Properties

Label 4788.2.a.g.1.2
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.79129\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{5} +1.00000 q^{7} +O(q^{10})\) \(q-3.00000 q^{5} +1.00000 q^{7} +3.79129 q^{11} -1.00000 q^{13} -3.79129 q^{17} +1.00000 q^{19} -4.58258 q^{23} +4.00000 q^{25} -3.79129 q^{29} +7.37386 q^{31} -3.00000 q^{35} +5.00000 q^{37} +3.79129 q^{41} +2.00000 q^{43} -10.5826 q^{47} +1.00000 q^{49} +8.37386 q^{53} -11.3739 q^{55} -12.1652 q^{59} -1.00000 q^{61} +3.00000 q^{65} -9.37386 q^{67} +12.1652 q^{71} +16.3739 q^{73} +3.79129 q^{77} -10.0000 q^{79} -14.3739 q^{83} +11.3739 q^{85} -7.58258 q^{89} -1.00000 q^{91} -3.00000 q^{95} -7.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{5} + 2 q^{7} + 3 q^{11} - 2 q^{13} - 3 q^{17} + 2 q^{19} + 8 q^{25} - 3 q^{29} + q^{31} - 6 q^{35} + 10 q^{37} + 3 q^{41} + 4 q^{43} - 12 q^{47} + 2 q^{49} + 3 q^{53} - 9 q^{55} - 6 q^{59} - 2 q^{61} + 6 q^{65} - 5 q^{67} + 6 q^{71} + 19 q^{73} + 3 q^{77} - 20 q^{79} - 15 q^{83} + 9 q^{85} - 6 q^{89} - 2 q^{91} - 6 q^{95} - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.79129 1.14312 0.571558 0.820562i \(-0.306339\pi\)
0.571558 + 0.820562i \(0.306339\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.79129 −0.919522 −0.459761 0.888043i \(-0.652065\pi\)
−0.459761 + 0.888043i \(0.652065\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.58258 −0.955533 −0.477767 0.878487i \(-0.658554\pi\)
−0.477767 + 0.878487i \(0.658554\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.79129 −0.704024 −0.352012 0.935995i \(-0.614502\pi\)
−0.352012 + 0.935995i \(0.614502\pi\)
\(30\) 0 0
\(31\) 7.37386 1.32438 0.662192 0.749334i \(-0.269626\pi\)
0.662192 + 0.749334i \(0.269626\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.79129 0.592100 0.296050 0.955172i \(-0.404331\pi\)
0.296050 + 0.955172i \(0.404331\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.5826 −1.54363 −0.771814 0.635849i \(-0.780650\pi\)
−0.771814 + 0.635849i \(0.780650\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.37386 1.15024 0.575119 0.818070i \(-0.304956\pi\)
0.575119 + 0.818070i \(0.304956\pi\)
\(54\) 0 0
\(55\) −11.3739 −1.53365
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.1652 −1.58377 −0.791884 0.610672i \(-0.790900\pi\)
−0.791884 + 0.610672i \(0.790900\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) −9.37386 −1.14520 −0.572600 0.819835i \(-0.694065\pi\)
−0.572600 + 0.819835i \(0.694065\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.1652 1.44374 0.721869 0.692030i \(-0.243283\pi\)
0.721869 + 0.692030i \(0.243283\pi\)
\(72\) 0 0
\(73\) 16.3739 1.91642 0.958208 0.286073i \(-0.0923499\pi\)
0.958208 + 0.286073i \(0.0923499\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.79129 0.432057
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −14.3739 −1.57774 −0.788868 0.614562i \(-0.789333\pi\)
−0.788868 + 0.614562i \(0.789333\pi\)
\(84\) 0 0
\(85\) 11.3739 1.23367
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.58258 −0.803751 −0.401876 0.915694i \(-0.631642\pi\)
−0.401876 + 0.915694i \(0.631642\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.00000 −0.307794
\(96\) 0 0
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.74773 0.770928 0.385464 0.922723i \(-0.374041\pi\)
0.385464 + 0.922723i \(0.374041\pi\)
\(102\) 0 0
\(103\) −13.0000 −1.28093 −0.640464 0.767988i \(-0.721258\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.165151 −0.0159658 −0.00798289 0.999968i \(-0.502541\pi\)
−0.00798289 + 0.999968i \(0.502541\pi\)
\(108\) 0 0
\(109\) −11.7477 −1.12523 −0.562614 0.826720i \(-0.690204\pi\)
−0.562614 + 0.826720i \(0.690204\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.37386 −0.787747 −0.393873 0.919165i \(-0.628865\pi\)
−0.393873 + 0.919165i \(0.628865\pi\)
\(114\) 0 0
\(115\) 13.7477 1.28198
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.79129 −0.347547
\(120\) 0 0
\(121\) 3.37386 0.306715
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 6.74773 0.598764 0.299382 0.954133i \(-0.403220\pi\)
0.299382 + 0.954133i \(0.403220\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 22.1216 1.93277 0.966386 0.257095i \(-0.0827653\pi\)
0.966386 + 0.257095i \(0.0827653\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 9.74773 0.826791 0.413396 0.910551i \(-0.364343\pi\)
0.413396 + 0.910551i \(0.364343\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.79129 −0.317043
\(144\) 0 0
\(145\) 11.3739 0.944548
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 −0.245770 −0.122885 0.992421i \(-0.539215\pi\)
−0.122885 + 0.992421i \(0.539215\pi\)
\(150\) 0 0
\(151\) 13.3739 1.08835 0.544175 0.838972i \(-0.316843\pi\)
0.544175 + 0.838972i \(0.316843\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −22.1216 −1.77685
\(156\) 0 0
\(157\) −20.1216 −1.60588 −0.802939 0.596061i \(-0.796731\pi\)
−0.802939 + 0.596061i \(0.796731\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.58258 −0.361158
\(162\) 0 0
\(163\) 4.37386 0.342587 0.171294 0.985220i \(-0.445205\pi\)
0.171294 + 0.985220i \(0.445205\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −13.4174 −1.03827 −0.519136 0.854692i \(-0.673746\pi\)
−0.519136 + 0.854692i \(0.673746\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −22.7477 −1.72948 −0.864739 0.502222i \(-0.832516\pi\)
−0.864739 + 0.502222i \(0.832516\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.7913 1.18030 0.590148 0.807295i \(-0.299069\pi\)
0.590148 + 0.807295i \(0.299069\pi\)
\(180\) 0 0
\(181\) −9.37386 −0.696754 −0.348377 0.937355i \(-0.613267\pi\)
−0.348377 + 0.937355i \(0.613267\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −15.0000 −1.10282
\(186\) 0 0
\(187\) −14.3739 −1.05112
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −23.5390 −1.70322 −0.851612 0.524173i \(-0.824374\pi\)
−0.851612 + 0.524173i \(0.824374\pi\)
\(192\) 0 0
\(193\) 7.37386 0.530782 0.265391 0.964141i \(-0.414499\pi\)
0.265391 + 0.964141i \(0.414499\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.37386 0.169131 0.0845654 0.996418i \(-0.473050\pi\)
0.0845654 + 0.996418i \(0.473050\pi\)
\(198\) 0 0
\(199\) −23.7477 −1.68343 −0.841716 0.539921i \(-0.818454\pi\)
−0.841716 + 0.539921i \(0.818454\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.79129 −0.266096
\(204\) 0 0
\(205\) −11.3739 −0.794385
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.79129 0.262249
\(210\) 0 0
\(211\) −24.3739 −1.67797 −0.838983 0.544158i \(-0.816849\pi\)
−0.838983 + 0.544158i \(0.816849\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.00000 −0.409197
\(216\) 0 0
\(217\) 7.37386 0.500570
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.79129 0.255030
\(222\) 0 0
\(223\) −23.7477 −1.59027 −0.795133 0.606435i \(-0.792599\pi\)
−0.795133 + 0.606435i \(0.792599\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.79129 0.251637 0.125818 0.992053i \(-0.459844\pi\)
0.125818 + 0.992053i \(0.459844\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 28.1216 1.84231 0.921153 0.389200i \(-0.127248\pi\)
0.921153 + 0.389200i \(0.127248\pi\)
\(234\) 0 0
\(235\) 31.7477 2.07099
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.74773 0.501159 0.250579 0.968096i \(-0.419379\pi\)
0.250579 + 0.968096i \(0.419379\pi\)
\(240\) 0 0
\(241\) −8.74773 −0.563491 −0.281745 0.959489i \(-0.590913\pi\)
−0.281745 + 0.959489i \(0.590913\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −1.00000 −0.0636285
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.79129 −0.618021 −0.309010 0.951059i \(-0.599998\pi\)
−0.309010 + 0.951059i \(0.599998\pi\)
\(252\) 0 0
\(253\) −17.3739 −1.09229
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.2087 −0.699180 −0.349590 0.936903i \(-0.613679\pi\)
−0.349590 + 0.936903i \(0.613679\pi\)
\(258\) 0 0
\(259\) 5.00000 0.310685
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.79129 −0.418769 −0.209384 0.977833i \(-0.567146\pi\)
−0.209384 + 0.977833i \(0.567146\pi\)
\(264\) 0 0
\(265\) −25.1216 −1.54321
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.95644 0.607055 0.303527 0.952823i \(-0.401836\pi\)
0.303527 + 0.952823i \(0.401836\pi\)
\(270\) 0 0
\(271\) −14.1216 −0.857826 −0.428913 0.903346i \(-0.641103\pi\)
−0.428913 + 0.903346i \(0.641103\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.1652 0.914493
\(276\) 0 0
\(277\) 3.25227 0.195410 0.0977051 0.995215i \(-0.468850\pi\)
0.0977051 + 0.995215i \(0.468850\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −19.4174 −1.15835 −0.579173 0.815205i \(-0.696625\pi\)
−0.579173 + 0.815205i \(0.696625\pi\)
\(282\) 0 0
\(283\) −6.37386 −0.378887 −0.189443 0.981892i \(-0.560668\pi\)
−0.189443 + 0.981892i \(0.560668\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.79129 0.223793
\(288\) 0 0
\(289\) −2.62614 −0.154479
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −19.7477 −1.15367 −0.576837 0.816859i \(-0.695713\pi\)
−0.576837 + 0.816859i \(0.695713\pi\)
\(294\) 0 0
\(295\) 36.4955 2.12485
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.58258 0.265017
\(300\) 0 0
\(301\) 2.00000 0.115278
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.00000 0.171780
\(306\) 0 0
\(307\) −27.3739 −1.56231 −0.781154 0.624338i \(-0.785369\pi\)
−0.781154 + 0.624338i \(0.785369\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −26.2087 −1.48616 −0.743080 0.669203i \(-0.766636\pi\)
−0.743080 + 0.669203i \(0.766636\pi\)
\(312\) 0 0
\(313\) 12.7477 0.720544 0.360272 0.932847i \(-0.382684\pi\)
0.360272 + 0.932847i \(0.382684\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.8348 −0.833208 −0.416604 0.909088i \(-0.636780\pi\)
−0.416604 + 0.909088i \(0.636780\pi\)
\(318\) 0 0
\(319\) −14.3739 −0.804782
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.79129 −0.210953
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10.5826 −0.583436
\(330\) 0 0
\(331\) 28.3739 1.55957 0.779784 0.626048i \(-0.215329\pi\)
0.779784 + 0.626048i \(0.215329\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 28.1216 1.53645
\(336\) 0 0
\(337\) 1.37386 0.0748391 0.0374196 0.999300i \(-0.488086\pi\)
0.0374196 + 0.999300i \(0.488086\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 27.9564 1.51393
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.791288 −0.0424786 −0.0212393 0.999774i \(-0.506761\pi\)
−0.0212393 + 0.999774i \(0.506761\pi\)
\(348\) 0 0
\(349\) −1.62614 −0.0870451 −0.0435225 0.999052i \(-0.513858\pi\)
−0.0435225 + 0.999052i \(0.513858\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.53901 0.454486 0.227243 0.973838i \(-0.427029\pi\)
0.227243 + 0.973838i \(0.427029\pi\)
\(354\) 0 0
\(355\) −36.4955 −1.93698
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.626136 0.0330462 0.0165231 0.999863i \(-0.494740\pi\)
0.0165231 + 0.999863i \(0.494740\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −49.1216 −2.57114
\(366\) 0 0
\(367\) −22.4955 −1.17425 −0.587127 0.809495i \(-0.699741\pi\)
−0.587127 + 0.809495i \(0.699741\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.37386 0.434749
\(372\) 0 0
\(373\) 16.3739 0.847807 0.423903 0.905707i \(-0.360660\pi\)
0.423903 + 0.905707i \(0.360660\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.79129 0.195261
\(378\) 0 0
\(379\) 21.7477 1.11711 0.558553 0.829469i \(-0.311357\pi\)
0.558553 + 0.829469i \(0.311357\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −21.0000 −1.07305 −0.536525 0.843884i \(-0.680263\pi\)
−0.536525 + 0.843884i \(0.680263\pi\)
\(384\) 0 0
\(385\) −11.3739 −0.579666
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.6261 0.944383 0.472191 0.881496i \(-0.343463\pi\)
0.472191 + 0.881496i \(0.343463\pi\)
\(390\) 0 0
\(391\) 17.3739 0.878634
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 30.0000 1.50946
\(396\) 0 0
\(397\) −5.25227 −0.263604 −0.131802 0.991276i \(-0.542076\pi\)
−0.131802 + 0.991276i \(0.542076\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.6261 0.630519 0.315260 0.949005i \(-0.397908\pi\)
0.315260 + 0.949005i \(0.397908\pi\)
\(402\) 0 0
\(403\) −7.37386 −0.367318
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.9564 0.939636
\(408\) 0 0
\(409\) 27.1216 1.34108 0.670538 0.741875i \(-0.266063\pi\)
0.670538 + 0.741875i \(0.266063\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −12.1652 −0.598608
\(414\) 0 0
\(415\) 43.1216 2.11676
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 25.7477 1.25786 0.628929 0.777462i \(-0.283493\pi\)
0.628929 + 0.777462i \(0.283493\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −15.1652 −0.735618
\(426\) 0 0
\(427\) −1.00000 −0.0483934
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) 0 0
\(433\) 9.74773 0.468446 0.234223 0.972183i \(-0.424745\pi\)
0.234223 + 0.972183i \(0.424745\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.58258 −0.219214
\(438\) 0 0
\(439\) 41.4955 1.98047 0.990235 0.139408i \(-0.0445200\pi\)
0.990235 + 0.139408i \(0.0445200\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.0436 0.667230 0.333615 0.942709i \(-0.391732\pi\)
0.333615 + 0.942709i \(0.391732\pi\)
\(444\) 0 0
\(445\) 22.7477 1.07835
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −25.1216 −1.18556 −0.592781 0.805364i \(-0.701970\pi\)
−0.592781 + 0.805364i \(0.701970\pi\)
\(450\) 0 0
\(451\) 14.3739 0.676839
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.00000 0.140642
\(456\) 0 0
\(457\) −39.8693 −1.86501 −0.932504 0.361160i \(-0.882381\pi\)
−0.932504 + 0.361160i \(0.882381\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.5390 0.537426 0.268713 0.963220i \(-0.413402\pi\)
0.268713 + 0.963220i \(0.413402\pi\)
\(462\) 0 0
\(463\) −34.4955 −1.60314 −0.801570 0.597901i \(-0.796002\pi\)
−0.801570 + 0.597901i \(0.796002\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −34.2867 −1.58660 −0.793301 0.608830i \(-0.791639\pi\)
−0.793301 + 0.608830i \(0.791639\pi\)
\(468\) 0 0
\(469\) −9.37386 −0.432845
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.58258 0.348647
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.6261 −0.576903 −0.288451 0.957495i \(-0.593140\pi\)
−0.288451 + 0.957495i \(0.593140\pi\)
\(480\) 0 0
\(481\) −5.00000 −0.227980
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 21.0000 0.953561
\(486\) 0 0
\(487\) 11.0000 0.498458 0.249229 0.968445i \(-0.419823\pi\)
0.249229 + 0.968445i \(0.419823\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15.1652 0.684394 0.342197 0.939628i \(-0.388829\pi\)
0.342197 + 0.939628i \(0.388829\pi\)
\(492\) 0 0
\(493\) 14.3739 0.647366
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.1652 0.545682
\(498\) 0 0
\(499\) 17.6261 0.789054 0.394527 0.918884i \(-0.370908\pi\)
0.394527 + 0.918884i \(0.370908\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.33030 0.282254 0.141127 0.989991i \(-0.454927\pi\)
0.141127 + 0.989991i \(0.454927\pi\)
\(504\) 0 0
\(505\) −23.2432 −1.03431
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.330303 −0.0146404 −0.00732021 0.999973i \(-0.502330\pi\)
−0.00732021 + 0.999973i \(0.502330\pi\)
\(510\) 0 0
\(511\) 16.3739 0.724337
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 39.0000 1.71855
\(516\) 0 0
\(517\) −40.1216 −1.76455
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.4174 0.587828 0.293914 0.955832i \(-0.405042\pi\)
0.293914 + 0.955832i \(0.405042\pi\)
\(522\) 0 0
\(523\) 0.252273 0.0110311 0.00551556 0.999985i \(-0.498244\pi\)
0.00551556 + 0.999985i \(0.498244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −27.9564 −1.21780
\(528\) 0 0
\(529\) −2.00000 −0.0869565
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.79129 −0.164219
\(534\) 0 0
\(535\) 0.495454 0.0214204
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.79129 0.163302
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 35.2432 1.50965
\(546\) 0 0
\(547\) −12.3739 −0.529068 −0.264534 0.964376i \(-0.585218\pi\)
−0.264534 + 0.964376i \(0.585218\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.79129 −0.161514
\(552\) 0 0
\(553\) −10.0000 −0.425243
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.626136 −0.0265303 −0.0132651 0.999912i \(-0.504223\pi\)
−0.0132651 + 0.999912i \(0.504223\pi\)
\(558\) 0 0
\(559\) −2.00000 −0.0845910
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.1652 0.512700 0.256350 0.966584i \(-0.417480\pi\)
0.256350 + 0.966584i \(0.417480\pi\)
\(564\) 0 0
\(565\) 25.1216 1.05687
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −30.1652 −1.26459 −0.632294 0.774728i \(-0.717887\pi\)
−0.632294 + 0.774728i \(0.717887\pi\)
\(570\) 0 0
\(571\) 32.4955 1.35989 0.679946 0.733262i \(-0.262003\pi\)
0.679946 + 0.733262i \(0.262003\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −18.3303 −0.764426
\(576\) 0 0
\(577\) −23.1216 −0.962564 −0.481282 0.876566i \(-0.659829\pi\)
−0.481282 + 0.876566i \(0.659829\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −14.3739 −0.596328
\(582\) 0 0
\(583\) 31.7477 1.31486
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.16515 0.378286 0.189143 0.981950i \(-0.439429\pi\)
0.189143 + 0.981950i \(0.439429\pi\)
\(588\) 0 0
\(589\) 7.37386 0.303835
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.9129 1.18731 0.593655 0.804720i \(-0.297684\pi\)
0.593655 + 0.804720i \(0.297684\pi\)
\(594\) 0 0
\(595\) 11.3739 0.466283
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.3739 0.832453 0.416227 0.909261i \(-0.363352\pi\)
0.416227 + 0.909261i \(0.363352\pi\)
\(600\) 0 0
\(601\) 11.6261 0.474240 0.237120 0.971480i \(-0.423797\pi\)
0.237120 + 0.971480i \(0.423797\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10.1216 −0.411501
\(606\) 0 0
\(607\) 26.4955 1.07542 0.537709 0.843131i \(-0.319290\pi\)
0.537709 + 0.843131i \(0.319290\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.5826 0.428125
\(612\) 0 0
\(613\) 34.3739 1.38835 0.694174 0.719808i \(-0.255770\pi\)
0.694174 + 0.719808i \(0.255770\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.95644 0.280056 0.140028 0.990148i \(-0.455281\pi\)
0.140028 + 0.990148i \(0.455281\pi\)
\(618\) 0 0
\(619\) 4.37386 0.175800 0.0879002 0.996129i \(-0.471984\pi\)
0.0879002 + 0.996129i \(0.471984\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.58258 −0.303789
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −18.9564 −0.755843
\(630\) 0 0
\(631\) −25.0000 −0.995234 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −20.2432 −0.803326
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.2087 0.798196 0.399098 0.916908i \(-0.369323\pi\)
0.399098 + 0.916908i \(0.369323\pi\)
\(642\) 0 0
\(643\) 23.0000 0.907031 0.453516 0.891248i \(-0.350170\pi\)
0.453516 + 0.891248i \(0.350170\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.4174 0.527493 0.263747 0.964592i \(-0.415042\pi\)
0.263747 + 0.964592i \(0.415042\pi\)
\(648\) 0 0
\(649\) −46.1216 −1.81043
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.4174 −0.759863 −0.379931 0.925015i \(-0.624052\pi\)
−0.379931 + 0.925015i \(0.624052\pi\)
\(654\) 0 0
\(655\) −66.3648 −2.59309
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 36.9564 1.43962 0.719809 0.694172i \(-0.244229\pi\)
0.719809 + 0.694172i \(0.244229\pi\)
\(660\) 0 0
\(661\) −34.0000 −1.32245 −0.661223 0.750189i \(-0.729962\pi\)
−0.661223 + 0.750189i \(0.729962\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) 17.3739 0.672719
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.79129 −0.146361
\(672\) 0 0
\(673\) −17.1216 −0.659989 −0.329994 0.943983i \(-0.607047\pi\)
−0.329994 + 0.943983i \(0.607047\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.9564 0.843855 0.421927 0.906630i \(-0.361354\pi\)
0.421927 + 0.906630i \(0.361354\pi\)
\(678\) 0 0
\(679\) −7.00000 −0.268635
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.1652 1.38382 0.691911 0.721983i \(-0.256769\pi\)
0.691911 + 0.721983i \(0.256769\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8.37386 −0.319019
\(690\) 0 0
\(691\) 48.7477 1.85445 0.927225 0.374504i \(-0.122187\pi\)
0.927225 + 0.374504i \(0.122187\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −29.2432 −1.10926
\(696\) 0 0
\(697\) −14.3739 −0.544449
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −42.3303 −1.59879 −0.799397 0.600804i \(-0.794847\pi\)
−0.799397 + 0.600804i \(0.794847\pi\)
\(702\) 0 0
\(703\) 5.00000 0.188579
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.74773 0.291383
\(708\) 0 0
\(709\) 31.2432 1.17336 0.586681 0.809818i \(-0.300434\pi\)
0.586681 + 0.809818i \(0.300434\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −33.7913 −1.26549
\(714\) 0 0
\(715\) 11.3739 0.425358
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.0000 0.447524 0.223762 0.974644i \(-0.428166\pi\)
0.223762 + 0.974644i \(0.428166\pi\)
\(720\) 0 0
\(721\) −13.0000 −0.484145
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −15.1652 −0.563220
\(726\) 0 0
\(727\) 11.0000 0.407967 0.203984 0.978974i \(-0.434611\pi\)
0.203984 + 0.978974i \(0.434611\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −7.58258 −0.280452
\(732\) 0 0
\(733\) 41.4955 1.53267 0.766335 0.642441i \(-0.222078\pi\)
0.766335 + 0.642441i \(0.222078\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −35.5390 −1.30910
\(738\) 0 0
\(739\) −35.7477 −1.31500 −0.657501 0.753454i \(-0.728386\pi\)
−0.657501 + 0.753454i \(0.728386\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.3303 −0.782533 −0.391266 0.920277i \(-0.627963\pi\)
−0.391266 + 0.920277i \(0.627963\pi\)
\(744\) 0 0
\(745\) 9.00000 0.329734
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.165151 −0.00603450
\(750\) 0 0
\(751\) 11.6261 0.424244 0.212122 0.977243i \(-0.431963\pi\)
0.212122 + 0.977243i \(0.431963\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −40.1216 −1.46017
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 39.3303 1.42572 0.712861 0.701305i \(-0.247399\pi\)
0.712861 + 0.701305i \(0.247399\pi\)
\(762\) 0 0
\(763\) −11.7477 −0.425296
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.1652 0.439258
\(768\) 0 0
\(769\) −13.4955 −0.486659 −0.243329 0.969944i \(-0.578240\pi\)
−0.243329 + 0.969944i \(0.578240\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −16.7477 −0.602374 −0.301187 0.953565i \(-0.597383\pi\)
−0.301187 + 0.953565i \(0.597383\pi\)
\(774\) 0 0
\(775\) 29.4955 1.05951
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.79129 0.135837
\(780\) 0 0
\(781\) 46.1216 1.65036
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 60.3648 2.15451
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.37386 −0.297740
\(792\) 0 0
\(793\) 1.00000 0.0355110
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32.8693 1.16429 0.582145 0.813085i \(-0.302213\pi\)
0.582145 + 0.813085i \(0.302213\pi\)
\(798\) 0 0
\(799\) 40.1216 1.41940
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 62.0780 2.19069
\(804\) 0 0
\(805\) 13.7477 0.484544
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.9129 0.805574 0.402787 0.915294i \(-0.368042\pi\)
0.402787 + 0.915294i \(0.368042\pi\)
\(810\) 0 0
\(811\) −31.4955 −1.10595 −0.552977 0.833196i \(-0.686508\pi\)
−0.552977 + 0.833196i \(0.686508\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.1216 −0.459629
\(816\) 0 0
\(817\) 2.00000 0.0699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42.3303 −1.47734 −0.738669 0.674068i \(-0.764545\pi\)
−0.738669 + 0.674068i \(0.764545\pi\)
\(822\) 0 0
\(823\) −54.2432 −1.89080 −0.945399 0.325915i \(-0.894328\pi\)
−0.945399 + 0.325915i \(0.894328\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −39.6606 −1.37913 −0.689567 0.724222i \(-0.742199\pi\)
−0.689567 + 0.724222i \(0.742199\pi\)
\(828\) 0 0
\(829\) −4.00000 −0.138926 −0.0694629 0.997585i \(-0.522129\pi\)
−0.0694629 + 0.997585i \(0.522129\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.79129 −0.131360
\(834\) 0 0
\(835\) 40.2523 1.39299
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.83485 −0.305013 −0.152506 0.988302i \(-0.548734\pi\)
−0.152506 + 0.988302i \(0.548734\pi\)
\(840\) 0 0
\(841\) −14.6261 −0.504350
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) 3.37386 0.115927
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −22.9129 −0.785443
\(852\) 0 0
\(853\) 9.12159 0.312317 0.156159 0.987732i \(-0.450089\pi\)
0.156159 + 0.987732i \(0.450089\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.7042 0.399807 0.199903 0.979816i \(-0.435937\pi\)
0.199903 + 0.979816i \(0.435937\pi\)
\(858\) 0 0
\(859\) 7.37386 0.251593 0.125796 0.992056i \(-0.459851\pi\)
0.125796 + 0.992056i \(0.459851\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38.7042 1.31751 0.658753 0.752360i \(-0.271084\pi\)
0.658753 + 0.752360i \(0.271084\pi\)
\(864\) 0 0
\(865\) 68.2432 2.32034
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −37.9129 −1.28611
\(870\) 0 0
\(871\) 9.37386 0.317621
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) −38.7477 −1.30842 −0.654209 0.756314i \(-0.726998\pi\)
−0.654209 + 0.756314i \(0.726998\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.37386 −0.0799775 −0.0399887 0.999200i \(-0.512732\pi\)
−0.0399887 + 0.999200i \(0.512732\pi\)
\(882\) 0 0
\(883\) 24.2523 0.816154 0.408077 0.912948i \(-0.366199\pi\)
0.408077 + 0.912948i \(0.366199\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.58258 −0.153868 −0.0769339 0.997036i \(-0.524513\pi\)
−0.0769339 + 0.997036i \(0.524513\pi\)
\(888\) 0 0
\(889\) 6.74773 0.226312
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −10.5826 −0.354132
\(894\) 0 0
\(895\) −47.3739 −1.58353
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −27.9564 −0.932399
\(900\) 0 0
\(901\) −31.7477 −1.05767
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 28.1216 0.934793
\(906\) 0 0
\(907\) 31.2432 1.03741 0.518706 0.854952i \(-0.326414\pi\)
0.518706 + 0.854952i \(0.326414\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.49545 −0.115810 −0.0579048 0.998322i \(-0.518442\pi\)
−0.0579048 + 0.998322i \(0.518442\pi\)
\(912\) 0 0
\(913\) −54.4955 −1.80354
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 22.1216 0.730519
\(918\) 0 0
\(919\) −34.4955 −1.13790 −0.568950 0.822372i \(-0.692650\pi\)
−0.568950 + 0.822372i \(0.692650\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −12.1652 −0.400421
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −47.8693 −1.57054 −0.785271 0.619153i \(-0.787476\pi\)
−0.785271 + 0.619153i \(0.787476\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 43.1216 1.41023
\(936\) 0 0
\(937\) −15.3739 −0.502242 −0.251121 0.967956i \(-0.580799\pi\)
−0.251121 + 0.967956i \(0.580799\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −27.4955 −0.896326 −0.448163 0.893952i \(-0.647922\pi\)
−0.448163 + 0.893952i \(0.647922\pi\)
\(942\) 0 0
\(943\) −17.3739 −0.565771
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 52.6170 1.70982 0.854912 0.518773i \(-0.173611\pi\)
0.854912 + 0.518773i \(0.173611\pi\)
\(948\) 0 0
\(949\) −16.3739 −0.531518
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.4610 −0.695189 −0.347595 0.937645i \(-0.613001\pi\)
−0.347595 + 0.937645i \(0.613001\pi\)
\(954\) 0 0
\(955\) 70.6170 2.28511
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) 23.3739 0.753996
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −22.1216 −0.712119
\(966\) 0 0
\(967\) 12.1216 0.389804 0.194902 0.980823i \(-0.437561\pi\)
0.194902 + 0.980823i \(0.437561\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.0000 −0.481373 −0.240686 0.970603i \(-0.577373\pi\)
−0.240686 + 0.970603i \(0.577373\pi\)
\(972\) 0 0
\(973\) 9.74773 0.312498
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 34.4174 1.10111 0.550555 0.834799i \(-0.314416\pi\)
0.550555 + 0.834799i \(0.314416\pi\)
\(978\) 0 0
\(979\) −28.7477 −0.918781
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.66970 −0.276520 −0.138260 0.990396i \(-0.544151\pi\)
−0.138260 + 0.990396i \(0.544151\pi\)
\(984\) 0 0
\(985\) −7.12159 −0.226913
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.16515 −0.291435
\(990\) 0 0
\(991\) −8.74773 −0.277881 −0.138940 0.990301i \(-0.544370\pi\)
−0.138940 + 0.990301i \(0.544370\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 71.2432 2.25856
\(996\) 0 0
\(997\) −2.87841 −0.0911601 −0.0455801 0.998961i \(-0.514514\pi\)
−0.0455801 + 0.998961i \(0.514514\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.g.1.2 2
3.2 odd 2 532.2.a.c.1.1 2
12.11 even 2 2128.2.a.k.1.2 2
21.20 even 2 3724.2.a.e.1.2 2
24.5 odd 2 8512.2.a.t.1.2 2
24.11 even 2 8512.2.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.a.c.1.1 2 3.2 odd 2
2128.2.a.k.1.2 2 12.11 even 2
3724.2.a.e.1.2 2 21.20 even 2
4788.2.a.g.1.2 2 1.1 even 1 trivial
8512.2.a.m.1.1 2 24.11 even 2
8512.2.a.t.1.2 2 24.5 odd 2