Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4788,2,Mod(1,4788)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4788.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4788.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(38.2323724878\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 1596) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 4788.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −1.00000 | −0.377964 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 2.00000 | 0.603023 | 0.301511 | − | 0.953463i | \(-0.402509\pi\) | ||||
0.301511 | + | 0.953463i | \(0.402509\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 6.00000 | 1.66410 | 0.832050 | − | 0.554700i | \(-0.187167\pi\) | ||||
0.832050 | + | 0.554700i | \(0.187167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 8.00000 | 1.94029 | 0.970143 | − | 0.242536i | \(-0.0779791\pi\) | ||||
0.970143 | + | 0.242536i | \(0.0779791\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 1.00000 | 0.229416 | ||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 2.00000 | 0.417029 | 0.208514 | − | 0.978019i | \(-0.433137\pi\) | ||||
0.208514 | + | 0.978019i | \(0.433137\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −5.00000 | −1.00000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −6.00000 | −1.11417 | −0.557086 | − | 0.830455i | \(-0.688081\pi\) | ||||
−0.557086 | + | 0.830455i | \(0.688081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 10.0000 | 1.64399 | 0.821995 | − | 0.569495i | \(-0.192861\pi\) | ||||
0.821995 | + | 0.569495i | \(0.192861\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 8.00000 | 1.24939 | 0.624695 | − | 0.780869i | \(-0.285223\pi\) | ||||
0.624695 | + | 0.780869i | \(0.285223\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −12.0000 | −1.82998 | −0.914991 | − | 0.403473i | \(-0.867803\pi\) | ||||
−0.914991 | + | 0.403473i | \(0.867803\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −4.00000 | −0.583460 | −0.291730 | − | 0.956501i | \(-0.594231\pi\) | ||||
−0.291730 | + | 0.956501i | \(0.594231\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 1.00000 | 0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −2.00000 | −0.274721 | −0.137361 | − | 0.990521i | \(-0.543862\pi\) | ||||
−0.137361 | + | 0.990521i | \(0.543862\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 8.00000 | 1.04151 | 0.520756 | − | 0.853706i | \(-0.325650\pi\) | ||||
0.520756 | + | 0.853706i | \(0.325650\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −12.0000 | −1.46603 | −0.733017 | − | 0.680211i | \(-0.761888\pi\) | ||||
−0.733017 | + | 0.680211i | \(0.761888\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 10.0000 | 1.18678 | 0.593391 | − | 0.804914i | \(-0.297789\pi\) | ||||
0.593391 | + | 0.804914i | \(0.297789\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −2.00000 | −0.234082 | −0.117041 | − | 0.993127i | \(-0.537341\pi\) | ||||
−0.117041 | + | 0.993127i | \(0.537341\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −2.00000 | −0.227921 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 4.00000 | 0.439057 | 0.219529 | − | 0.975606i | \(-0.429548\pi\) | ||||
0.219529 | + | 0.975606i | \(0.429548\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 8.00000 | 0.847998 | 0.423999 | − | 0.905663i | \(-0.360626\pi\) | ||||
0.423999 | + | 0.905663i | \(0.360626\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −6.00000 | −0.628971 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 2.00000 | 0.203069 | 0.101535 | − | 0.994832i | \(-0.467625\pi\) | ||||
0.101535 | + | 0.994832i | \(0.467625\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 4.00000 | 0.398015 | 0.199007 | − | 0.979998i | \(-0.436228\pi\) | ||||
0.199007 | + | 0.979998i | \(0.436228\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −2.00000 | −0.193347 | −0.0966736 | − | 0.995316i | \(-0.530820\pi\) | ||||
−0.0966736 | + | 0.995316i | \(0.530820\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 14.0000 | 1.34096 | 0.670478 | − | 0.741929i | \(-0.266089\pi\) | ||||
0.670478 | + | 0.741929i | \(0.266089\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −10.0000 | −0.940721 | −0.470360 | − | 0.882474i | \(-0.655876\pi\) | ||||
−0.470360 | + | 0.882474i | \(0.655876\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −8.00000 | −0.733359 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −7.00000 | −0.636364 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 16.0000 | 1.41977 | 0.709885 | − | 0.704317i | \(-0.248747\pi\) | ||||
0.709885 | + | 0.704317i | \(0.248747\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 12.0000 | 1.04844 | 0.524222 | − | 0.851581i | \(-0.324356\pi\) | ||||
0.524222 | + | 0.851581i | \(0.324356\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −1.00000 | −0.0867110 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 18.0000 | 1.53784 | 0.768922 | − | 0.639343i | \(-0.220793\pi\) | ||||
0.768922 | + | 0.639343i | \(0.220793\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −4.00000 | −0.339276 | −0.169638 | − | 0.985506i | \(-0.554260\pi\) | ||||
−0.169638 | + | 0.985506i | \(0.554260\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 12.0000 | 1.00349 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 22.0000 | 1.80231 | 0.901155 | − | 0.433497i | \(-0.142720\pi\) | ||||
0.901155 | + | 0.433497i | \(0.142720\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 4.00000 | 0.325515 | 0.162758 | − | 0.986666i | \(-0.447961\pi\) | ||||
0.162758 | + | 0.986666i | \(0.447961\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 6.00000 | 0.478852 | 0.239426 | − | 0.970915i | \(-0.423041\pi\) | ||||
0.239426 | + | 0.970915i | \(0.423041\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −2.00000 | −0.157622 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 8.00000 | 0.626608 | 0.313304 | − | 0.949653i | \(-0.398564\pi\) | ||||
0.313304 | + | 0.949653i | \(0.398564\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 12.0000 | 0.928588 | 0.464294 | − | 0.885681i | \(-0.346308\pi\) | ||||
0.464294 | + | 0.885681i | \(0.346308\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 23.0000 | 1.76923 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 24.0000 | 1.82469 | 0.912343 | − | 0.409426i | \(-0.134271\pi\) | ||||
0.912343 | + | 0.409426i | \(0.134271\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 5.00000 | 0.377964 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 2.00000 | 0.149487 | 0.0747435 | − | 0.997203i | \(-0.476186\pi\) | ||||
0.0747435 | + | 0.997203i | \(0.476186\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −18.0000 | −1.33793 | −0.668965 | − | 0.743294i | \(-0.733262\pi\) | ||||
−0.668965 | + | 0.743294i | \(0.733262\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 16.0000 | 1.17004 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −10.0000 | −0.723575 | −0.361787 | − | 0.932261i | \(-0.617833\pi\) | ||||
−0.361787 | + | 0.932261i | \(0.617833\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 14.0000 | 1.00774 | 0.503871 | − | 0.863779i | \(-0.331909\pi\) | ||||
0.503871 | + | 0.863779i | \(0.331909\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −10.0000 | −0.712470 | −0.356235 | − | 0.934396i | \(-0.615940\pi\) | ||||
−0.356235 | + | 0.934396i | \(0.615940\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 8.00000 | 0.567105 | 0.283552 | − | 0.958957i | \(-0.408487\pi\) | ||||
0.283552 | + | 0.958957i | \(0.408487\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 6.00000 | 0.421117 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 2.00000 | 0.138343 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −8.00000 | −0.550743 | −0.275371 | − | 0.961338i | \(-0.588801\pi\) | ||||
−0.275371 | + | 0.961338i | \(0.588801\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 48.0000 | 3.22883 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −24.0000 | −1.60716 | −0.803579 | − | 0.595198i | \(-0.797074\pi\) | ||||
−0.803579 | + | 0.595198i | \(0.797074\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 16.0000 | 1.06196 | 0.530979 | − | 0.847385i | \(-0.321824\pi\) | ||||
0.530979 | + | 0.847385i | \(0.321824\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 10.0000 | 0.660819 | 0.330409 | − | 0.943838i | \(-0.392813\pi\) | ||||
0.330409 | + | 0.943838i | \(0.392813\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −30.0000 | −1.96537 | −0.982683 | − | 0.185296i | \(-0.940675\pi\) | ||||
−0.982683 | + | 0.185296i | \(0.940675\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −6.00000 | −0.388108 | −0.194054 | − | 0.980991i | \(-0.562164\pi\) | ||||
−0.194054 | + | 0.980991i | \(0.562164\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 10.0000 | 0.644157 | 0.322078 | − | 0.946713i | \(-0.395619\pi\) | ||||
0.322078 | + | 0.946713i | \(0.395619\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 6.00000 | 0.381771 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 4.00000 | 0.251478 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −24.0000 | −1.49708 | −0.748539 | − | 0.663090i | \(-0.769245\pi\) | ||||
−0.748539 | + | 0.663090i | \(0.769245\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −10.0000 | −0.621370 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −6.00000 | −0.369976 | −0.184988 | − | 0.982741i | \(-0.559225\pi\) | ||||
−0.184988 | + | 0.982741i | \(0.559225\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −20.0000 | −1.21942 | −0.609711 | − | 0.792624i | \(-0.708714\pi\) | ||||
−0.609711 | + | 0.792624i | \(0.708714\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.00000 | 0.485965 | 0.242983 | − | 0.970031i | \(-0.421874\pi\) | ||||
0.242983 | + | 0.970031i | \(0.421874\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −10.0000 | −0.603023 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 10.0000 | 0.600842 | 0.300421 | − | 0.953807i | \(-0.402873\pi\) | ||||
0.300421 | + | 0.953807i | \(0.402873\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −22.0000 | −1.31241 | −0.656205 | − | 0.754583i | \(-0.727839\pi\) | ||||
−0.656205 | + | 0.754583i | \(0.727839\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −20.0000 | −1.18888 | −0.594438 | − | 0.804141i | \(-0.702626\pi\) | ||||
−0.594438 | + | 0.804141i | \(0.702626\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −8.00000 | −0.472225 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 47.0000 | 2.76471 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −8.00000 | −0.467365 | −0.233682 | − | 0.972313i | \(-0.575078\pi\) | ||||
−0.233682 | + | 0.972313i | \(0.575078\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 12.0000 | 0.693978 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 12.0000 | 0.691669 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −12.0000 | −0.684876 | −0.342438 | − | 0.939540i | \(-0.611253\pi\) | ||||
−0.342438 | + | 0.939540i | \(0.611253\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −28.0000 | −1.58773 | −0.793867 | − | 0.608091i | \(-0.791935\pi\) | ||||
−0.793867 | + | 0.608091i | \(0.791935\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −6.00000 | −0.339140 | −0.169570 | − | 0.985518i | \(-0.554238\pi\) | ||||
−0.169570 | + | 0.985518i | \(0.554238\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −18.0000 | −1.01098 | −0.505490 | − | 0.862832i | \(-0.668688\pi\) | ||||
−0.505490 | + | 0.862832i | \(0.668688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −12.0000 | −0.671871 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 8.00000 | 0.445132 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −30.0000 | −1.66410 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 4.00000 | 0.220527 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 24.0000 | 1.31916 | 0.659580 | − | 0.751635i | \(-0.270734\pi\) | ||||
0.659580 | + | 0.751635i | \(0.270734\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 2.00000 | 0.108947 | 0.0544735 | − | 0.998515i | \(-0.482652\pi\) | ||||
0.0544735 | + | 0.998515i | \(0.482652\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −1.00000 | −0.0539949 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −10.0000 | −0.536828 | −0.268414 | − | 0.963304i | \(-0.586500\pi\) | ||||
−0.268414 | + | 0.963304i | \(0.586500\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −2.00000 | −0.107058 | −0.0535288 | − | 0.998566i | \(-0.517047\pi\) | ||||
−0.0535288 | + | 0.998566i | \(0.517047\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 24.0000 | 1.27739 | 0.638696 | − | 0.769460i | \(-0.279474\pi\) | ||||
0.638696 | + | 0.769460i | \(0.279474\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 30.0000 | 1.58334 | 0.791670 | − | 0.610949i | \(-0.209212\pi\) | ||||
0.791670 | + | 0.610949i | \(0.209212\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 1.00000 | 0.0526316 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 32.0000 | 1.67039 | 0.835193 | − | 0.549957i | \(-0.185356\pi\) | ||||
0.835193 | + | 0.549957i | \(0.185356\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 2.00000 | 0.103835 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 14.0000 | 0.724893 | 0.362446 | − | 0.932005i | \(-0.381942\pi\) | ||||
0.362446 | + | 0.932005i | \(0.381942\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −36.0000 | −1.85409 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 8.00000 | 0.410932 | 0.205466 | − | 0.978664i | \(-0.434129\pi\) | ||||
0.205466 | + | 0.978664i | \(0.434129\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −8.00000 | −0.408781 | −0.204390 | − | 0.978889i | \(-0.565521\pi\) | ||||
−0.204390 | + | 0.978889i | \(0.565521\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 34.0000 | 1.72387 | 0.861934 | − | 0.507020i | \(-0.169253\pi\) | ||||
0.861934 | + | 0.507020i | \(0.169253\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 16.0000 | 0.809155 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 6.00000 | 0.301131 | 0.150566 | − | 0.988600i | \(-0.451890\pi\) | ||||
0.150566 | + | 0.988600i | \(0.451890\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −6.00000 | −0.299626 | −0.149813 | − | 0.988714i | \(-0.547867\pi\) | ||||
−0.149813 | + | 0.988714i | \(0.547867\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 20.0000 | 0.991363 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −6.00000 | −0.296681 | −0.148340 | − | 0.988936i | \(-0.547393\pi\) | ||||
−0.148340 | + | 0.988936i | \(0.547393\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −8.00000 | −0.393654 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 24.0000 | 1.17248 | 0.586238 | − | 0.810139i | \(-0.300608\pi\) | ||||
0.586238 | + | 0.810139i | \(0.300608\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 10.0000 | 0.487370 | 0.243685 | − | 0.969854i | \(-0.421644\pi\) | ||||
0.243685 | + | 0.969854i | \(0.421644\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −40.0000 | −1.94029 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 10.0000 | 0.483934 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 10.0000 | 0.481683 | 0.240842 | − | 0.970564i | \(-0.422577\pi\) | ||||
0.240842 | + | 0.970564i | \(0.422577\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −18.0000 | −0.865025 | −0.432512 | − | 0.901628i | \(-0.642373\pi\) | ||||
−0.432512 | + | 0.901628i | \(0.642373\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 2.00000 | 0.0956730 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −32.0000 | −1.52728 | −0.763638 | − | 0.645644i | \(-0.776589\pi\) | ||||
−0.763638 | + | 0.645644i | \(0.776589\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −18.0000 | −0.855206 | −0.427603 | − | 0.903967i | \(-0.640642\pi\) | ||||
−0.427603 | + | 0.903967i | \(0.640642\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 30.0000 | 1.41579 | 0.707894 | − | 0.706319i | \(-0.249646\pi\) | ||||
0.707894 | + | 0.706319i | \(0.249646\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 16.0000 | 0.753411 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −22.0000 | −1.02912 | −0.514558 | − | 0.857455i | \(-0.672044\pi\) | ||||
−0.514558 | + | 0.857455i | \(0.672044\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 12.0000 | 0.558896 | 0.279448 | − | 0.960161i | \(-0.409849\pi\) | ||||
0.279448 | + | 0.960161i | \(0.409849\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 36.0000 | 1.67306 | 0.836531 | − | 0.547920i | \(-0.184580\pi\) | ||||
0.836531 | + | 0.547920i | \(0.184580\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 16.0000 | 0.740392 | 0.370196 | − | 0.928954i | \(-0.379291\pi\) | ||||
0.370196 | + | 0.928954i | \(0.379291\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 12.0000 | 0.554109 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −24.0000 | −1.10352 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −5.00000 | −0.229416 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −12.0000 | −0.548294 | −0.274147 | − | 0.961688i | \(-0.588395\pi\) | ||||
−0.274147 | + | 0.961688i | \(0.588395\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 60.0000 | 2.73576 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −28.0000 | −1.26880 | −0.634401 | − | 0.773004i | \(-0.718753\pi\) | ||||
−0.634401 | + | 0.773004i | \(0.718753\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −42.0000 | −1.89543 | −0.947717 | − | 0.319113i | \(-0.896615\pi\) | ||||
−0.947717 | + | 0.319113i | \(0.896615\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −48.0000 | −2.16181 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −10.0000 | −0.448561 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 20.0000 | 0.895323 | 0.447661 | − | 0.894203i | \(-0.352257\pi\) | ||||
0.447661 | + | 0.894203i | \(0.352257\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 8.00000 | 0.356702 | 0.178351 | − | 0.983967i | \(-0.442924\pi\) | ||||
0.178351 | + | 0.983967i | \(0.442924\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −20.0000 | −0.886484 | −0.443242 | − | 0.896402i | \(-0.646172\pi\) | ||||
−0.443242 | + | 0.896402i | \(0.646172\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 2.00000 | 0.0884748 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −8.00000 | −0.351840 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −4.00000 | −0.175243 | −0.0876216 | − | 0.996154i | \(-0.527927\pi\) | ||||
−0.0876216 | + | 0.996154i | \(0.527927\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 28.0000 | 1.22435 | 0.612177 | − | 0.790721i | \(-0.290294\pi\) | ||||
0.612177 | + | 0.790721i | \(0.290294\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −19.0000 | −0.826087 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 48.0000 | 2.07911 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 2.00000 | 0.0861461 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 2.00000 | 0.0859867 | 0.0429934 | − | 0.999075i | \(-0.486311\pi\) | ||||
0.0429934 | + | 0.999075i | \(0.486311\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −28.0000 | −1.19719 | −0.598597 | − | 0.801050i | \(-0.704275\pi\) | ||||
−0.598597 | + | 0.801050i | \(0.704275\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −6.00000 | −0.255609 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 8.00000 | 0.340195 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 14.0000 | 0.593199 | 0.296600 | − | 0.955002i | \(-0.404147\pi\) | ||||
0.296600 | + | 0.955002i | \(0.404147\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −72.0000 | −3.04528 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −24.0000 | −1.01148 | −0.505740 | − | 0.862686i | \(-0.668780\pi\) | ||||
−0.505740 | + | 0.862686i | \(0.668780\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 42.0000 | 1.76073 | 0.880366 | − | 0.474295i | \(-0.157297\pi\) | ||||
0.880366 | + | 0.474295i | \(0.157297\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −40.0000 | −1.67395 | −0.836974 | − | 0.547243i | \(-0.815677\pi\) | ||||
−0.836974 | + | 0.547243i | \(0.815677\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −10.0000 | −0.417029 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −38.0000 | −1.58196 | −0.790980 | − | 0.611842i | \(-0.790429\pi\) | ||||
−0.790980 | + | 0.611842i | \(0.790429\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −4.00000 | −0.165948 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −4.00000 | −0.165663 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 8.00000 | 0.330195 | 0.165098 | − | 0.986277i | \(-0.447206\pi\) | ||||
0.165098 | + | 0.986277i | \(0.447206\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 32.0000 | 1.31408 | 0.657041 | − | 0.753855i | \(-0.271808\pi\) | ||||
0.657041 | + | 0.753855i | \(0.271808\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 34.0000 | 1.38920 | 0.694601 | − | 0.719395i | \(-0.255581\pi\) | ||||
0.694601 | + | 0.719395i | \(0.255581\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 6.00000 | 0.244745 | 0.122373 | − | 0.992484i | \(-0.460950\pi\) | ||||
0.122373 | + | 0.992484i | \(0.460950\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 32.0000 | 1.29884 | 0.649420 | − | 0.760430i | \(-0.275012\pi\) | ||||
0.649420 | + | 0.760430i | \(0.275012\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −24.0000 | −0.970936 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 38.0000 | 1.53481 | 0.767403 | − | 0.641165i | \(-0.221549\pi\) | ||||
0.767403 | + | 0.641165i | \(0.221549\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −6.00000 | −0.241551 | −0.120775 | − | 0.992680i | \(-0.538538\pi\) | ||||
−0.120775 | + | 0.992680i | \(0.538538\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −20.0000 | −0.803868 | −0.401934 | − | 0.915669i | \(-0.631662\pi\) | ||||
−0.401934 | + | 0.915669i | \(0.631662\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −8.00000 | −0.320513 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 25.0000 | 1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 80.0000 | 3.18981 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −4.00000 | −0.159237 | −0.0796187 | − | 0.996825i | \(-0.525370\pi\) | ||||
−0.0796187 | + | 0.996825i | \(0.525370\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 6.00000 | 0.237729 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 26.0000 | 1.02694 | 0.513469 | − | 0.858108i | \(-0.328360\pi\) | ||||
0.513469 | + | 0.858108i | \(0.328360\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −20.0000 | −0.788723 | −0.394362 | − | 0.918955i | \(-0.629034\pi\) | ||||
−0.394362 | + | 0.918955i | \(0.629034\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −36.0000 | −1.41531 | −0.707653 | − | 0.706560i | \(-0.750246\pi\) | ||||
−0.707653 | + | 0.706560i | \(0.750246\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 16.0000 | 0.628055 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 42.0000 | 1.64359 | 0.821794 | − | 0.569785i | \(-0.192974\pi\) | ||||
0.821794 | + | 0.569785i | \(0.192974\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −34.0000 | −1.32445 | −0.662226 | − | 0.749304i | \(-0.730388\pi\) | ||||
−0.662226 | + | 0.749304i | \(0.730388\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 10.0000 | 0.388955 | 0.194477 | − | 0.980907i | \(-0.437699\pi\) | ||||
0.194477 | + | 0.980907i | \(0.437699\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −12.0000 | −0.464642 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −20.0000 | −0.772091 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 14.0000 | 0.539660 | 0.269830 | − | 0.962908i | \(-0.413032\pi\) | ||||
0.269830 | + | 0.962908i | \(0.413032\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −24.0000 | −0.922395 | −0.461197 | − | 0.887298i | \(-0.652580\pi\) | ||||
−0.461197 | + | 0.887298i | \(0.652580\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −2.00000 | −0.0767530 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −6.00000 | −0.229584 | −0.114792 | − | 0.993390i | \(-0.536620\pi\) | ||||
−0.114792 | + | 0.993390i | \(0.536620\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −12.0000 | −0.457164 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −20.0000 | −0.760836 | −0.380418 | − | 0.924815i | \(-0.624220\pi\) | ||||
−0.380418 | + | 0.924815i | \(0.624220\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 64.0000 | 2.42417 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −46.0000 | −1.73740 | −0.868698 | − | 0.495342i | \(-0.835043\pi\) | ||||
−0.868698 | + | 0.495342i | \(0.835043\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 10.0000 | 0.377157 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −4.00000 | −0.150435 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −10.0000 | −0.375558 | −0.187779 | − | 0.982211i | \(-0.560129\pi\) | ||||
−0.187779 | + | 0.982211i | \(0.560129\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 32.0000 | 1.19340 | 0.596699 | − | 0.802465i | \(-0.296479\pi\) | ||||
0.596699 | + | 0.802465i | \(0.296479\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 30.0000 | 1.11417 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 32.0000 | 1.18681 | 0.593407 | − | 0.804902i | \(-0.297782\pi\) | ||||
0.593407 | + | 0.804902i | \(0.297782\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −96.0000 | −3.55069 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −14.0000 | −0.517102 | −0.258551 | − | 0.965998i | \(-0.583245\pi\) | ||||
−0.258551 | + | 0.965998i | \(0.583245\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −24.0000 | −0.884051 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −32.0000 | −1.17714 | −0.588570 | − | 0.808447i | \(-0.700309\pi\) | ||||
−0.588570 | + | 0.808447i | \(0.700309\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −30.0000 | −1.10059 | −0.550297 | − | 0.834969i | \(-0.685485\pi\) | ||||
−0.550297 | + | 0.834969i | \(0.685485\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 2.00000 | 0.0730784 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −44.0000 | −1.60558 | −0.802791 | − | 0.596260i | \(-0.796653\pi\) | ||||
−0.802791 | + | 0.596260i | \(0.796653\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −10.0000 | −0.363456 | −0.181728 | − | 0.983349i | \(-0.558169\pi\) | ||||
−0.181728 | + | 0.983349i | \(0.558169\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 28.0000 | 1.01500 | 0.507500 | − | 0.861652i | \(-0.330570\pi\) | ||||
0.507500 | + | 0.861652i | \(0.330570\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −14.0000 | −0.506834 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 48.0000 | 1.73318 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −6.00000 | −0.216366 | −0.108183 | − | 0.994131i | \(-0.534503\pi\) | ||||
−0.108183 | + | 0.994131i | \(0.534503\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 8.00000 | 0.286630 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 20.0000 | 0.715656 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 28.0000 | 0.998092 | 0.499046 | − | 0.866575i | \(-0.333684\pi\) | ||||
0.499046 | + | 0.866575i | \(0.333684\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 10.0000 | 0.355559 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −60.0000 | −2.13066 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −56.0000 | −1.98362 | −0.991811 | − | 0.127715i | \(-0.959236\pi\) | ||||
−0.991811 | + | 0.127715i | \(0.959236\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −32.0000 | −1.13208 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −4.00000 | −0.141157 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −18.0000 | −0.632846 | −0.316423 | − | 0.948618i | \(-0.602482\pi\) | ||||
−0.316423 | + | 0.948618i | \(0.602482\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −44.0000 | −1.54505 | −0.772524 | − | 0.634985i | \(-0.781006\pi\) | ||||
−0.772524 | + | 0.634985i | \(0.781006\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −12.0000 | −0.419827 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 6.00000 | 0.209401 | 0.104701 | − | 0.994504i | \(-0.466612\pi\) | ||||
0.104701 | + | 0.994504i | \(0.466612\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 28.0000 | 0.976019 | 0.488009 | − | 0.872838i | \(-0.337723\pi\) | ||||
0.488009 | + | 0.872838i | \(0.337723\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −18.0000 | −0.625921 | −0.312961 | − | 0.949766i | \(-0.601321\pi\) | ||||
−0.312961 | + | 0.949766i | \(0.601321\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −34.0000 | −1.18087 | −0.590434 | − | 0.807086i | \(-0.701044\pi\) | ||||
−0.590434 | + | 0.807086i | \(0.701044\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 8.00000 | 0.277184 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −12.0000 | −0.414286 | −0.207143 | − | 0.978311i | \(-0.566417\pi\) | ||||
−0.207143 | + | 0.978311i | \(0.566417\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 7.00000 | 0.240523 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 20.0000 | 0.685591 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 30.0000 | 1.02718 | 0.513590 | − | 0.858036i | \(-0.328315\pi\) | ||||
0.513590 | + | 0.858036i | \(0.328315\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 24.0000 | 0.819824 | 0.409912 | − | 0.912125i | \(-0.365559\pi\) | ||||
0.409912 | + | 0.912125i | \(0.365559\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −20.0000 | −0.682391 | −0.341196 | − | 0.939992i | \(-0.610832\pi\) | ||||
−0.341196 | + | 0.939992i | \(0.610832\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −2.00000 | −0.0680808 | −0.0340404 | − | 0.999420i | \(-0.510837\pi\) | ||||
−0.0340404 | + | 0.999420i | \(0.510837\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −16.0000 | −0.542763 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −72.0000 | −2.43963 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 14.0000 | 0.472746 | 0.236373 | − | 0.971662i | \(-0.424041\pi\) | ||||
0.236373 | + | 0.971662i | \(0.424041\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 36.0000 | 1.21150 | 0.605748 | − | 0.795656i | \(-0.292874\pi\) | ||||
0.605748 | + | 0.795656i | \(0.292874\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −36.0000 | −1.20876 | −0.604381 | − | 0.796696i | \(-0.706579\pi\) | ||||
−0.604381 | + | 0.796696i | \(0.706579\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −16.0000 | −0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −4.00000 | −0.133855 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −16.0000 | −0.533037 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 16.0000 | 0.531271 | 0.265636 | − | 0.964073i | \(-0.414418\pi\) | ||||
0.265636 | + | 0.964073i | \(0.414418\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −54.0000 | −1.78910 | −0.894550 | − | 0.446968i | \(-0.852504\pi\) | ||||
−0.894550 | + | 0.446968i | \(0.852504\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 8.00000 | 0.264761 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −12.0000 | −0.396275 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 16.0000 | 0.527791 | 0.263896 | − | 0.964551i | \(-0.414993\pi\) | ||||
0.263896 | + | 0.964551i | \(0.414993\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 60.0000 | 1.97492 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −50.0000 | −1.64399 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 36.0000 | 1.18112 | 0.590561 | − | 0.806993i | \(-0.298907\pi\) | ||||
0.590561 | + | 0.806993i | \(0.298907\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 1.00000 | 0.0327737 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −22.0000 | −0.718709 | −0.359354 | − | 0.933201i | \(-0.617003\pi\) | ||||
−0.359354 | + | 0.933201i | \(0.617003\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 44.0000 | 1.43436 | 0.717180 | − | 0.696888i | \(-0.245433\pi\) | ||||
0.717180 | + | 0.696888i | \(0.245433\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 16.0000 | 0.521032 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −46.0000 | −1.49480 | −0.747400 | − | 0.664375i | \(-0.768698\pi\) | ||||
−0.747400 | + | 0.664375i | \(0.768698\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −12.0000 | −0.389536 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 54.0000 | 1.74923 | 0.874616 | − | 0.484817i | \(-0.161114\pi\) | ||||
0.874616 | + | 0.484817i | \(0.161114\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −18.0000 | −0.581250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −31.0000 | −1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −36.0000 | −1.15768 | −0.578841 | − | 0.815440i | \(-0.696495\pi\) | ||||
−0.578841 | + | 0.815440i | \(0.696495\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 60.0000 | 1.92549 | 0.962746 | − | 0.270408i | \(-0.0871586\pi\) | ||||
0.962746 | + | 0.270408i | \(0.0871586\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 4.00000 | 0.128234 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −6.00000 | −0.191957 | −0.0959785 | − | 0.995383i | \(-0.530598\pi\) | ||||
−0.0959785 | + | 0.995383i | \(0.530598\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 16.0000 | 0.511362 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −24.0000 | −0.763156 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 4.00000 | 0.127064 | 0.0635321 | − | 0.997980i | \(-0.479763\pi\) | ||||
0.0635321 | + | 0.997980i | \(0.479763\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 14.0000 | 0.443384 | 0.221692 | − | 0.975117i | \(-0.428842\pi\) | ||||
0.221692 | + | 0.975117i | \(0.428842\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 4788.2.a.c.1.1 | 1 | ||
3.2 | odd | 2 | 1596.2.a.a.1.1 | ✓ | 1 | ||
12.11 | even | 2 | 6384.2.a.bd.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1596.2.a.a.1.1 | ✓ | 1 | 3.2 | odd | 2 | ||
4788.2.a.c.1.1 | 1 | 1.1 | even | 1 | trivial | ||
6384.2.a.bd.1.1 | 1 | 12.11 | even | 2 |