Properties

Label 4788.2.a.g.1.1
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.79129\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{5} +1.00000 q^{7} +O(q^{10})\) \(q-3.00000 q^{5} +1.00000 q^{7} -0.791288 q^{11} -1.00000 q^{13} +0.791288 q^{17} +1.00000 q^{19} +4.58258 q^{23} +4.00000 q^{25} +0.791288 q^{29} -6.37386 q^{31} -3.00000 q^{35} +5.00000 q^{37} -0.791288 q^{41} +2.00000 q^{43} -1.41742 q^{47} +1.00000 q^{49} -5.37386 q^{53} +2.37386 q^{55} +6.16515 q^{59} -1.00000 q^{61} +3.00000 q^{65} +4.37386 q^{67} -6.16515 q^{71} +2.62614 q^{73} -0.791288 q^{77} -10.0000 q^{79} -0.626136 q^{83} -2.37386 q^{85} +1.58258 q^{89} -1.00000 q^{91} -3.00000 q^{95} -7.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{5} + 2 q^{7} + 3 q^{11} - 2 q^{13} - 3 q^{17} + 2 q^{19} + 8 q^{25} - 3 q^{29} + q^{31} - 6 q^{35} + 10 q^{37} + 3 q^{41} + 4 q^{43} - 12 q^{47} + 2 q^{49} + 3 q^{53} - 9 q^{55} - 6 q^{59} - 2 q^{61} + 6 q^{65} - 5 q^{67} + 6 q^{71} + 19 q^{73} + 3 q^{77} - 20 q^{79} - 15 q^{83} + 9 q^{85} - 6 q^{89} - 2 q^{91} - 6 q^{95} - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.791288 −0.238582 −0.119291 0.992859i \(-0.538062\pi\)
−0.119291 + 0.992859i \(0.538062\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.791288 0.191915 0.0959577 0.995385i \(-0.469409\pi\)
0.0959577 + 0.995385i \(0.469409\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.58258 0.955533 0.477767 0.878487i \(-0.341446\pi\)
0.477767 + 0.878487i \(0.341446\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.791288 0.146938 0.0734692 0.997297i \(-0.476593\pi\)
0.0734692 + 0.997297i \(0.476593\pi\)
\(30\) 0 0
\(31\) −6.37386 −1.14478 −0.572390 0.819982i \(-0.693984\pi\)
−0.572390 + 0.819982i \(0.693984\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.791288 −0.123578 −0.0617892 0.998089i \(-0.519681\pi\)
−0.0617892 + 0.998089i \(0.519681\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.41742 −0.206753 −0.103376 0.994642i \(-0.532965\pi\)
−0.103376 + 0.994642i \(0.532965\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.37386 −0.738157 −0.369078 0.929398i \(-0.620327\pi\)
−0.369078 + 0.929398i \(0.620327\pi\)
\(54\) 0 0
\(55\) 2.37386 0.320092
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.16515 0.802634 0.401317 0.915939i \(-0.368553\pi\)
0.401317 + 0.915939i \(0.368553\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) 4.37386 0.534352 0.267176 0.963648i \(-0.413909\pi\)
0.267176 + 0.963648i \(0.413909\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.16515 −0.731669 −0.365834 0.930680i \(-0.619216\pi\)
−0.365834 + 0.930680i \(0.619216\pi\)
\(72\) 0 0
\(73\) 2.62614 0.307366 0.153683 0.988120i \(-0.450887\pi\)
0.153683 + 0.988120i \(0.450887\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.791288 −0.0901756
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.626136 −0.0687274 −0.0343637 0.999409i \(-0.510940\pi\)
−0.0343637 + 0.999409i \(0.510940\pi\)
\(84\) 0 0
\(85\) −2.37386 −0.257482
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.58258 0.167753 0.0838763 0.996476i \(-0.473270\pi\)
0.0838763 + 0.996476i \(0.473270\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.00000 −0.307794
\(96\) 0 0
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −19.7477 −1.96497 −0.982486 0.186336i \(-0.940339\pi\)
−0.982486 + 0.186336i \(0.940339\pi\)
\(102\) 0 0
\(103\) −13.0000 −1.28093 −0.640464 0.767988i \(-0.721258\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.1652 1.75609 0.878046 0.478577i \(-0.158847\pi\)
0.878046 + 0.478577i \(0.158847\pi\)
\(108\) 0 0
\(109\) 15.7477 1.50836 0.754179 0.656668i \(-0.228035\pi\)
0.754179 + 0.656668i \(0.228035\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.37386 0.505531 0.252765 0.967528i \(-0.418660\pi\)
0.252765 + 0.967528i \(0.418660\pi\)
\(114\) 0 0
\(115\) −13.7477 −1.28198
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.791288 0.0725372
\(120\) 0 0
\(121\) −10.3739 −0.943079
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −20.7477 −1.84106 −0.920532 0.390668i \(-0.872244\pi\)
−0.920532 + 0.390668i \(0.872244\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −19.1216 −1.67066 −0.835331 0.549748i \(-0.814724\pi\)
−0.835331 + 0.549748i \(0.814724\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) −17.7477 −1.50534 −0.752671 0.658396i \(-0.771235\pi\)
−0.752671 + 0.658396i \(0.771235\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.791288 0.0661708
\(144\) 0 0
\(145\) −2.37386 −0.197139
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 −0.245770 −0.122885 0.992421i \(-0.539215\pi\)
−0.122885 + 0.992421i \(0.539215\pi\)
\(150\) 0 0
\(151\) −0.373864 −0.0304246 −0.0152123 0.999884i \(-0.504842\pi\)
−0.0152123 + 0.999884i \(0.504842\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 19.1216 1.53588
\(156\) 0 0
\(157\) 21.1216 1.68569 0.842843 0.538159i \(-0.180880\pi\)
0.842843 + 0.538159i \(0.180880\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.58258 0.361158
\(162\) 0 0
\(163\) −9.37386 −0.734218 −0.367109 0.930178i \(-0.619652\pi\)
−0.367109 + 0.930178i \(0.619652\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −22.5826 −1.74749 −0.873746 0.486382i \(-0.838316\pi\)
−0.873746 + 0.486382i \(0.838316\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.74773 0.360963 0.180482 0.983578i \(-0.442234\pi\)
0.180482 + 0.983578i \(0.442234\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.2087 0.837778 0.418889 0.908037i \(-0.362420\pi\)
0.418889 + 0.908037i \(0.362420\pi\)
\(180\) 0 0
\(181\) 4.37386 0.325107 0.162553 0.986700i \(-0.448027\pi\)
0.162553 + 0.986700i \(0.448027\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −15.0000 −1.10282
\(186\) 0 0
\(187\) −0.626136 −0.0457876
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.53901 0.617861 0.308931 0.951085i \(-0.400029\pi\)
0.308931 + 0.951085i \(0.400029\pi\)
\(192\) 0 0
\(193\) −6.37386 −0.458801 −0.229400 0.973332i \(-0.573677\pi\)
−0.229400 + 0.973332i \(0.573677\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.3739 −0.810354 −0.405177 0.914238i \(-0.632790\pi\)
−0.405177 + 0.914238i \(0.632790\pi\)
\(198\) 0 0
\(199\) 3.74773 0.265669 0.132835 0.991138i \(-0.457592\pi\)
0.132835 + 0.991138i \(0.457592\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.791288 0.0555375
\(204\) 0 0
\(205\) 2.37386 0.165798
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.791288 −0.0547345
\(210\) 0 0
\(211\) −10.6261 −0.731533 −0.365767 0.930707i \(-0.619193\pi\)
−0.365767 + 0.930707i \(0.619193\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.00000 −0.409197
\(216\) 0 0
\(217\) −6.37386 −0.432686
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.791288 −0.0532278
\(222\) 0 0
\(223\) 3.74773 0.250966 0.125483 0.992096i \(-0.459952\pi\)
0.125483 + 0.992096i \(0.459952\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.791288 −0.0525196 −0.0262598 0.999655i \(-0.508360\pi\)
−0.0262598 + 0.999655i \(0.508360\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.1216 −0.859624 −0.429812 0.902918i \(-0.641420\pi\)
−0.429812 + 0.902918i \(0.641420\pi\)
\(234\) 0 0
\(235\) 4.25227 0.277388
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −19.7477 −1.27737 −0.638687 0.769467i \(-0.720522\pi\)
−0.638687 + 0.769467i \(0.720522\pi\)
\(240\) 0 0
\(241\) 18.7477 1.20765 0.603824 0.797118i \(-0.293643\pi\)
0.603824 + 0.797118i \(0.293643\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −1.00000 −0.0636285
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.20871 −0.328771 −0.164385 0.986396i \(-0.552564\pi\)
−0.164385 + 0.986396i \(0.552564\pi\)
\(252\) 0 0
\(253\) −3.62614 −0.227973
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.7913 −0.985033 −0.492517 0.870303i \(-0.663923\pi\)
−0.492517 + 0.870303i \(0.663923\pi\)
\(258\) 0 0
\(259\) 5.00000 0.310685
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.20871 −0.136195 −0.0680975 0.997679i \(-0.521693\pi\)
−0.0680975 + 0.997679i \(0.521693\pi\)
\(264\) 0 0
\(265\) 16.1216 0.990341
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.9564 −0.789968 −0.394984 0.918688i \(-0.629250\pi\)
−0.394984 + 0.918688i \(0.629250\pi\)
\(270\) 0 0
\(271\) 27.1216 1.64752 0.823760 0.566939i \(-0.191873\pi\)
0.823760 + 0.566939i \(0.191873\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.16515 −0.190866
\(276\) 0 0
\(277\) 30.7477 1.84745 0.923726 0.383054i \(-0.125128\pi\)
0.923726 + 0.383054i \(0.125128\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −28.5826 −1.70509 −0.852547 0.522651i \(-0.824943\pi\)
−0.852547 + 0.522651i \(0.824943\pi\)
\(282\) 0 0
\(283\) 7.37386 0.438331 0.219165 0.975688i \(-0.429667\pi\)
0.219165 + 0.975688i \(0.429667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.791288 −0.0467082
\(288\) 0 0
\(289\) −16.3739 −0.963168
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.74773 0.452627 0.226314 0.974055i \(-0.427333\pi\)
0.226314 + 0.974055i \(0.427333\pi\)
\(294\) 0 0
\(295\) −18.4955 −1.07685
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.58258 −0.265017
\(300\) 0 0
\(301\) 2.00000 0.115278
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.00000 0.171780
\(306\) 0 0
\(307\) −13.6261 −0.777685 −0.388842 0.921304i \(-0.627125\pi\)
−0.388842 + 0.921304i \(0.627125\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −30.7913 −1.74601 −0.873007 0.487708i \(-0.837833\pi\)
−0.873007 + 0.487708i \(0.837833\pi\)
\(312\) 0 0
\(313\) −14.7477 −0.833591 −0.416795 0.909000i \(-0.636847\pi\)
−0.416795 + 0.909000i \(0.636847\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −33.1652 −1.86274 −0.931370 0.364073i \(-0.881386\pi\)
−0.931370 + 0.364073i \(0.881386\pi\)
\(318\) 0 0
\(319\) −0.626136 −0.0350569
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.791288 0.0440284
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.41742 −0.0781451
\(330\) 0 0
\(331\) 14.6261 0.803925 0.401963 0.915656i \(-0.368328\pi\)
0.401963 + 0.915656i \(0.368328\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.1216 −0.716909
\(336\) 0 0
\(337\) −12.3739 −0.674047 −0.337024 0.941496i \(-0.609420\pi\)
−0.337024 + 0.941496i \(0.609420\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.04356 0.273124
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.79129 0.203527 0.101763 0.994809i \(-0.467552\pi\)
0.101763 + 0.994809i \(0.467552\pi\)
\(348\) 0 0
\(349\) −15.3739 −0.822944 −0.411472 0.911422i \(-0.634985\pi\)
−0.411472 + 0.911422i \(0.634985\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −23.5390 −1.25286 −0.626428 0.779480i \(-0.715484\pi\)
−0.626428 + 0.779480i \(0.715484\pi\)
\(354\) 0 0
\(355\) 18.4955 0.981637
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.3739 0.758624 0.379312 0.925269i \(-0.376161\pi\)
0.379312 + 0.925269i \(0.376161\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.87841 −0.412375
\(366\) 0 0
\(367\) 32.4955 1.69625 0.848124 0.529797i \(-0.177732\pi\)
0.848124 + 0.529797i \(0.177732\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.37386 −0.278997
\(372\) 0 0
\(373\) 2.62614 0.135976 0.0679881 0.997686i \(-0.478342\pi\)
0.0679881 + 0.997686i \(0.478342\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.791288 −0.0407534
\(378\) 0 0
\(379\) −5.74773 −0.295241 −0.147620 0.989044i \(-0.547161\pi\)
−0.147620 + 0.989044i \(0.547161\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −21.0000 −1.07305 −0.536525 0.843884i \(-0.680263\pi\)
−0.536525 + 0.843884i \(0.680263\pi\)
\(384\) 0 0
\(385\) 2.37386 0.120983
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 32.3739 1.64142 0.820710 0.571345i \(-0.193578\pi\)
0.820710 + 0.571345i \(0.193578\pi\)
\(390\) 0 0
\(391\) 3.62614 0.183382
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 30.0000 1.50946
\(396\) 0 0
\(397\) −32.7477 −1.64356 −0.821781 0.569804i \(-0.807019\pi\)
−0.821781 + 0.569804i \(0.807019\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.3739 1.31705 0.658524 0.752560i \(-0.271181\pi\)
0.658524 + 0.752560i \(0.271181\pi\)
\(402\) 0 0
\(403\) 6.37386 0.317505
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.95644 −0.196113
\(408\) 0 0
\(409\) −14.1216 −0.698268 −0.349134 0.937073i \(-0.613524\pi\)
−0.349134 + 0.937073i \(0.613524\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.16515 0.303367
\(414\) 0 0
\(415\) 1.87841 0.0922075
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.74773 −0.0853821 −0.0426910 0.999088i \(-0.513593\pi\)
−0.0426910 + 0.999088i \(0.513593\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.16515 0.153532
\(426\) 0 0
\(427\) −1.00000 −0.0483934
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) 0 0
\(433\) −17.7477 −0.852901 −0.426451 0.904511i \(-0.640236\pi\)
−0.426451 + 0.904511i \(0.640236\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.58258 0.219214
\(438\) 0 0
\(439\) −13.4955 −0.644103 −0.322051 0.946722i \(-0.604372\pi\)
−0.322051 + 0.946722i \(0.604372\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.9564 1.75585 0.877927 0.478795i \(-0.158926\pi\)
0.877927 + 0.478795i \(0.158926\pi\)
\(444\) 0 0
\(445\) −4.74773 −0.225064
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.1216 0.760825 0.380412 0.924817i \(-0.375782\pi\)
0.380412 + 0.924817i \(0.375782\pi\)
\(450\) 0 0
\(451\) 0.626136 0.0294836
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.00000 0.140642
\(456\) 0 0
\(457\) 28.8693 1.35045 0.675225 0.737612i \(-0.264047\pi\)
0.675225 + 0.737612i \(0.264047\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −20.5390 −0.956597 −0.478299 0.878197i \(-0.658746\pi\)
−0.478299 + 0.878197i \(0.658746\pi\)
\(462\) 0 0
\(463\) 20.4955 0.952505 0.476252 0.879309i \(-0.341995\pi\)
0.476252 + 0.879309i \(0.341995\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.2867 1.17013 0.585065 0.810986i \(-0.301069\pi\)
0.585065 + 0.810986i \(0.301069\pi\)
\(468\) 0 0
\(469\) 4.37386 0.201966
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.58258 −0.0727669
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −26.3739 −1.20505 −0.602526 0.798099i \(-0.705839\pi\)
−0.602526 + 0.798099i \(0.705839\pi\)
\(480\) 0 0
\(481\) −5.00000 −0.227980
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 21.0000 0.953561
\(486\) 0 0
\(487\) 11.0000 0.498458 0.249229 0.968445i \(-0.419823\pi\)
0.249229 + 0.968445i \(0.419823\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.16515 −0.142841 −0.0714206 0.997446i \(-0.522753\pi\)
−0.0714206 + 0.997446i \(0.522753\pi\)
\(492\) 0 0
\(493\) 0.626136 0.0281998
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.16515 −0.276545
\(498\) 0 0
\(499\) 31.3739 1.40449 0.702244 0.711937i \(-0.252182\pi\)
0.702244 + 0.711937i \(0.252182\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −30.3303 −1.35236 −0.676181 0.736736i \(-0.736366\pi\)
−0.676181 + 0.736736i \(0.736366\pi\)
\(504\) 0 0
\(505\) 59.2432 2.63629
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 36.3303 1.61031 0.805156 0.593063i \(-0.202081\pi\)
0.805156 + 0.593063i \(0.202081\pi\)
\(510\) 0 0
\(511\) 2.62614 0.116173
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 39.0000 1.71855
\(516\) 0 0
\(517\) 1.12159 0.0493275
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.5826 0.989361 0.494680 0.869075i \(-0.335285\pi\)
0.494680 + 0.869075i \(0.335285\pi\)
\(522\) 0 0
\(523\) 27.7477 1.21332 0.606662 0.794960i \(-0.292508\pi\)
0.606662 + 0.794960i \(0.292508\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.04356 −0.219701
\(528\) 0 0
\(529\) −2.00000 −0.0869565
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.791288 0.0342745
\(534\) 0 0
\(535\) −54.4955 −2.35604
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.791288 −0.0340832
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −47.2432 −2.02368
\(546\) 0 0
\(547\) 1.37386 0.0587422 0.0293711 0.999569i \(-0.490650\pi\)
0.0293711 + 0.999569i \(0.490650\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.791288 0.0337100
\(552\) 0 0
\(553\) −10.0000 −0.425243
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.3739 −0.609040 −0.304520 0.952506i \(-0.598496\pi\)
−0.304520 + 0.952506i \(0.598496\pi\)
\(558\) 0 0
\(559\) −2.00000 −0.0845910
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.16515 −0.259830 −0.129915 0.991525i \(-0.541470\pi\)
−0.129915 + 0.991525i \(0.541470\pi\)
\(564\) 0 0
\(565\) −16.1216 −0.678240
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.8348 −0.496143 −0.248071 0.968742i \(-0.579797\pi\)
−0.248071 + 0.968742i \(0.579797\pi\)
\(570\) 0 0
\(571\) −22.4955 −0.941405 −0.470703 0.882292i \(-0.656000\pi\)
−0.470703 + 0.882292i \(0.656000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.3303 0.764426
\(576\) 0 0
\(577\) 18.1216 0.754412 0.377206 0.926129i \(-0.376885\pi\)
0.377206 + 0.926129i \(0.376885\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.626136 −0.0259765
\(582\) 0 0
\(583\) 4.25227 0.176111
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.16515 −0.378286 −0.189143 0.981950i \(-0.560571\pi\)
−0.189143 + 0.981950i \(0.560571\pi\)
\(588\) 0 0
\(589\) −6.37386 −0.262630
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16.9129 −0.694529 −0.347264 0.937767i \(-0.612889\pi\)
−0.347264 + 0.937767i \(0.612889\pi\)
\(594\) 0 0
\(595\) −2.37386 −0.0973189
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6.62614 0.270737 0.135368 0.990795i \(-0.456778\pi\)
0.135368 + 0.990795i \(0.456778\pi\)
\(600\) 0 0
\(601\) 25.3739 1.03502 0.517511 0.855677i \(-0.326859\pi\)
0.517511 + 0.855677i \(0.326859\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 31.1216 1.26527
\(606\) 0 0
\(607\) −28.4955 −1.15659 −0.578297 0.815826i \(-0.696283\pi\)
−0.578297 + 0.815826i \(0.696283\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.41742 0.0573428
\(612\) 0 0
\(613\) 20.6261 0.833082 0.416541 0.909117i \(-0.363242\pi\)
0.416541 + 0.909117i \(0.363242\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.9564 −0.642382 −0.321191 0.947014i \(-0.604083\pi\)
−0.321191 + 0.947014i \(0.604083\pi\)
\(618\) 0 0
\(619\) −9.37386 −0.376767 −0.188384 0.982096i \(-0.560325\pi\)
−0.188384 + 0.982096i \(0.560325\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.58258 0.0634046
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.95644 0.157754
\(630\) 0 0
\(631\) −25.0000 −0.995234 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 62.2432 2.47005
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.7913 0.979197 0.489598 0.871948i \(-0.337143\pi\)
0.489598 + 0.871948i \(0.337143\pi\)
\(642\) 0 0
\(643\) 23.0000 0.907031 0.453516 0.891248i \(-0.350170\pi\)
0.453516 + 0.891248i \(0.350170\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.5826 0.887813 0.443906 0.896073i \(-0.353592\pi\)
0.443906 + 0.896073i \(0.353592\pi\)
\(648\) 0 0
\(649\) −4.87841 −0.191494
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.5826 −1.11852 −0.559261 0.828991i \(-0.688915\pi\)
−0.559261 + 0.828991i \(0.688915\pi\)
\(654\) 0 0
\(655\) 57.3648 2.24143
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.0436 0.547059 0.273530 0.961864i \(-0.411809\pi\)
0.273530 + 0.961864i \(0.411809\pi\)
\(660\) 0 0
\(661\) −34.0000 −1.32245 −0.661223 0.750189i \(-0.729962\pi\)
−0.661223 + 0.750189i \(0.729962\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) 3.62614 0.140405
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.791288 0.0305473
\(672\) 0 0
\(673\) 24.1216 0.929819 0.464909 0.885358i \(-0.346087\pi\)
0.464909 + 0.885358i \(0.346087\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.956439 −0.0367589 −0.0183795 0.999831i \(-0.505851\pi\)
−0.0183795 + 0.999831i \(0.505851\pi\)
\(678\) 0 0
\(679\) −7.00000 −0.268635
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 17.8348 0.682432 0.341216 0.939985i \(-0.389161\pi\)
0.341216 + 0.939985i \(0.389161\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.37386 0.204728
\(690\) 0 0
\(691\) 21.2523 0.808475 0.404237 0.914654i \(-0.367537\pi\)
0.404237 + 0.914654i \(0.367537\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 53.2432 2.01963
\(696\) 0 0
\(697\) −0.626136 −0.0237166
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −5.66970 −0.214142 −0.107071 0.994251i \(-0.534147\pi\)
−0.107071 + 0.994251i \(0.534147\pi\)
\(702\) 0 0
\(703\) 5.00000 0.188579
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.7477 −0.742690
\(708\) 0 0
\(709\) −51.2432 −1.92448 −0.962239 0.272206i \(-0.912247\pi\)
−0.962239 + 0.272206i \(0.912247\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −29.2087 −1.09387
\(714\) 0 0
\(715\) −2.37386 −0.0887775
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.0000 0.447524 0.223762 0.974644i \(-0.428166\pi\)
0.223762 + 0.974644i \(0.428166\pi\)
\(720\) 0 0
\(721\) −13.0000 −0.484145
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.16515 0.117551
\(726\) 0 0
\(727\) 11.0000 0.407967 0.203984 0.978974i \(-0.434611\pi\)
0.203984 + 0.978974i \(0.434611\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.58258 0.0585337
\(732\) 0 0
\(733\) −13.4955 −0.498466 −0.249233 0.968444i \(-0.580178\pi\)
−0.249233 + 0.968444i \(0.580178\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.46099 −0.127487
\(738\) 0 0
\(739\) −8.25227 −0.303565 −0.151782 0.988414i \(-0.548501\pi\)
−0.151782 + 0.988414i \(0.548501\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.3303 0.562414 0.281207 0.959647i \(-0.409265\pi\)
0.281207 + 0.959647i \(0.409265\pi\)
\(744\) 0 0
\(745\) 9.00000 0.329734
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 18.1652 0.663740
\(750\) 0 0
\(751\) 25.3739 0.925905 0.462953 0.886383i \(-0.346790\pi\)
0.462953 + 0.886383i \(0.346790\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.12159 0.0408189
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.66970 0.0967764 0.0483882 0.998829i \(-0.484592\pi\)
0.0483882 + 0.998829i \(0.484592\pi\)
\(762\) 0 0
\(763\) 15.7477 0.570106
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.16515 −0.222611
\(768\) 0 0
\(769\) 41.4955 1.49636 0.748182 0.663493i \(-0.230927\pi\)
0.748182 + 0.663493i \(0.230927\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.7477 0.386569 0.193284 0.981143i \(-0.438086\pi\)
0.193284 + 0.981143i \(0.438086\pi\)
\(774\) 0 0
\(775\) −25.4955 −0.915824
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.791288 −0.0283508
\(780\) 0 0
\(781\) 4.87841 0.174563
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −63.3648 −2.26159
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.37386 0.191073
\(792\) 0 0
\(793\) 1.00000 0.0355110
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35.8693 −1.27056 −0.635278 0.772283i \(-0.719115\pi\)
−0.635278 + 0.772283i \(0.719115\pi\)
\(798\) 0 0
\(799\) −1.12159 −0.0396790
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.07803 −0.0733321
\(804\) 0 0
\(805\) −13.7477 −0.484544
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.9129 −0.805574 −0.402787 0.915294i \(-0.631958\pi\)
−0.402787 + 0.915294i \(0.631958\pi\)
\(810\) 0 0
\(811\) 23.4955 0.825037 0.412518 0.910949i \(-0.364649\pi\)
0.412518 + 0.910949i \(0.364649\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 28.1216 0.985056
\(816\) 0 0
\(817\) 2.00000 0.0699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.66970 −0.197874 −0.0989369 0.995094i \(-0.531544\pi\)
−0.0989369 + 0.995094i \(0.531544\pi\)
\(822\) 0 0
\(823\) 28.2432 0.984495 0.492248 0.870455i \(-0.336175\pi\)
0.492248 + 0.870455i \(0.336175\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.6606 1.17049 0.585247 0.810855i \(-0.300998\pi\)
0.585247 + 0.810855i \(0.300998\pi\)
\(828\) 0 0
\(829\) −4.00000 −0.138926 −0.0694629 0.997585i \(-0.522129\pi\)
−0.0694629 + 0.997585i \(0.522129\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.791288 0.0274165
\(834\) 0 0
\(835\) 67.7477 2.34451
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −27.1652 −0.937845 −0.468923 0.883239i \(-0.655358\pi\)
−0.468923 + 0.883239i \(0.655358\pi\)
\(840\) 0 0
\(841\) −28.3739 −0.978409
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) −10.3739 −0.356450
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 22.9129 0.785443
\(852\) 0 0
\(853\) −32.1216 −1.09982 −0.549911 0.835223i \(-0.685338\pi\)
−0.549911 + 0.835223i \(0.685338\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −38.7042 −1.32211 −0.661055 0.750338i \(-0.729891\pi\)
−0.661055 + 0.750338i \(0.729891\pi\)
\(858\) 0 0
\(859\) −6.37386 −0.217473 −0.108737 0.994071i \(-0.534681\pi\)
−0.108737 + 0.994071i \(0.534681\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.7042 −0.398414 −0.199207 0.979957i \(-0.563837\pi\)
−0.199207 + 0.979957i \(0.563837\pi\)
\(864\) 0 0
\(865\) −14.2432 −0.484283
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.91288 0.268426
\(870\) 0 0
\(871\) −4.37386 −0.148203
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) −11.2523 −0.379962 −0.189981 0.981788i \(-0.560843\pi\)
−0.189981 + 0.981788i \(0.560843\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 11.3739 0.383195 0.191598 0.981474i \(-0.438633\pi\)
0.191598 + 0.981474i \(0.438633\pi\)
\(882\) 0 0
\(883\) 51.7477 1.74145 0.870725 0.491771i \(-0.163650\pi\)
0.870725 + 0.491771i \(0.163650\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.58258 0.153868 0.0769339 0.997036i \(-0.475487\pi\)
0.0769339 + 0.997036i \(0.475487\pi\)
\(888\) 0 0
\(889\) −20.7477 −0.695856
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.41742 −0.0474323
\(894\) 0 0
\(895\) −33.6261 −1.12400
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.04356 −0.168212
\(900\) 0 0
\(901\) −4.25227 −0.141664
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.1216 −0.436176
\(906\) 0 0
\(907\) −51.2432 −1.70150 −0.850751 0.525569i \(-0.823852\pi\)
−0.850751 + 0.525569i \(0.823852\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51.4955 1.70612 0.853060 0.521812i \(-0.174744\pi\)
0.853060 + 0.521812i \(0.174744\pi\)
\(912\) 0 0
\(913\) 0.495454 0.0163971
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19.1216 −0.631451
\(918\) 0 0
\(919\) 20.4955 0.676083 0.338041 0.941131i \(-0.390236\pi\)
0.338041 + 0.941131i \(0.390236\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.16515 0.202928
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.8693 0.684700 0.342350 0.939572i \(-0.388777\pi\)
0.342350 + 0.939572i \(0.388777\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.87841 0.0614306
\(936\) 0 0
\(937\) −1.62614 −0.0531236 −0.0265618 0.999647i \(-0.508456\pi\)
−0.0265618 + 0.999647i \(0.508456\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.4955 0.896326 0.448163 0.893952i \(-0.352078\pi\)
0.448163 + 0.893952i \(0.352078\pi\)
\(942\) 0 0
\(943\) −3.62614 −0.118083
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −43.6170 −1.41736 −0.708682 0.705528i \(-0.750710\pi\)
−0.708682 + 0.705528i \(0.750710\pi\)
\(948\) 0 0
\(949\) −2.62614 −0.0852480
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −53.5390 −1.73430 −0.867149 0.498048i \(-0.834050\pi\)
−0.867149 + 0.498048i \(0.834050\pi\)
\(954\) 0 0
\(955\) −25.6170 −0.828948
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) 9.62614 0.310521
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.1216 0.615546
\(966\) 0 0
\(967\) −29.1216 −0.936487 −0.468244 0.883599i \(-0.655113\pi\)
−0.468244 + 0.883599i \(0.655113\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.0000 −0.481373 −0.240686 0.970603i \(-0.577373\pi\)
−0.240686 + 0.970603i \(0.577373\pi\)
\(972\) 0 0
\(973\) −17.7477 −0.568966
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 43.5826 1.39433 0.697165 0.716911i \(-0.254444\pi\)
0.697165 + 0.716911i \(0.254444\pi\)
\(978\) 0 0
\(979\) −1.25227 −0.0400228
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −45.3303 −1.44581 −0.722906 0.690946i \(-0.757194\pi\)
−0.722906 + 0.690946i \(0.757194\pi\)
\(984\) 0 0
\(985\) 34.1216 1.08720
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.16515 0.291435
\(990\) 0 0
\(991\) 18.7477 0.595541 0.297771 0.954637i \(-0.403757\pi\)
0.297771 + 0.954637i \(0.403757\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.2432 −0.356433
\(996\) 0 0
\(997\) −44.1216 −1.39734 −0.698672 0.715442i \(-0.746225\pi\)
−0.698672 + 0.715442i \(0.746225\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.g.1.1 2
3.2 odd 2 532.2.a.c.1.2 2
12.11 even 2 2128.2.a.k.1.1 2
21.20 even 2 3724.2.a.e.1.1 2
24.5 odd 2 8512.2.a.t.1.1 2
24.11 even 2 8512.2.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.a.c.1.2 2 3.2 odd 2
2128.2.a.k.1.1 2 12.11 even 2
3724.2.a.e.1.1 2 21.20 even 2
4788.2.a.g.1.1 2 1.1 even 1 trivial
8512.2.a.m.1.2 2 24.11 even 2
8512.2.a.t.1.1 2 24.5 odd 2