Properties

Label 4788.2.a
Level $4788$
Weight $2$
Character orbit 4788.a
Rep. character $\chi_{4788}(1,\cdot)$
Character field $\Q$
Dimension $46$
Newform subspaces $20$
Sturm bound $1920$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(1920\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4788))\).

Total New Old
Modular forms 984 46 938
Cusp forms 937 46 891
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(19\)FrickeDim
\(-\)\(+\)\(+\)\(+\)\(-\)\(6\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(4\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(6\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(7\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(7\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(6\)
Plus space\(+\)\(20\)
Minus space\(-\)\(26\)

Trace form

\( 46 q + 8 q^{5} + O(q^{10}) \) \( 46 q + 8 q^{5} - 4 q^{11} + 42 q^{25} + 16 q^{29} - 24 q^{31} - 4 q^{35} + 4 q^{41} - 4 q^{47} + 46 q^{49} - 12 q^{53} - 28 q^{55} + 12 q^{59} + 4 q^{65} - 8 q^{67} + 28 q^{73} - 8 q^{77} - 4 q^{79} - 32 q^{83} + 44 q^{85} + 60 q^{89} - 20 q^{91} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4788))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 19
4788.2.a.a 4788.a 1.a $1$ $38.232$ \(\Q\) None 1596.2.a.e \(0\) \(0\) \(-2\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}-q^{7}-6q^{11}+2q^{13}+2q^{17}+\cdots\)
4788.2.a.b 4788.a 1.a $1$ $38.232$ \(\Q\) None 1596.2.a.b \(0\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{7}-2q^{11}+2q^{13}-q^{19}-2q^{23}+\cdots\)
4788.2.a.c 4788.a 1.a $1$ $38.232$ \(\Q\) None 1596.2.a.a \(0\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{7}+2q^{11}+6q^{13}+8q^{17}+q^{19}+\cdots\)
4788.2.a.d 4788.a 1.a $1$ $38.232$ \(\Q\) None 1596.2.a.c \(0\) \(0\) \(2\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}-q^{7}+2q^{11}+2q^{13}-2q^{17}+\cdots\)
4788.2.a.e 4788.a 1.a $1$ $38.232$ \(\Q\) None 532.2.a.a \(0\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+q^{7}-4q^{11}+4q^{13}-6q^{17}+\cdots\)
4788.2.a.f 4788.a 1.a $1$ $38.232$ \(\Q\) None 1596.2.a.d \(0\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+q^{7}+2q^{11}-6q^{13}-2q^{17}+\cdots\)
4788.2.a.g 4788.a 1.a $2$ $38.232$ \(\Q(\sqrt{21}) \) None 532.2.a.c \(0\) \(0\) \(-6\) \(2\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{5}+q^{7}+(2-\beta )q^{11}-q^{13}+(-2+\cdots)q^{17}+\cdots\)
4788.2.a.h 4788.a 1.a $2$ $38.232$ \(\Q(\sqrt{2}) \) None 1596.2.a.h \(0\) \(0\) \(0\) \(2\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+q^{7}-2q^{11}-2\beta q^{13}-3\beta q^{17}+\cdots\)
4788.2.a.i 4788.a 1.a $2$ $38.232$ \(\Q(\sqrt{3}) \) None 4788.2.a.i \(0\) \(0\) \(0\) \(2\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{7}-\beta q^{11}-4q^{13}-2\beta q^{17}+q^{19}+\cdots\)
4788.2.a.j 4788.a 1.a $2$ $38.232$ \(\Q(\sqrt{3}) \) None 1596.2.a.i \(0\) \(0\) \(2\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}-q^{7}-2\beta q^{11}-4q^{13}+\cdots\)
4788.2.a.k 4788.a 1.a $2$ $38.232$ \(\Q(\sqrt{7}) \) None 1596.2.a.f \(0\) \(0\) \(2\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}-q^{7}-2\beta q^{11}+(-3+\beta )q^{17}+\cdots\)
4788.2.a.l 4788.a 1.a $2$ $38.232$ \(\Q(\sqrt{5}) \) None 532.2.a.b \(0\) \(0\) \(2\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+q^{7}+(2-5\beta )q^{11}+(1-2\beta )q^{13}+\cdots\)
4788.2.a.m 4788.a 1.a $2$ $38.232$ \(\Q(\sqrt{5}) \) None 1596.2.a.g \(0\) \(0\) \(2\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}+q^{7}+2q^{11}+2\beta q^{13}+\cdots\)
4788.2.a.n 4788.a 1.a $2$ $38.232$ \(\Q(\sqrt{5}) \) None 532.2.a.d \(0\) \(0\) \(4\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+2\beta )q^{5}-q^{7}+(1+\beta )q^{11}+(-3+\cdots)q^{13}+\cdots\)
4788.2.a.o 4788.a 1.a $3$ $38.232$ 3.3.733.1 None 532.2.a.e \(0\) \(0\) \(-2\) \(-3\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1}+\beta _{2})q^{5}-q^{7}+(1+\beta _{2})q^{11}+\cdots\)
4788.2.a.p 4788.a 1.a $3$ $38.232$ 3.3.1016.1 None 1596.2.a.j \(0\) \(0\) \(0\) \(3\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{5}+q^{7}-2q^{11}+(1+\beta _{1})q^{13}+\cdots\)
4788.2.a.q 4788.a 1.a $4$ $38.232$ \(\Q(\sqrt{2}, \sqrt{5})\) None 4788.2.a.q \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}-q^{7}+(-\beta _{1}-\beta _{3})q^{11}+(-1+\cdots)q^{13}+\cdots\)
4788.2.a.r 4788.a 1.a $4$ $38.232$ \(\Q(\sqrt{2}, \sqrt{5})\) None 4788.2.a.r \(0\) \(0\) \(0\) \(4\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}+q^{7}+(-\beta _{1}+\beta _{2})q^{11}+(-3+\cdots)q^{13}+\cdots\)
4788.2.a.s 4788.a 1.a $4$ $38.232$ 4.4.32448.1 None 4788.2.a.s \(0\) \(0\) \(0\) \(4\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}+q^{7}+(\beta _{1}+\beta _{2})q^{11}+(3-\beta _{3})q^{13}+\cdots\)
4788.2.a.t 4788.a 1.a $6$ $38.232$ 6.6.56310016.1 None 4788.2.a.t \(0\) \(0\) \(0\) \(-6\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{4}q^{5}-q^{7}+\beta _{5}q^{11}+(1-\beta _{3})q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4788))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4788)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(228))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(252))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(342))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(399))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(532))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(684))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(798))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1197))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1596))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2394))\)\(^{\oplus 2}\)