Properties

Label 4761.2.a.v.1.1
Level $4761$
Weight $2$
Character 4761.1
Self dual yes
Analytic conductor $38.017$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4761,2,Mod(1,4761)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4761, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4761.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4761 = 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4761.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0167764023\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 4761.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{2} +3.00000 q^{4} -3.23607 q^{5} +1.23607 q^{7} -2.23607 q^{8} +7.23607 q^{10} +4.00000 q^{11} +4.47214 q^{13} -2.76393 q^{14} -1.00000 q^{16} -7.23607 q^{17} -2.76393 q^{19} -9.70820 q^{20} -8.94427 q^{22} +5.47214 q^{25} -10.0000 q^{26} +3.70820 q^{28} +4.47214 q^{29} +2.47214 q^{31} +6.70820 q^{32} +16.1803 q^{34} -4.00000 q^{35} +4.47214 q^{37} +6.18034 q^{38} +7.23607 q^{40} -6.94427 q^{41} -7.70820 q^{43} +12.0000 q^{44} +4.00000 q^{47} -5.47214 q^{49} -12.2361 q^{50} +13.4164 q^{52} -0.763932 q^{53} -12.9443 q^{55} -2.76393 q^{56} -10.0000 q^{58} -12.9443 q^{59} +4.47214 q^{61} -5.52786 q^{62} -13.0000 q^{64} -14.4721 q^{65} -5.23607 q^{67} -21.7082 q^{68} +8.94427 q^{70} +8.00000 q^{71} -10.9443 q^{73} -10.0000 q^{74} -8.29180 q^{76} +4.94427 q^{77} +3.70820 q^{79} +3.23607 q^{80} +15.5279 q^{82} +4.00000 q^{83} +23.4164 q^{85} +17.2361 q^{86} -8.94427 q^{88} +3.23607 q^{89} +5.52786 q^{91} -8.94427 q^{94} +8.94427 q^{95} +0.472136 q^{97} +12.2361 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{4} - 2 q^{5} - 2 q^{7} + 10 q^{10} + 8 q^{11} - 10 q^{14} - 2 q^{16} - 10 q^{17} - 10 q^{19} - 6 q^{20} + 2 q^{25} - 20 q^{26} - 6 q^{28} - 4 q^{31} + 10 q^{34} - 8 q^{35} - 10 q^{38} + 10 q^{40}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.23607 −1.58114 −0.790569 0.612372i \(-0.790215\pi\)
−0.790569 + 0.612372i \(0.790215\pi\)
\(3\) 0 0
\(4\) 3.00000 1.50000
\(5\) −3.23607 −1.44721 −0.723607 0.690212i \(-0.757517\pi\)
−0.723607 + 0.690212i \(0.757517\pi\)
\(6\) 0 0
\(7\) 1.23607 0.467190 0.233595 0.972334i \(-0.424951\pi\)
0.233595 + 0.972334i \(0.424951\pi\)
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) 7.23607 2.28825
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 4.47214 1.24035 0.620174 0.784465i \(-0.287062\pi\)
0.620174 + 0.784465i \(0.287062\pi\)
\(14\) −2.76393 −0.738692
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −7.23607 −1.75500 −0.877502 0.479573i \(-0.840792\pi\)
−0.877502 + 0.479573i \(0.840792\pi\)
\(18\) 0 0
\(19\) −2.76393 −0.634089 −0.317045 0.948411i \(-0.602691\pi\)
−0.317045 + 0.948411i \(0.602691\pi\)
\(20\) −9.70820 −2.17082
\(21\) 0 0
\(22\) −8.94427 −1.90693
\(23\) 0 0
\(24\) 0 0
\(25\) 5.47214 1.09443
\(26\) −10.0000 −1.96116
\(27\) 0 0
\(28\) 3.70820 0.700785
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 0 0
\(31\) 2.47214 0.444009 0.222004 0.975046i \(-0.428740\pi\)
0.222004 + 0.975046i \(0.428740\pi\)
\(32\) 6.70820 1.18585
\(33\) 0 0
\(34\) 16.1803 2.77491
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 4.47214 0.735215 0.367607 0.929981i \(-0.380177\pi\)
0.367607 + 0.929981i \(0.380177\pi\)
\(38\) 6.18034 1.00258
\(39\) 0 0
\(40\) 7.23607 1.14412
\(41\) −6.94427 −1.08451 −0.542257 0.840213i \(-0.682430\pi\)
−0.542257 + 0.840213i \(0.682430\pi\)
\(42\) 0 0
\(43\) −7.70820 −1.17549 −0.587745 0.809046i \(-0.699984\pi\)
−0.587745 + 0.809046i \(0.699984\pi\)
\(44\) 12.0000 1.80907
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) −5.47214 −0.781734
\(50\) −12.2361 −1.73044
\(51\) 0 0
\(52\) 13.4164 1.86052
\(53\) −0.763932 −0.104934 −0.0524671 0.998623i \(-0.516708\pi\)
−0.0524671 + 0.998623i \(0.516708\pi\)
\(54\) 0 0
\(55\) −12.9443 −1.74541
\(56\) −2.76393 −0.369346
\(57\) 0 0
\(58\) −10.0000 −1.31306
\(59\) −12.9443 −1.68520 −0.842600 0.538539i \(-0.818976\pi\)
−0.842600 + 0.538539i \(0.818976\pi\)
\(60\) 0 0
\(61\) 4.47214 0.572598 0.286299 0.958140i \(-0.407575\pi\)
0.286299 + 0.958140i \(0.407575\pi\)
\(62\) −5.52786 −0.702039
\(63\) 0 0
\(64\) −13.0000 −1.62500
\(65\) −14.4721 −1.79505
\(66\) 0 0
\(67\) −5.23607 −0.639688 −0.319844 0.947470i \(-0.603630\pi\)
−0.319844 + 0.947470i \(0.603630\pi\)
\(68\) −21.7082 −2.63251
\(69\) 0 0
\(70\) 8.94427 1.06904
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −10.9443 −1.28093 −0.640465 0.767987i \(-0.721258\pi\)
−0.640465 + 0.767987i \(0.721258\pi\)
\(74\) −10.0000 −1.16248
\(75\) 0 0
\(76\) −8.29180 −0.951134
\(77\) 4.94427 0.563452
\(78\) 0 0
\(79\) 3.70820 0.417206 0.208603 0.978000i \(-0.433108\pi\)
0.208603 + 0.978000i \(0.433108\pi\)
\(80\) 3.23607 0.361803
\(81\) 0 0
\(82\) 15.5279 1.71477
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 23.4164 2.53987
\(86\) 17.2361 1.85861
\(87\) 0 0
\(88\) −8.94427 −0.953463
\(89\) 3.23607 0.343023 0.171511 0.985182i \(-0.445135\pi\)
0.171511 + 0.985182i \(0.445135\pi\)
\(90\) 0 0
\(91\) 5.52786 0.579478
\(92\) 0 0
\(93\) 0 0
\(94\) −8.94427 −0.922531
\(95\) 8.94427 0.917663
\(96\) 0 0
\(97\) 0.472136 0.0479381 0.0239691 0.999713i \(-0.492370\pi\)
0.0239691 + 0.999713i \(0.492370\pi\)
\(98\) 12.2361 1.23603
\(99\) 0 0
\(100\) 16.4164 1.64164
\(101\) −10.9443 −1.08900 −0.544498 0.838762i \(-0.683280\pi\)
−0.544498 + 0.838762i \(0.683280\pi\)
\(102\) 0 0
\(103\) 6.76393 0.666470 0.333235 0.942844i \(-0.391860\pi\)
0.333235 + 0.942844i \(0.391860\pi\)
\(104\) −10.0000 −0.980581
\(105\) 0 0
\(106\) 1.70820 0.165915
\(107\) −0.944272 −0.0912862 −0.0456431 0.998958i \(-0.514534\pi\)
−0.0456431 + 0.998958i \(0.514534\pi\)
\(108\) 0 0
\(109\) −2.94427 −0.282010 −0.141005 0.990009i \(-0.545033\pi\)
−0.141005 + 0.990009i \(0.545033\pi\)
\(110\) 28.9443 2.75973
\(111\) 0 0
\(112\) −1.23607 −0.116797
\(113\) 16.1803 1.52212 0.761059 0.648682i \(-0.224680\pi\)
0.761059 + 0.648682i \(0.224680\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 13.4164 1.24568
\(117\) 0 0
\(118\) 28.9443 2.66454
\(119\) −8.94427 −0.819920
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) 7.41641 0.666013
\(125\) −1.52786 −0.136656
\(126\) 0 0
\(127\) 10.4721 0.929252 0.464626 0.885507i \(-0.346189\pi\)
0.464626 + 0.885507i \(0.346189\pi\)
\(128\) 15.6525 1.38350
\(129\) 0 0
\(130\) 32.3607 2.83822
\(131\) 0.944272 0.0825014 0.0412507 0.999149i \(-0.486866\pi\)
0.0412507 + 0.999149i \(0.486866\pi\)
\(132\) 0 0
\(133\) −3.41641 −0.296240
\(134\) 11.7082 1.01143
\(135\) 0 0
\(136\) 16.1803 1.38745
\(137\) 3.23607 0.276476 0.138238 0.990399i \(-0.455856\pi\)
0.138238 + 0.990399i \(0.455856\pi\)
\(138\) 0 0
\(139\) 8.94427 0.758643 0.379322 0.925265i \(-0.376157\pi\)
0.379322 + 0.925265i \(0.376157\pi\)
\(140\) −12.0000 −1.01419
\(141\) 0 0
\(142\) −17.8885 −1.50117
\(143\) 17.8885 1.49592
\(144\) 0 0
\(145\) −14.4721 −1.20185
\(146\) 24.4721 2.02533
\(147\) 0 0
\(148\) 13.4164 1.10282
\(149\) 1.70820 0.139942 0.0699708 0.997549i \(-0.477709\pi\)
0.0699708 + 0.997549i \(0.477709\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 6.18034 0.501292
\(153\) 0 0
\(154\) −11.0557 −0.890896
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 12.4721 0.995385 0.497692 0.867354i \(-0.334181\pi\)
0.497692 + 0.867354i \(0.334181\pi\)
\(158\) −8.29180 −0.659660
\(159\) 0 0
\(160\) −21.7082 −1.71618
\(161\) 0 0
\(162\) 0 0
\(163\) −19.4164 −1.52081 −0.760405 0.649449i \(-0.775000\pi\)
−0.760405 + 0.649449i \(0.775000\pi\)
\(164\) −20.8328 −1.62677
\(165\) 0 0
\(166\) −8.94427 −0.694210
\(167\) 4.94427 0.382599 0.191300 0.981532i \(-0.438730\pi\)
0.191300 + 0.981532i \(0.438730\pi\)
\(168\) 0 0
\(169\) 7.00000 0.538462
\(170\) −52.3607 −4.01588
\(171\) 0 0
\(172\) −23.1246 −1.76324
\(173\) 4.47214 0.340010 0.170005 0.985443i \(-0.445622\pi\)
0.170005 + 0.985443i \(0.445622\pi\)
\(174\) 0 0
\(175\) 6.76393 0.511305
\(176\) −4.00000 −0.301511
\(177\) 0 0
\(178\) −7.23607 −0.542366
\(179\) −3.05573 −0.228396 −0.114198 0.993458i \(-0.536430\pi\)
−0.114198 + 0.993458i \(0.536430\pi\)
\(180\) 0 0
\(181\) −23.8885 −1.77562 −0.887811 0.460209i \(-0.847775\pi\)
−0.887811 + 0.460209i \(0.847775\pi\)
\(182\) −12.3607 −0.916235
\(183\) 0 0
\(184\) 0 0
\(185\) −14.4721 −1.06401
\(186\) 0 0
\(187\) −28.9443 −2.11661
\(188\) 12.0000 0.875190
\(189\) 0 0
\(190\) −20.0000 −1.45095
\(191\) 10.4721 0.757737 0.378869 0.925450i \(-0.376313\pi\)
0.378869 + 0.925450i \(0.376313\pi\)
\(192\) 0 0
\(193\) −9.41641 −0.677808 −0.338904 0.940821i \(-0.610056\pi\)
−0.338904 + 0.940821i \(0.610056\pi\)
\(194\) −1.05573 −0.0757969
\(195\) 0 0
\(196\) −16.4164 −1.17260
\(197\) 9.41641 0.670891 0.335446 0.942060i \(-0.391113\pi\)
0.335446 + 0.942060i \(0.391113\pi\)
\(198\) 0 0
\(199\) 3.70820 0.262868 0.131434 0.991325i \(-0.458042\pi\)
0.131434 + 0.991325i \(0.458042\pi\)
\(200\) −12.2361 −0.865221
\(201\) 0 0
\(202\) 24.4721 1.72185
\(203\) 5.52786 0.387980
\(204\) 0 0
\(205\) 22.4721 1.56952
\(206\) −15.1246 −1.05378
\(207\) 0 0
\(208\) −4.47214 −0.310087
\(209\) −11.0557 −0.764741
\(210\) 0 0
\(211\) 22.4721 1.54705 0.773523 0.633768i \(-0.218493\pi\)
0.773523 + 0.633768i \(0.218493\pi\)
\(212\) −2.29180 −0.157401
\(213\) 0 0
\(214\) 2.11146 0.144336
\(215\) 24.9443 1.70119
\(216\) 0 0
\(217\) 3.05573 0.207436
\(218\) 6.58359 0.445897
\(219\) 0 0
\(220\) −38.8328 −2.61811
\(221\) −32.3607 −2.17681
\(222\) 0 0
\(223\) 9.88854 0.662186 0.331093 0.943598i \(-0.392583\pi\)
0.331093 + 0.943598i \(0.392583\pi\)
\(224\) 8.29180 0.554019
\(225\) 0 0
\(226\) −36.1803 −2.40668
\(227\) −22.4721 −1.49153 −0.745764 0.666210i \(-0.767915\pi\)
−0.745764 + 0.666210i \(0.767915\pi\)
\(228\) 0 0
\(229\) 14.9443 0.987545 0.493773 0.869591i \(-0.335618\pi\)
0.493773 + 0.869591i \(0.335618\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −10.0000 −0.656532
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) −12.9443 −0.844391
\(236\) −38.8328 −2.52780
\(237\) 0 0
\(238\) 20.0000 1.29641
\(239\) 12.9443 0.837295 0.418648 0.908149i \(-0.362504\pi\)
0.418648 + 0.908149i \(0.362504\pi\)
\(240\) 0 0
\(241\) −28.4721 −1.83405 −0.917026 0.398828i \(-0.869417\pi\)
−0.917026 + 0.398828i \(0.869417\pi\)
\(242\) −11.1803 −0.718699
\(243\) 0 0
\(244\) 13.4164 0.858898
\(245\) 17.7082 1.13134
\(246\) 0 0
\(247\) −12.3607 −0.786491
\(248\) −5.52786 −0.351020
\(249\) 0 0
\(250\) 3.41641 0.216073
\(251\) −1.52786 −0.0964379 −0.0482190 0.998837i \(-0.515355\pi\)
−0.0482190 + 0.998837i \(0.515355\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −23.4164 −1.46928
\(255\) 0 0
\(256\) −9.00000 −0.562500
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) 0 0
\(259\) 5.52786 0.343485
\(260\) −43.4164 −2.69257
\(261\) 0 0
\(262\) −2.11146 −0.130446
\(263\) −2.47214 −0.152438 −0.0762192 0.997091i \(-0.524285\pi\)
−0.0762192 + 0.997091i \(0.524285\pi\)
\(264\) 0 0
\(265\) 2.47214 0.151862
\(266\) 7.63932 0.468397
\(267\) 0 0
\(268\) −15.7082 −0.959531
\(269\) −8.47214 −0.516555 −0.258278 0.966071i \(-0.583155\pi\)
−0.258278 + 0.966071i \(0.583155\pi\)
\(270\) 0 0
\(271\) −26.4721 −1.60807 −0.804034 0.594583i \(-0.797317\pi\)
−0.804034 + 0.594583i \(0.797317\pi\)
\(272\) 7.23607 0.438751
\(273\) 0 0
\(274\) −7.23607 −0.437147
\(275\) 21.8885 1.31993
\(276\) 0 0
\(277\) −19.8885 −1.19499 −0.597493 0.801874i \(-0.703837\pi\)
−0.597493 + 0.801874i \(0.703837\pi\)
\(278\) −20.0000 −1.19952
\(279\) 0 0
\(280\) 8.94427 0.534522
\(281\) −6.65248 −0.396853 −0.198427 0.980116i \(-0.563583\pi\)
−0.198427 + 0.980116i \(0.563583\pi\)
\(282\) 0 0
\(283\) 7.70820 0.458205 0.229103 0.973402i \(-0.426421\pi\)
0.229103 + 0.973402i \(0.426421\pi\)
\(284\) 24.0000 1.42414
\(285\) 0 0
\(286\) −40.0000 −2.36525
\(287\) −8.58359 −0.506673
\(288\) 0 0
\(289\) 35.3607 2.08004
\(290\) 32.3607 1.90028
\(291\) 0 0
\(292\) −32.8328 −1.92140
\(293\) −5.70820 −0.333477 −0.166738 0.986001i \(-0.553324\pi\)
−0.166738 + 0.986001i \(0.553324\pi\)
\(294\) 0 0
\(295\) 41.8885 2.43885
\(296\) −10.0000 −0.581238
\(297\) 0 0
\(298\) −3.81966 −0.221267
\(299\) 0 0
\(300\) 0 0
\(301\) −9.52786 −0.549177
\(302\) 35.7771 2.05874
\(303\) 0 0
\(304\) 2.76393 0.158522
\(305\) −14.4721 −0.828672
\(306\) 0 0
\(307\) −6.47214 −0.369384 −0.184692 0.982796i \(-0.559129\pi\)
−0.184692 + 0.982796i \(0.559129\pi\)
\(308\) 14.8328 0.845178
\(309\) 0 0
\(310\) 17.8885 1.01600
\(311\) −24.9443 −1.41446 −0.707230 0.706984i \(-0.750055\pi\)
−0.707230 + 0.706984i \(0.750055\pi\)
\(312\) 0 0
\(313\) −22.9443 −1.29689 −0.648443 0.761263i \(-0.724580\pi\)
−0.648443 + 0.761263i \(0.724580\pi\)
\(314\) −27.8885 −1.57384
\(315\) 0 0
\(316\) 11.1246 0.625808
\(317\) −29.4164 −1.65219 −0.826095 0.563531i \(-0.809443\pi\)
−0.826095 + 0.563531i \(0.809443\pi\)
\(318\) 0 0
\(319\) 17.8885 1.00157
\(320\) 42.0689 2.35172
\(321\) 0 0
\(322\) 0 0
\(323\) 20.0000 1.11283
\(324\) 0 0
\(325\) 24.4721 1.35747
\(326\) 43.4164 2.40461
\(327\) 0 0
\(328\) 15.5279 0.857383
\(329\) 4.94427 0.272587
\(330\) 0 0
\(331\) −3.41641 −0.187783 −0.0938914 0.995582i \(-0.529931\pi\)
−0.0938914 + 0.995582i \(0.529931\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) −11.0557 −0.604943
\(335\) 16.9443 0.925764
\(336\) 0 0
\(337\) −30.3607 −1.65385 −0.826926 0.562311i \(-0.809912\pi\)
−0.826926 + 0.562311i \(0.809912\pi\)
\(338\) −15.6525 −0.851382
\(339\) 0 0
\(340\) 70.2492 3.80980
\(341\) 9.88854 0.535495
\(342\) 0 0
\(343\) −15.4164 −0.832408
\(344\) 17.2361 0.929307
\(345\) 0 0
\(346\) −10.0000 −0.537603
\(347\) −25.8885 −1.38977 −0.694885 0.719121i \(-0.744545\pi\)
−0.694885 + 0.719121i \(0.744545\pi\)
\(348\) 0 0
\(349\) −32.4721 −1.73819 −0.869097 0.494642i \(-0.835299\pi\)
−0.869097 + 0.494642i \(0.835299\pi\)
\(350\) −15.1246 −0.808445
\(351\) 0 0
\(352\) 26.8328 1.43019
\(353\) −9.41641 −0.501185 −0.250592 0.968093i \(-0.580625\pi\)
−0.250592 + 0.968093i \(0.580625\pi\)
\(354\) 0 0
\(355\) −25.8885 −1.37402
\(356\) 9.70820 0.514534
\(357\) 0 0
\(358\) 6.83282 0.361126
\(359\) −2.47214 −0.130474 −0.0652372 0.997870i \(-0.520780\pi\)
−0.0652372 + 0.997870i \(0.520780\pi\)
\(360\) 0 0
\(361\) −11.3607 −0.597931
\(362\) 53.4164 2.80750
\(363\) 0 0
\(364\) 16.5836 0.869216
\(365\) 35.4164 1.85378
\(366\) 0 0
\(367\) −12.2918 −0.641627 −0.320813 0.947142i \(-0.603956\pi\)
−0.320813 + 0.947142i \(0.603956\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 32.3607 1.68235
\(371\) −0.944272 −0.0490242
\(372\) 0 0
\(373\) −11.5279 −0.596890 −0.298445 0.954427i \(-0.596468\pi\)
−0.298445 + 0.954427i \(0.596468\pi\)
\(374\) 64.7214 3.34666
\(375\) 0 0
\(376\) −8.94427 −0.461266
\(377\) 20.0000 1.03005
\(378\) 0 0
\(379\) 28.0689 1.44180 0.720901 0.693038i \(-0.243728\pi\)
0.720901 + 0.693038i \(0.243728\pi\)
\(380\) 26.8328 1.37649
\(381\) 0 0
\(382\) −23.4164 −1.19809
\(383\) 34.4721 1.76144 0.880722 0.473634i \(-0.157058\pi\)
0.880722 + 0.473634i \(0.157058\pi\)
\(384\) 0 0
\(385\) −16.0000 −0.815436
\(386\) 21.0557 1.07171
\(387\) 0 0
\(388\) 1.41641 0.0719072
\(389\) −10.6525 −0.540102 −0.270051 0.962846i \(-0.587041\pi\)
−0.270051 + 0.962846i \(0.587041\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 12.2361 0.618015
\(393\) 0 0
\(394\) −21.0557 −1.06077
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) −8.29180 −0.415630
\(399\) 0 0
\(400\) −5.47214 −0.273607
\(401\) −38.0689 −1.90107 −0.950535 0.310618i \(-0.899464\pi\)
−0.950535 + 0.310618i \(0.899464\pi\)
\(402\) 0 0
\(403\) 11.0557 0.550725
\(404\) −32.8328 −1.63349
\(405\) 0 0
\(406\) −12.3607 −0.613450
\(407\) 17.8885 0.886702
\(408\) 0 0
\(409\) −9.41641 −0.465611 −0.232806 0.972523i \(-0.574791\pi\)
−0.232806 + 0.972523i \(0.574791\pi\)
\(410\) −50.2492 −2.48163
\(411\) 0 0
\(412\) 20.2918 0.999705
\(413\) −16.0000 −0.787309
\(414\) 0 0
\(415\) −12.9443 −0.635409
\(416\) 30.0000 1.47087
\(417\) 0 0
\(418\) 24.7214 1.20916
\(419\) −21.8885 −1.06933 −0.534663 0.845066i \(-0.679561\pi\)
−0.534663 + 0.845066i \(0.679561\pi\)
\(420\) 0 0
\(421\) 13.0557 0.636297 0.318149 0.948041i \(-0.396939\pi\)
0.318149 + 0.948041i \(0.396939\pi\)
\(422\) −50.2492 −2.44609
\(423\) 0 0
\(424\) 1.70820 0.0829577
\(425\) −39.5967 −1.92072
\(426\) 0 0
\(427\) 5.52786 0.267512
\(428\) −2.83282 −0.136929
\(429\) 0 0
\(430\) −55.7771 −2.68981
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 7.88854 0.379099 0.189550 0.981871i \(-0.439297\pi\)
0.189550 + 0.981871i \(0.439297\pi\)
\(434\) −6.83282 −0.327986
\(435\) 0 0
\(436\) −8.83282 −0.423015
\(437\) 0 0
\(438\) 0 0
\(439\) 25.8885 1.23559 0.617796 0.786338i \(-0.288026\pi\)
0.617796 + 0.786338i \(0.288026\pi\)
\(440\) 28.9443 1.37986
\(441\) 0 0
\(442\) 72.3607 3.44185
\(443\) −18.8328 −0.894774 −0.447387 0.894340i \(-0.647645\pi\)
−0.447387 + 0.894340i \(0.647645\pi\)
\(444\) 0 0
\(445\) −10.4721 −0.496427
\(446\) −22.1115 −1.04701
\(447\) 0 0
\(448\) −16.0689 −0.759183
\(449\) 2.94427 0.138949 0.0694744 0.997584i \(-0.477868\pi\)
0.0694744 + 0.997584i \(0.477868\pi\)
\(450\) 0 0
\(451\) −27.7771 −1.30797
\(452\) 48.5410 2.28318
\(453\) 0 0
\(454\) 50.2492 2.35831
\(455\) −17.8885 −0.838628
\(456\) 0 0
\(457\) 0.472136 0.0220856 0.0110428 0.999939i \(-0.496485\pi\)
0.0110428 + 0.999939i \(0.496485\pi\)
\(458\) −33.4164 −1.56145
\(459\) 0 0
\(460\) 0 0
\(461\) −21.4164 −0.997462 −0.498731 0.866757i \(-0.666200\pi\)
−0.498731 + 0.866757i \(0.666200\pi\)
\(462\) 0 0
\(463\) 4.94427 0.229780 0.114890 0.993378i \(-0.463348\pi\)
0.114890 + 0.993378i \(0.463348\pi\)
\(464\) −4.47214 −0.207614
\(465\) 0 0
\(466\) −31.3050 −1.45017
\(467\) −24.3607 −1.12728 −0.563639 0.826021i \(-0.690599\pi\)
−0.563639 + 0.826021i \(0.690599\pi\)
\(468\) 0 0
\(469\) −6.47214 −0.298855
\(470\) 28.9443 1.33510
\(471\) 0 0
\(472\) 28.9443 1.33227
\(473\) −30.8328 −1.41769
\(474\) 0 0
\(475\) −15.1246 −0.693965
\(476\) −26.8328 −1.22988
\(477\) 0 0
\(478\) −28.9443 −1.32388
\(479\) 1.88854 0.0862898 0.0431449 0.999069i \(-0.486262\pi\)
0.0431449 + 0.999069i \(0.486262\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 63.6656 2.89989
\(483\) 0 0
\(484\) 15.0000 0.681818
\(485\) −1.52786 −0.0693767
\(486\) 0 0
\(487\) 24.0000 1.08754 0.543772 0.839233i \(-0.316996\pi\)
0.543772 + 0.839233i \(0.316996\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) −39.5967 −1.78880
\(491\) −40.0000 −1.80517 −0.902587 0.430507i \(-0.858335\pi\)
−0.902587 + 0.430507i \(0.858335\pi\)
\(492\) 0 0
\(493\) −32.3607 −1.45745
\(494\) 27.6393 1.24355
\(495\) 0 0
\(496\) −2.47214 −0.111002
\(497\) 9.88854 0.443562
\(498\) 0 0
\(499\) 32.3607 1.44866 0.724331 0.689452i \(-0.242149\pi\)
0.724331 + 0.689452i \(0.242149\pi\)
\(500\) −4.58359 −0.204984
\(501\) 0 0
\(502\) 3.41641 0.152482
\(503\) −36.9443 −1.64726 −0.823632 0.567125i \(-0.808056\pi\)
−0.823632 + 0.567125i \(0.808056\pi\)
\(504\) 0 0
\(505\) 35.4164 1.57601
\(506\) 0 0
\(507\) 0 0
\(508\) 31.4164 1.39388
\(509\) 7.52786 0.333667 0.166833 0.985985i \(-0.446646\pi\)
0.166833 + 0.985985i \(0.446646\pi\)
\(510\) 0 0
\(511\) −13.5279 −0.598437
\(512\) −11.1803 −0.494106
\(513\) 0 0
\(514\) −49.1935 −2.16983
\(515\) −21.8885 −0.964524
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) −12.3607 −0.543097
\(519\) 0 0
\(520\) 32.3607 1.41911
\(521\) −28.7639 −1.26017 −0.630085 0.776526i \(-0.716980\pi\)
−0.630085 + 0.776526i \(0.716980\pi\)
\(522\) 0 0
\(523\) 33.5967 1.46908 0.734542 0.678564i \(-0.237397\pi\)
0.734542 + 0.678564i \(0.237397\pi\)
\(524\) 2.83282 0.123752
\(525\) 0 0
\(526\) 5.52786 0.241026
\(527\) −17.8885 −0.779237
\(528\) 0 0
\(529\) 0 0
\(530\) −5.52786 −0.240115
\(531\) 0 0
\(532\) −10.2492 −0.444360
\(533\) −31.0557 −1.34517
\(534\) 0 0
\(535\) 3.05573 0.132111
\(536\) 11.7082 0.505717
\(537\) 0 0
\(538\) 18.9443 0.816746
\(539\) −21.8885 −0.942806
\(540\) 0 0
\(541\) −24.4721 −1.05214 −0.526070 0.850441i \(-0.676335\pi\)
−0.526070 + 0.850441i \(0.676335\pi\)
\(542\) 59.1935 2.54258
\(543\) 0 0
\(544\) −48.5410 −2.08118
\(545\) 9.52786 0.408129
\(546\) 0 0
\(547\) 22.4721 0.960839 0.480420 0.877039i \(-0.340484\pi\)
0.480420 + 0.877039i \(0.340484\pi\)
\(548\) 9.70820 0.414714
\(549\) 0 0
\(550\) −48.9443 −2.08699
\(551\) −12.3607 −0.526583
\(552\) 0 0
\(553\) 4.58359 0.194914
\(554\) 44.4721 1.88944
\(555\) 0 0
\(556\) 26.8328 1.13796
\(557\) −19.8197 −0.839786 −0.419893 0.907574i \(-0.637932\pi\)
−0.419893 + 0.907574i \(0.637932\pi\)
\(558\) 0 0
\(559\) −34.4721 −1.45802
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 14.8754 0.627480
\(563\) 19.4164 0.818304 0.409152 0.912466i \(-0.365825\pi\)
0.409152 + 0.912466i \(0.365825\pi\)
\(564\) 0 0
\(565\) −52.3607 −2.20283
\(566\) −17.2361 −0.724486
\(567\) 0 0
\(568\) −17.8885 −0.750587
\(569\) −15.2361 −0.638729 −0.319365 0.947632i \(-0.603469\pi\)
−0.319365 + 0.947632i \(0.603469\pi\)
\(570\) 0 0
\(571\) −16.2918 −0.681790 −0.340895 0.940101i \(-0.610730\pi\)
−0.340895 + 0.940101i \(0.610730\pi\)
\(572\) 53.6656 2.24387
\(573\) 0 0
\(574\) 19.1935 0.801121
\(575\) 0 0
\(576\) 0 0
\(577\) 16.4721 0.685744 0.342872 0.939382i \(-0.388600\pi\)
0.342872 + 0.939382i \(0.388600\pi\)
\(578\) −79.0689 −3.28883
\(579\) 0 0
\(580\) −43.4164 −1.80277
\(581\) 4.94427 0.205123
\(582\) 0 0
\(583\) −3.05573 −0.126555
\(584\) 24.4721 1.01266
\(585\) 0 0
\(586\) 12.7639 0.527273
\(587\) −16.9443 −0.699365 −0.349682 0.936868i \(-0.613711\pi\)
−0.349682 + 0.936868i \(0.613711\pi\)
\(588\) 0 0
\(589\) −6.83282 −0.281541
\(590\) −93.6656 −3.85615
\(591\) 0 0
\(592\) −4.47214 −0.183804
\(593\) −34.0000 −1.39621 −0.698106 0.715994i \(-0.745974\pi\)
−0.698106 + 0.715994i \(0.745974\pi\)
\(594\) 0 0
\(595\) 28.9443 1.18660
\(596\) 5.12461 0.209912
\(597\) 0 0
\(598\) 0 0
\(599\) 20.9443 0.855760 0.427880 0.903836i \(-0.359261\pi\)
0.427880 + 0.903836i \(0.359261\pi\)
\(600\) 0 0
\(601\) 2.36068 0.0962941 0.0481471 0.998840i \(-0.484668\pi\)
0.0481471 + 0.998840i \(0.484668\pi\)
\(602\) 21.3050 0.868325
\(603\) 0 0
\(604\) −48.0000 −1.95309
\(605\) −16.1803 −0.657824
\(606\) 0 0
\(607\) 38.8328 1.57618 0.788088 0.615563i \(-0.211071\pi\)
0.788088 + 0.615563i \(0.211071\pi\)
\(608\) −18.5410 −0.751938
\(609\) 0 0
\(610\) 32.3607 1.31025
\(611\) 17.8885 0.723693
\(612\) 0 0
\(613\) 31.5279 1.27340 0.636699 0.771112i \(-0.280299\pi\)
0.636699 + 0.771112i \(0.280299\pi\)
\(614\) 14.4721 0.584048
\(615\) 0 0
\(616\) −11.0557 −0.445448
\(617\) −33.7082 −1.35704 −0.678521 0.734581i \(-0.737379\pi\)
−0.678521 + 0.734581i \(0.737379\pi\)
\(618\) 0 0
\(619\) −31.1246 −1.25100 −0.625502 0.780223i \(-0.715106\pi\)
−0.625502 + 0.780223i \(0.715106\pi\)
\(620\) −24.0000 −0.963863
\(621\) 0 0
\(622\) 55.7771 2.23646
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) −22.4164 −0.896656
\(626\) 51.3050 2.05056
\(627\) 0 0
\(628\) 37.4164 1.49308
\(629\) −32.3607 −1.29030
\(630\) 0 0
\(631\) −6.18034 −0.246035 −0.123018 0.992404i \(-0.539257\pi\)
−0.123018 + 0.992404i \(0.539257\pi\)
\(632\) −8.29180 −0.329830
\(633\) 0 0
\(634\) 65.7771 2.61234
\(635\) −33.8885 −1.34483
\(636\) 0 0
\(637\) −24.4721 −0.969621
\(638\) −40.0000 −1.58362
\(639\) 0 0
\(640\) −50.6525 −2.00221
\(641\) −27.0132 −1.06696 −0.533478 0.845814i \(-0.679115\pi\)
−0.533478 + 0.845814i \(0.679115\pi\)
\(642\) 0 0
\(643\) 20.0689 0.791440 0.395720 0.918371i \(-0.370495\pi\)
0.395720 + 0.918371i \(0.370495\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −44.7214 −1.75954
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) −51.7771 −2.03243
\(650\) −54.7214 −2.14635
\(651\) 0 0
\(652\) −58.2492 −2.28122
\(653\) 5.05573 0.197846 0.0989230 0.995095i \(-0.468460\pi\)
0.0989230 + 0.995095i \(0.468460\pi\)
\(654\) 0 0
\(655\) −3.05573 −0.119397
\(656\) 6.94427 0.271128
\(657\) 0 0
\(658\) −11.0557 −0.430997
\(659\) −8.36068 −0.325686 −0.162843 0.986652i \(-0.552066\pi\)
−0.162843 + 0.986652i \(0.552066\pi\)
\(660\) 0 0
\(661\) 20.4721 0.796274 0.398137 0.917326i \(-0.369657\pi\)
0.398137 + 0.917326i \(0.369657\pi\)
\(662\) 7.63932 0.296911
\(663\) 0 0
\(664\) −8.94427 −0.347105
\(665\) 11.0557 0.428723
\(666\) 0 0
\(667\) 0 0
\(668\) 14.8328 0.573899
\(669\) 0 0
\(670\) −37.8885 −1.46376
\(671\) 17.8885 0.690580
\(672\) 0 0
\(673\) 29.4164 1.13392 0.566960 0.823746i \(-0.308120\pi\)
0.566960 + 0.823746i \(0.308120\pi\)
\(674\) 67.8885 2.61497
\(675\) 0 0
\(676\) 21.0000 0.807692
\(677\) 37.4853 1.44068 0.720338 0.693623i \(-0.243987\pi\)
0.720338 + 0.693623i \(0.243987\pi\)
\(678\) 0 0
\(679\) 0.583592 0.0223962
\(680\) −52.3607 −2.00794
\(681\) 0 0
\(682\) −22.1115 −0.846691
\(683\) 20.0000 0.765279 0.382639 0.923898i \(-0.375015\pi\)
0.382639 + 0.923898i \(0.375015\pi\)
\(684\) 0 0
\(685\) −10.4721 −0.400120
\(686\) 34.4721 1.31615
\(687\) 0 0
\(688\) 7.70820 0.293873
\(689\) −3.41641 −0.130155
\(690\) 0 0
\(691\) −40.3607 −1.53539 −0.767696 0.640814i \(-0.778597\pi\)
−0.767696 + 0.640814i \(0.778597\pi\)
\(692\) 13.4164 0.510015
\(693\) 0 0
\(694\) 57.8885 2.19742
\(695\) −28.9443 −1.09792
\(696\) 0 0
\(697\) 50.2492 1.90333
\(698\) 72.6099 2.74833
\(699\) 0 0
\(700\) 20.2918 0.766958
\(701\) 20.7639 0.784243 0.392121 0.919913i \(-0.371741\pi\)
0.392121 + 0.919913i \(0.371741\pi\)
\(702\) 0 0
\(703\) −12.3607 −0.466192
\(704\) −52.0000 −1.95982
\(705\) 0 0
\(706\) 21.0557 0.792443
\(707\) −13.5279 −0.508768
\(708\) 0 0
\(709\) −20.8328 −0.782393 −0.391196 0.920307i \(-0.627939\pi\)
−0.391196 + 0.920307i \(0.627939\pi\)
\(710\) 57.8885 2.17252
\(711\) 0 0
\(712\) −7.23607 −0.271183
\(713\) 0 0
\(714\) 0 0
\(715\) −57.8885 −2.16491
\(716\) −9.16718 −0.342594
\(717\) 0 0
\(718\) 5.52786 0.206298
\(719\) −4.00000 −0.149175 −0.0745874 0.997214i \(-0.523764\pi\)
−0.0745874 + 0.997214i \(0.523764\pi\)
\(720\) 0 0
\(721\) 8.36068 0.311368
\(722\) 25.4033 0.945411
\(723\) 0 0
\(724\) −71.6656 −2.66343
\(725\) 24.4721 0.908872
\(726\) 0 0
\(727\) −32.6525 −1.21101 −0.605507 0.795840i \(-0.707029\pi\)
−0.605507 + 0.795840i \(0.707029\pi\)
\(728\) −12.3607 −0.458117
\(729\) 0 0
\(730\) −79.1935 −2.93108
\(731\) 55.7771 2.06299
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 27.4853 1.01450
\(735\) 0 0
\(736\) 0 0
\(737\) −20.9443 −0.771492
\(738\) 0 0
\(739\) 26.8328 0.987061 0.493531 0.869728i \(-0.335706\pi\)
0.493531 + 0.869728i \(0.335706\pi\)
\(740\) −43.4164 −1.59602
\(741\) 0 0
\(742\) 2.11146 0.0775140
\(743\) 20.3607 0.746961 0.373480 0.927638i \(-0.378164\pi\)
0.373480 + 0.927638i \(0.378164\pi\)
\(744\) 0 0
\(745\) −5.52786 −0.202525
\(746\) 25.7771 0.943766
\(747\) 0 0
\(748\) −86.8328 −3.17492
\(749\) −1.16718 −0.0426480
\(750\) 0 0
\(751\) 8.06888 0.294438 0.147219 0.989104i \(-0.452968\pi\)
0.147219 + 0.989104i \(0.452968\pi\)
\(752\) −4.00000 −0.145865
\(753\) 0 0
\(754\) −44.7214 −1.62866
\(755\) 51.7771 1.88436
\(756\) 0 0
\(757\) −4.11146 −0.149433 −0.0747167 0.997205i \(-0.523805\pi\)
−0.0747167 + 0.997205i \(0.523805\pi\)
\(758\) −62.7639 −2.27969
\(759\) 0 0
\(760\) −20.0000 −0.725476
\(761\) 2.36068 0.0855746 0.0427873 0.999084i \(-0.486376\pi\)
0.0427873 + 0.999084i \(0.486376\pi\)
\(762\) 0 0
\(763\) −3.63932 −0.131752
\(764\) 31.4164 1.13661
\(765\) 0 0
\(766\) −77.0820 −2.78509
\(767\) −57.8885 −2.09023
\(768\) 0 0
\(769\) 36.8328 1.32823 0.664113 0.747633i \(-0.268810\pi\)
0.664113 + 0.747633i \(0.268810\pi\)
\(770\) 35.7771 1.28932
\(771\) 0 0
\(772\) −28.2492 −1.01671
\(773\) 49.7082 1.78788 0.893940 0.448187i \(-0.147930\pi\)
0.893940 + 0.448187i \(0.147930\pi\)
\(774\) 0 0
\(775\) 13.5279 0.485935
\(776\) −1.05573 −0.0378984
\(777\) 0 0
\(778\) 23.8197 0.853976
\(779\) 19.1935 0.687678
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 5.47214 0.195433
\(785\) −40.3607 −1.44053
\(786\) 0 0
\(787\) 0.291796 0.0104014 0.00520070 0.999986i \(-0.498345\pi\)
0.00520070 + 0.999986i \(0.498345\pi\)
\(788\) 28.2492 1.00634
\(789\) 0 0
\(790\) 26.8328 0.954669
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) 4.47214 0.158710
\(795\) 0 0
\(796\) 11.1246 0.394301
\(797\) −18.6525 −0.660705 −0.330352 0.943858i \(-0.607168\pi\)
−0.330352 + 0.943858i \(0.607168\pi\)
\(798\) 0 0
\(799\) −28.9443 −1.02397
\(800\) 36.7082 1.29783
\(801\) 0 0
\(802\) 85.1246 3.00585
\(803\) −43.7771 −1.54486
\(804\) 0 0
\(805\) 0 0
\(806\) −24.7214 −0.870773
\(807\) 0 0
\(808\) 24.4721 0.860927
\(809\) −19.3050 −0.678726 −0.339363 0.940655i \(-0.610211\pi\)
−0.339363 + 0.940655i \(0.610211\pi\)
\(810\) 0 0
\(811\) 3.41641 0.119966 0.0599832 0.998199i \(-0.480895\pi\)
0.0599832 + 0.998199i \(0.480895\pi\)
\(812\) 16.5836 0.581970
\(813\) 0 0
\(814\) −40.0000 −1.40200
\(815\) 62.8328 2.20094
\(816\) 0 0
\(817\) 21.3050 0.745366
\(818\) 21.0557 0.736196
\(819\) 0 0
\(820\) 67.4164 2.35428
\(821\) −47.8885 −1.67132 −0.835661 0.549246i \(-0.814915\pi\)
−0.835661 + 0.549246i \(0.814915\pi\)
\(822\) 0 0
\(823\) −34.4721 −1.20162 −0.600812 0.799391i \(-0.705156\pi\)
−0.600812 + 0.799391i \(0.705156\pi\)
\(824\) −15.1246 −0.526891
\(825\) 0 0
\(826\) 35.7771 1.24484
\(827\) 35.4164 1.23155 0.615775 0.787922i \(-0.288843\pi\)
0.615775 + 0.787922i \(0.288843\pi\)
\(828\) 0 0
\(829\) −34.3607 −1.19340 −0.596698 0.802466i \(-0.703521\pi\)
−0.596698 + 0.802466i \(0.703521\pi\)
\(830\) 28.9443 1.00467
\(831\) 0 0
\(832\) −58.1378 −2.01556
\(833\) 39.5967 1.37195
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) −33.1672 −1.14711
\(837\) 0 0
\(838\) 48.9443 1.69075
\(839\) −39.4164 −1.36081 −0.680403 0.732838i \(-0.738195\pi\)
−0.680403 + 0.732838i \(0.738195\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) −29.1935 −1.00607
\(843\) 0 0
\(844\) 67.4164 2.32057
\(845\) −22.6525 −0.779269
\(846\) 0 0
\(847\) 6.18034 0.212359
\(848\) 0.763932 0.0262335
\(849\) 0 0
\(850\) 88.5410 3.03693
\(851\) 0 0
\(852\) 0 0
\(853\) 22.0000 0.753266 0.376633 0.926363i \(-0.377082\pi\)
0.376633 + 0.926363i \(0.377082\pi\)
\(854\) −12.3607 −0.422974
\(855\) 0 0
\(856\) 2.11146 0.0721681
\(857\) 25.0557 0.855887 0.427944 0.903805i \(-0.359238\pi\)
0.427944 + 0.903805i \(0.359238\pi\)
\(858\) 0 0
\(859\) −24.9443 −0.851088 −0.425544 0.904938i \(-0.639917\pi\)
−0.425544 + 0.904938i \(0.639917\pi\)
\(860\) 74.8328 2.55178
\(861\) 0 0
\(862\) −17.8885 −0.609286
\(863\) 4.00000 0.136162 0.0680808 0.997680i \(-0.478312\pi\)
0.0680808 + 0.997680i \(0.478312\pi\)
\(864\) 0 0
\(865\) −14.4721 −0.492067
\(866\) −17.6393 −0.599409
\(867\) 0 0
\(868\) 9.16718 0.311155
\(869\) 14.8328 0.503169
\(870\) 0 0
\(871\) −23.4164 −0.793435
\(872\) 6.58359 0.222949
\(873\) 0 0
\(874\) 0 0
\(875\) −1.88854 −0.0638444
\(876\) 0 0
\(877\) 50.9443 1.72027 0.860133 0.510070i \(-0.170381\pi\)
0.860133 + 0.510070i \(0.170381\pi\)
\(878\) −57.8885 −1.95364
\(879\) 0 0
\(880\) 12.9443 0.436351
\(881\) −40.5410 −1.36586 −0.682931 0.730483i \(-0.739295\pi\)
−0.682931 + 0.730483i \(0.739295\pi\)
\(882\) 0 0
\(883\) 19.4164 0.653414 0.326707 0.945126i \(-0.394061\pi\)
0.326707 + 0.945126i \(0.394061\pi\)
\(884\) −97.0820 −3.26522
\(885\) 0 0
\(886\) 42.1115 1.41476
\(887\) −48.9443 −1.64339 −0.821694 0.569929i \(-0.806971\pi\)
−0.821694 + 0.569929i \(0.806971\pi\)
\(888\) 0 0
\(889\) 12.9443 0.434137
\(890\) 23.4164 0.784920
\(891\) 0 0
\(892\) 29.6656 0.993279
\(893\) −11.0557 −0.369966
\(894\) 0 0
\(895\) 9.88854 0.330538
\(896\) 19.3475 0.646355
\(897\) 0 0
\(898\) −6.58359 −0.219697
\(899\) 11.0557 0.368729
\(900\) 0 0
\(901\) 5.52786 0.184160
\(902\) 62.1115 2.06809
\(903\) 0 0
\(904\) −36.1803 −1.20334
\(905\) 77.3050 2.56970
\(906\) 0 0
\(907\) −39.1246 −1.29911 −0.649556 0.760314i \(-0.725045\pi\)
−0.649556 + 0.760314i \(0.725045\pi\)
\(908\) −67.4164 −2.23729
\(909\) 0 0
\(910\) 40.0000 1.32599
\(911\) 48.7214 1.61421 0.807105 0.590407i \(-0.201033\pi\)
0.807105 + 0.590407i \(0.201033\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) −1.05573 −0.0349204
\(915\) 0 0
\(916\) 44.8328 1.48132
\(917\) 1.16718 0.0385438
\(918\) 0 0
\(919\) −53.0132 −1.74874 −0.874371 0.485257i \(-0.838726\pi\)
−0.874371 + 0.485257i \(0.838726\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 47.8885 1.57713
\(923\) 35.7771 1.17762
\(924\) 0 0
\(925\) 24.4721 0.804639
\(926\) −11.0557 −0.363314
\(927\) 0 0
\(928\) 30.0000 0.984798
\(929\) −24.8328 −0.814738 −0.407369 0.913264i \(-0.633554\pi\)
−0.407369 + 0.913264i \(0.633554\pi\)
\(930\) 0 0
\(931\) 15.1246 0.495689
\(932\) 42.0000 1.37576
\(933\) 0 0
\(934\) 54.4721 1.78238
\(935\) 93.6656 3.06319
\(936\) 0 0
\(937\) −40.8328 −1.33395 −0.666975 0.745080i \(-0.732411\pi\)
−0.666975 + 0.745080i \(0.732411\pi\)
\(938\) 14.4721 0.472532
\(939\) 0 0
\(940\) −38.8328 −1.26659
\(941\) 24.5410 0.800014 0.400007 0.916512i \(-0.369008\pi\)
0.400007 + 0.916512i \(0.369008\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 12.9443 0.421300
\(945\) 0 0
\(946\) 68.9443 2.24157
\(947\) 54.8328 1.78183 0.890914 0.454173i \(-0.150065\pi\)
0.890914 + 0.454173i \(0.150065\pi\)
\(948\) 0 0
\(949\) −48.9443 −1.58880
\(950\) 33.8197 1.09725
\(951\) 0 0
\(952\) 20.0000 0.648204
\(953\) −46.0689 −1.49232 −0.746159 0.665768i \(-0.768104\pi\)
−0.746159 + 0.665768i \(0.768104\pi\)
\(954\) 0 0
\(955\) −33.8885 −1.09661
\(956\) 38.8328 1.25594
\(957\) 0 0
\(958\) −4.22291 −0.136436
\(959\) 4.00000 0.129167
\(960\) 0 0
\(961\) −24.8885 −0.802856
\(962\) −44.7214 −1.44187
\(963\) 0 0
\(964\) −85.4164 −2.75108
\(965\) 30.4721 0.980933
\(966\) 0 0
\(967\) −52.3607 −1.68381 −0.841903 0.539629i \(-0.818565\pi\)
−0.841903 + 0.539629i \(0.818565\pi\)
\(968\) −11.1803 −0.359350
\(969\) 0 0
\(970\) 3.41641 0.109694
\(971\) −45.3050 −1.45391 −0.726953 0.686688i \(-0.759064\pi\)
−0.726953 + 0.686688i \(0.759064\pi\)
\(972\) 0 0
\(973\) 11.0557 0.354430
\(974\) −53.6656 −1.71956
\(975\) 0 0
\(976\) −4.47214 −0.143150
\(977\) 26.0689 0.834017 0.417009 0.908902i \(-0.363078\pi\)
0.417009 + 0.908902i \(0.363078\pi\)
\(978\) 0 0
\(979\) 12.9443 0.413701
\(980\) 53.1246 1.69700
\(981\) 0 0
\(982\) 89.4427 2.85423
\(983\) −30.8328 −0.983414 −0.491707 0.870761i \(-0.663627\pi\)
−0.491707 + 0.870761i \(0.663627\pi\)
\(984\) 0 0
\(985\) −30.4721 −0.970923
\(986\) 72.3607 2.30443
\(987\) 0 0
\(988\) −37.0820 −1.17974
\(989\) 0 0
\(990\) 0 0
\(991\) −10.4721 −0.332658 −0.166329 0.986070i \(-0.553191\pi\)
−0.166329 + 0.986070i \(0.553191\pi\)
\(992\) 16.5836 0.526530
\(993\) 0 0
\(994\) −22.1115 −0.701333
\(995\) −12.0000 −0.380426
\(996\) 0 0
\(997\) −2.36068 −0.0747635 −0.0373817 0.999301i \(-0.511902\pi\)
−0.0373817 + 0.999301i \(0.511902\pi\)
\(998\) −72.3607 −2.29054
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4761.2.a.v.1.1 2
3.2 odd 2 1587.2.a.i.1.2 2
23.22 odd 2 207.2.a.c.1.1 2
69.68 even 2 69.2.a.b.1.2 2
92.91 even 2 3312.2.a.bb.1.2 2
115.114 odd 2 5175.2.a.bk.1.2 2
276.275 odd 2 1104.2.a.m.1.1 2
345.68 odd 4 1725.2.b.o.1174.1 4
345.137 odd 4 1725.2.b.o.1174.4 4
345.344 even 2 1725.2.a.ba.1.1 2
483.482 odd 2 3381.2.a.t.1.2 2
552.275 odd 2 4416.2.a.bg.1.2 2
552.413 even 2 4416.2.a.bm.1.2 2
759.758 odd 2 8349.2.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.a.b.1.2 2 69.68 even 2
207.2.a.c.1.1 2 23.22 odd 2
1104.2.a.m.1.1 2 276.275 odd 2
1587.2.a.i.1.2 2 3.2 odd 2
1725.2.a.ba.1.1 2 345.344 even 2
1725.2.b.o.1174.1 4 345.68 odd 4
1725.2.b.o.1174.4 4 345.137 odd 4
3312.2.a.bb.1.2 2 92.91 even 2
3381.2.a.t.1.2 2 483.482 odd 2
4416.2.a.bg.1.2 2 552.275 odd 2
4416.2.a.bm.1.2 2 552.413 even 2
4761.2.a.v.1.1 2 1.1 even 1 trivial
5175.2.a.bk.1.2 2 115.114 odd 2
8349.2.a.i.1.1 2 759.758 odd 2