \(0.200185\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 28.0000 1.11115
\(636\) 0 0
\(637\) 2.82843 0.112066
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.92893 −0.115686 −0.0578429 0.998326i \(-0.518422\pi\)
−0.0578429 + 0.998326i \(0.518422\pi\)
\(642\) 0 0
\(643\) −7.51472 −0.296352 −0.148176 0.988961i \(-0.547340\pi\)
−0.148176 + 0.988961i \(0.547340\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.9289 −0.980057 −0.490029 0.871706i \(-0.663014\pi\)
−0.490029 + 0.871706i \(0.663014\pi\)
\(648\) 0 0
\(649\) 4.68629 0.183953
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.9411 1.40648 0.703242 0.710950i \(-0.251735\pi\)
0.703242 + 0.710950i \(0.251735\pi\)
\(654\) 0 0
\(655\) 21.3137 0.832796
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.27208 0.0495531 0.0247766 0.999693i \(-0.492113\pi\)
0.0247766 + 0.999693i \(0.492113\pi\)
\(660\) 0 0
\(661\) −11.7990 −0.458928 −0.229464 0.973317i \(-0.573697\pi\)
−0.229464 + 0.973317i \(0.573697\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.41421 −0.0548408
\(666\) 0 0
\(667\) 26.1421 1.01223
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.65685 0.372799
\(672\) 0 0
\(673\) 9.51472 0.366765 0.183383 0.983042i \(-0.441295\pi\)
0.183383 + 0.983042i \(0.441295\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −35.1127 −1.34949 −0.674745 0.738051i \(-0.735747\pi\)
−0.674745 + 0.738051i \(0.735747\pi\)
\(678\) 0 0
\(679\) 7.65685 0.293843
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.78680 0.336217 0.168109 0.985768i \(-0.446234\pi\)
0.168109 + 0.985768i \(0.446234\pi\)
\(684\) 0 0
\(685\) −0.485281 −0.0185416
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 22.3431 0.851206
\(690\) 0 0
\(691\) −19.7990 −0.753189 −0.376595 0.926378i \(-0.622905\pi\)
−0.376595 + 0.926378i \(0.622905\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 27.3137 1.03607
\(696\) 0 0
\(697\) −40.9706 −1.55187
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −25.3137 −0.956086 −0.478043 0.878337i \(-0.658654\pi\)
−0.478043 + 0.878337i \(0.658654\pi\)
\(702\) 0 0
\(703\) −6.48528 −0.244597
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.24264 −0.309996
\(708\) 0 0
\(709\) −35.5980 −1.33691 −0.668455 0.743753i \(-0.733044\pi\)
−0.668455 + 0.743753i \(0.733044\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.34315 −0.237553
\(714\) 0 0
\(715\) 8.00000 0.299183
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −10.5858 −0.394783 −0.197392 0.980325i \(-0.563247\pi\)
−0.197392 + 0.980325i \(0.563247\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.2426 0.380402
\(726\) 0 0
\(727\) 17.4558 0.647401 0.323701 0.946160i \(-0.395073\pi\)
0.323701 + 0.946160i \(0.395073\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.48528 0.313839
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −24.9706 −0.919803
\(738\) 0 0
\(739\) 12.3431 0.454050 0.227025 0.973889i \(-0.427100\pi\)
0.227025 + 0.973889i \(0.427100\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.7574 −0.798200 −0.399100 0.916907i \(-0.630677\pi\)
−0.399100 + 0.916907i \(0.630677\pi\)
\(744\) 0 0
\(745\) 7.79899 0.285733
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.75736 −0.356526
\(750\) 0 0
\(751\) −22.6274 −0.825686 −0.412843 0.910802i \(-0.635464\pi\)
−0.412843 + 0.910802i \(0.635464\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 27.3137 0.994048
\(756\) 0 0
\(757\) −6.97056 −0.253349 −0.126675 0.991944i \(-0.540430\pi\)
−0.126675 + 0.991944i \(0.540430\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.41421 −0.196265 −0.0981325 0.995173i \(-0.531287\pi\)
−0.0981325 + 0.995173i \(0.531287\pi\)
\(762\) 0 0
\(763\) −2.48528 −0.0899732
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.62742 −0.239302
\(768\) 0 0
\(769\) −49.1127 −1.77105 −0.885525 0.464592i \(-0.846201\pi\)
−0.885525 + 0.464592i \(0.846201\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34.6274 1.24546 0.622731 0.782436i \(-0.286023\pi\)
0.622731 + 0.782436i \(0.286023\pi\)
\(774\) 0 0
\(775\) −2.48528 −0.0892739
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.65685 −0.345993
\(780\) 0 0
\(781\) 25.1716 0.900710
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.79899 0.278358
\(786\) 0 0
\(787\) 8.14214 0.290236 0.145118 0.989414i \(-0.453644\pi\)
0.145118 + 0.989414i \(0.453644\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −18.7279 −0.665888
\(792\) 0 0
\(793\) −13.6569 −0.484969
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33.9411 1.20226 0.601128 0.799153i \(-0.294718\pi\)
0.601128 + 0.799153i \(0.294718\pi\)
\(798\) 0 0
\(799\) 30.0000 1.06132
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.686292 0.0242187
\(804\) 0 0
\(805\) 10.8284 0.381652
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 35.6569 1.25363 0.626814 0.779169i \(-0.284359\pi\)
0.626814 + 0.779169i \(0.284359\pi\)
\(810\) 0 0
\(811\) −34.6274 −1.21593 −0.607967 0.793963i \(-0.708015\pi\)
−0.607967 + 0.793963i \(0.708015\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −22.1421 −0.775605
\(816\) 0 0
\(817\) 2.00000 0.0699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −51.4558 −1.79582 −0.897911 0.440178i \(-0.854915\pi\)
−0.897911 + 0.440178i \(0.854915\pi\)
\(822\) 0 0
\(823\) −27.6569 −0.964057 −0.482029 0.876155i \(-0.660100\pi\)
−0.482029 + 0.876155i \(0.660100\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.75736 0.0611094 0.0305547 0.999533i \(-0.490273\pi\)
0.0305547 + 0.999533i \(0.490273\pi\)
\(828\) 0 0
\(829\) 55.9411 1.94292 0.971458 0.237212i \(-0.0762338\pi\)
0.971458 + 0.237212i \(0.0762338\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.24264 0.146999
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.9706 −0.447794 −0.223897 0.974613i \(-0.571878\pi\)
−0.223897 + 0.974613i \(0.571878\pi\)
\(840\) 0 0
\(841\) −17.3431 −0.598040
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.07107 0.243252
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 49.6569 1.70222
\(852\) 0 0
\(853\) 30.2843 1.03691 0.518457 0.855104i \(-0.326507\pi\)
0.518457 + 0.855104i \(0.326507\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.3137 −0.386469 −0.193234 0.981153i \(-0.561898\pi\)
−0.193234 + 0.981153i \(0.561898\pi\)
\(858\) 0 0
\(859\) −50.9117 −1.73708 −0.868542 0.495615i \(-0.834943\pi\)
−0.868542 + 0.495615i \(0.834943\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.7574 0.740629 0.370315 0.928906i \(-0.379250\pi\)
0.370315 + 0.928906i \(0.379250\pi\)
\(864\) 0 0
\(865\) 13.6569 0.464347
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −29.6569 −1.00604
\(870\) 0 0
\(871\) 35.3137 1.19656
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11.3137 0.382473
\(876\) 0 0
\(877\) −9.02944 −0.304902 −0.152451 0.988311i \(-0.548717\pi\)
−0.152451 + 0.988311i \(0.548717\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −54.1838 −1.82550 −0.912749 0.408521i \(-0.866045\pi\)
−0.912749 + 0.408521i \(0.866045\pi\)
\(882\) 0 0
\(883\) −56.2843 −1.89412 −0.947058 0.321062i \(-0.895960\pi\)
−0.947058 + 0.321062i \(0.895960\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10.8284 0.363583 0.181791 0.983337i \(-0.441810\pi\)
0.181791 + 0.983337i \(0.441810\pi\)
\(888\) 0 0
\(889\) −19.7990 −0.664037
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.07107 0.236624
\(894\) 0 0
\(895\) 8.82843 0.295102
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.82843 −0.0943333
\(900\) 0 0
\(901\) 33.5147 1.11654
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.48528 0.282060
\(906\) 0 0
\(907\) 38.3431 1.27316 0.636582 0.771209i \(-0.280348\pi\)
0.636582 + 0.771209i \(0.280348\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 41.5563 1.37682 0.688412 0.725320i \(-0.258308\pi\)
0.688412 + 0.725320i \(0.258308\pi\)
\(912\) 0 0
\(913\) −2.82843 −0.0936073
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.0711 −0.497691
\(918\) 0 0
\(919\) 30.6274 1.01031 0.505153 0.863030i \(-0.331436\pi\)
0.505153 + 0.863030i \(0.331436\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −35.5980 −1.17172
\(924\) 0 0
\(925\) 19.4558 0.639704
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 13.8995 0.456028 0.228014 0.973658i \(-0.426777\pi\)
0.228014 + 0.973658i \(0.426777\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) −1.71573 −0.0560504 −0.0280252 0.999607i \(-0.508922\pi\)
−0.0280252 + 0.999607i \(0.508922\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −26.1421 −0.852209 −0.426105 0.904674i \(-0.640114\pi\)
−0.426105 + 0.904674i \(0.640114\pi\)
\(942\) 0 0
\(943\) 73.9411 2.40785
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.6274 0.800284 0.400142 0.916453i \(-0.368961\pi\)
0.400142 + 0.916453i \(0.368961\pi\)
\(948\) 0 0
\(949\) −0.970563 −0.0315058
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −29.3553 −0.950913 −0.475456 0.879739i \(-0.657717\pi\)
−0.475456 + 0.879739i \(0.657717\pi\)
\(954\) 0 0
\(955\) −5.17157 −0.167348
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.343146 0.0110808
\(960\) 0 0
\(961\) −30.3137 −0.977862
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.79899 0.251058
\(966\) 0 0
\(967\) 4.62742 0.148808 0.0744038 0.997228i \(-0.476295\pi\)
0.0744038 + 0.997228i \(0.476295\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 59.5980 1.91259 0.956295 0.292403i \(-0.0944550\pi\)
0.956295 + 0.292403i \(0.0944550\pi\)
\(972\) 0 0
\(973\) −19.3137 −0.619169
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.24264 0.199720 0.0998599 0.995002i \(-0.468161\pi\)
0.0998599 + 0.995002i \(0.468161\pi\)
\(978\) 0 0
\(979\) −8.00000 −0.255681
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.0000 −0.637901 −0.318950 0.947771i \(-0.603330\pi\)
−0.318950 + 0.947771i \(0.603330\pi\)
\(984\) 0 0
\(985\) 22.1421 0.705507
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −15.3137 −0.486948
\(990\) 0 0
\(991\) −55.5980 −1.76613 −0.883064 0.469253i \(-0.844523\pi\)
−0.883064 + 0.469253i \(0.844523\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −12.0000 −0.380426
\(996\) 0 0
\(997\) −25.7990 −0.817062 −0.408531 0.912744i \(-0.633959\pi\)
−0.408531 + 0.912744i \(0.633959\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.h.1.1 2
3.2 odd 2 1596.2.a.h.1.2 2
12.11 even 2 6384.2.a.bp.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1596.2.a.h.1.2 2 3.2 odd 2
4788.2.a.h.1.1 2 1.1 even 1 trivial
6384.2.a.bp.1.2 2 12.11 even 2