Properties

Label 476.2.i.c.137.1
Level $476$
Weight $2$
Character 476.137
Analytic conductor $3.801$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [476,2,Mod(137,476)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(476, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("476.137");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 476 = 2^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 476.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.80087913621\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 137.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 476.137
Dual form 476.2.i.c.205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 2.59808i) q^{3} +(-2.00000 - 3.46410i) q^{5} +(2.00000 + 1.73205i) q^{7} +(-3.00000 - 5.19615i) q^{9} +(-0.500000 + 0.866025i) q^{11} +3.00000 q^{13} -12.0000 q^{15} +(0.500000 - 0.866025i) q^{17} +(1.00000 + 1.73205i) q^{19} +(7.50000 - 2.59808i) q^{21} +(-2.00000 - 3.46410i) q^{23} +(-5.50000 + 9.52628i) q^{25} -9.00000 q^{27} +(-4.00000 + 6.92820i) q^{31} +(1.50000 + 2.59808i) q^{33} +(2.00000 - 10.3923i) q^{35} +(-4.00000 - 6.92820i) q^{37} +(4.50000 - 7.79423i) q^{39} +10.0000 q^{43} +(-12.0000 + 20.7846i) q^{45} +(5.00000 + 8.66025i) q^{47} +(1.00000 + 6.92820i) q^{49} +(-1.50000 - 2.59808i) q^{51} +(-1.50000 + 2.59808i) q^{53} +4.00000 q^{55} +6.00000 q^{57} +(7.00000 - 12.1244i) q^{59} +(4.00000 + 6.92820i) q^{61} +(3.00000 - 15.5885i) q^{63} +(-6.00000 - 10.3923i) q^{65} +(5.00000 - 8.66025i) q^{67} -12.0000 q^{69} -5.00000 q^{71} +(8.00000 - 13.8564i) q^{73} +(16.5000 + 28.5788i) q^{75} +(-2.50000 + 0.866025i) q^{77} +(-5.50000 - 9.52628i) q^{79} +(-4.50000 + 7.79423i) q^{81} +12.0000 q^{83} -4.00000 q^{85} +(-4.50000 - 7.79423i) q^{89} +(6.00000 + 5.19615i) q^{91} +(12.0000 + 20.7846i) q^{93} +(4.00000 - 6.92820i) q^{95} +10.0000 q^{97} +6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - 4 q^{5} + 4 q^{7} - 6 q^{9} - q^{11} + 6 q^{13} - 24 q^{15} + q^{17} + 2 q^{19} + 15 q^{21} - 4 q^{23} - 11 q^{25} - 18 q^{27} - 8 q^{31} + 3 q^{33} + 4 q^{35} - 8 q^{37} + 9 q^{39} + 20 q^{43}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/476\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(309\) \(409\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 2.59808i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(4\) 0 0
\(5\) −2.00000 3.46410i −0.894427 1.54919i −0.834512 0.550990i \(-0.814250\pi\)
−0.0599153 0.998203i \(-0.519083\pi\)
\(6\) 0 0
\(7\) 2.00000 + 1.73205i 0.755929 + 0.654654i
\(8\) 0 0
\(9\) −3.00000 5.19615i −1.00000 1.73205i
\(10\) 0 0
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i −0.931505 0.363727i \(-0.881504\pi\)
0.780750 + 0.624844i \(0.214837\pi\)
\(12\) 0 0
\(13\) 3.00000 0.832050 0.416025 0.909353i \(-0.363423\pi\)
0.416025 + 0.909353i \(0.363423\pi\)
\(14\) 0 0
\(15\) −12.0000 −3.09839
\(16\) 0 0
\(17\) 0.500000 0.866025i 0.121268 0.210042i
\(18\) 0 0
\(19\) 1.00000 + 1.73205i 0.229416 + 0.397360i 0.957635 0.287984i \(-0.0929851\pi\)
−0.728219 + 0.685344i \(0.759652\pi\)
\(20\) 0 0
\(21\) 7.50000 2.59808i 1.63663 0.566947i
\(22\) 0 0
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) −5.50000 + 9.52628i −1.10000 + 1.90526i
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.718421 + 1.24434i 0.243204 + 0.969975i \(0.421802\pi\)
−0.961625 + 0.274367i \(0.911532\pi\)
\(32\) 0 0
\(33\) 1.50000 + 2.59808i 0.261116 + 0.452267i
\(34\) 0 0
\(35\) 2.00000 10.3923i 0.338062 1.75662i
\(36\) 0 0
\(37\) −4.00000 6.92820i −0.657596 1.13899i −0.981236 0.192809i \(-0.938240\pi\)
0.323640 0.946180i \(-0.395093\pi\)
\(38\) 0 0
\(39\) 4.50000 7.79423i 0.720577 1.24808i
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) −12.0000 + 20.7846i −1.78885 + 3.09839i
\(46\) 0 0
\(47\) 5.00000 + 8.66025i 0.729325 + 1.26323i 0.957169 + 0.289530i \(0.0934991\pi\)
−0.227844 + 0.973698i \(0.573168\pi\)
\(48\) 0 0
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) −1.50000 2.59808i −0.210042 0.363803i
\(52\) 0 0
\(53\) −1.50000 + 2.59808i −0.206041 + 0.356873i −0.950464 0.310835i \(-0.899391\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 6.00000 0.794719
\(58\) 0 0
\(59\) 7.00000 12.1244i 0.911322 1.57846i 0.0991242 0.995075i \(-0.468396\pi\)
0.812198 0.583382i \(-0.198271\pi\)
\(60\) 0 0
\(61\) 4.00000 + 6.92820i 0.512148 + 0.887066i 0.999901 + 0.0140840i \(0.00448323\pi\)
−0.487753 + 0.872982i \(0.662183\pi\)
\(62\) 0 0
\(63\) 3.00000 15.5885i 0.377964 1.96396i
\(64\) 0 0
\(65\) −6.00000 10.3923i −0.744208 1.28901i
\(66\) 0 0
\(67\) 5.00000 8.66025i 0.610847 1.05802i −0.380251 0.924883i \(-0.624162\pi\)
0.991098 0.133135i \(-0.0425044\pi\)
\(68\) 0 0
\(69\) −12.0000 −1.44463
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 0 0
\(73\) 8.00000 13.8564i 0.936329 1.62177i 0.164083 0.986447i \(-0.447534\pi\)
0.772246 0.635323i \(-0.219133\pi\)
\(74\) 0 0
\(75\) 16.5000 + 28.5788i 1.90526 + 3.30000i
\(76\) 0 0
\(77\) −2.50000 + 0.866025i −0.284901 + 0.0986928i
\(78\) 0 0
\(79\) −5.50000 9.52628i −0.618798 1.07179i −0.989705 0.143120i \(-0.954286\pi\)
0.370907 0.928670i \(-0.379047\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.50000 7.79423i −0.476999 0.826187i 0.522654 0.852545i \(-0.324942\pi\)
−0.999653 + 0.0263586i \(0.991609\pi\)
\(90\) 0 0
\(91\) 6.00000 + 5.19615i 0.628971 + 0.544705i
\(92\) 0 0
\(93\) 12.0000 + 20.7846i 1.24434 + 2.15526i
\(94\) 0 0
\(95\) 4.00000 6.92820i 0.410391 0.710819i
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) −5.00000 + 8.66025i −0.497519 + 0.861727i −0.999996 0.00286291i \(-0.999089\pi\)
0.502477 + 0.864590i \(0.332422\pi\)
\(102\) 0 0
\(103\) 2.00000 + 3.46410i 0.197066 + 0.341328i 0.947576 0.319531i \(-0.103525\pi\)
−0.750510 + 0.660859i \(0.770192\pi\)
\(104\) 0 0
\(105\) −24.0000 20.7846i −2.34216 2.02837i
\(106\) 0 0
\(107\) 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i \(-0.120345\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(108\) 0 0
\(109\) −4.00000 + 6.92820i −0.383131 + 0.663602i −0.991508 0.130046i \(-0.958487\pi\)
0.608377 + 0.793648i \(0.291821\pi\)
\(110\) 0 0
\(111\) −24.0000 −2.27798
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) −8.00000 + 13.8564i −0.746004 + 1.29212i
\(116\) 0 0
\(117\) −9.00000 15.5885i −0.832050 1.44115i
\(118\) 0 0
\(119\) 2.50000 0.866025i 0.229175 0.0793884i
\(120\) 0 0
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 15.0000 25.9808i 1.32068 2.28748i
\(130\) 0 0
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) −1.00000 + 5.19615i −0.0867110 + 0.450564i
\(134\) 0 0
\(135\) 18.0000 + 31.1769i 1.54919 + 2.68328i
\(136\) 0 0
\(137\) −8.50000 + 14.7224i −0.726204 + 1.25782i 0.232273 + 0.972651i \(0.425384\pi\)
−0.958477 + 0.285171i \(0.907949\pi\)
\(138\) 0 0
\(139\) −21.0000 −1.78120 −0.890598 0.454791i \(-0.849714\pi\)
−0.890598 + 0.454791i \(0.849714\pi\)
\(140\) 0 0
\(141\) 30.0000 2.52646
\(142\) 0 0
\(143\) −1.50000 + 2.59808i −0.125436 + 0.217262i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 19.5000 + 7.79423i 1.60833 + 0.642857i
\(148\) 0 0
\(149\) 5.50000 + 9.52628i 0.450578 + 0.780423i 0.998422 0.0561570i \(-0.0178847\pi\)
−0.547844 + 0.836580i \(0.684551\pi\)
\(150\) 0 0
\(151\) −1.00000 + 1.73205i −0.0813788 + 0.140952i −0.903842 0.427865i \(-0.859266\pi\)
0.822464 + 0.568818i \(0.192599\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 32.0000 2.57030
\(156\) 0 0
\(157\) −8.50000 + 14.7224i −0.678374 + 1.17498i 0.297097 + 0.954847i \(0.403982\pi\)
−0.975470 + 0.220131i \(0.929352\pi\)
\(158\) 0 0
\(159\) 4.50000 + 7.79423i 0.356873 + 0.618123i
\(160\) 0 0
\(161\) 2.00000 10.3923i 0.157622 0.819028i
\(162\) 0 0
\(163\) −6.00000 10.3923i −0.469956 0.813988i 0.529454 0.848339i \(-0.322397\pi\)
−0.999410 + 0.0343508i \(0.989064\pi\)
\(164\) 0 0
\(165\) 6.00000 10.3923i 0.467099 0.809040i
\(166\) 0 0
\(167\) 17.0000 1.31550 0.657750 0.753237i \(-0.271508\pi\)
0.657750 + 0.753237i \(0.271508\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 0 0
\(171\) 6.00000 10.3923i 0.458831 0.794719i
\(172\) 0 0
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 0 0
\(175\) −27.5000 + 9.52628i −2.07880 + 0.720119i
\(176\) 0 0
\(177\) −21.0000 36.3731i −1.57846 2.73397i
\(178\) 0 0
\(179\) −8.00000 + 13.8564i −0.597948 + 1.03568i 0.395175 + 0.918606i \(0.370684\pi\)
−0.993124 + 0.117071i \(0.962650\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 24.0000 1.77413
\(184\) 0 0
\(185\) −16.0000 + 27.7128i −1.17634 + 2.03749i
\(186\) 0 0
\(187\) 0.500000 + 0.866025i 0.0365636 + 0.0633300i
\(188\) 0 0
\(189\) −18.0000 15.5885i −1.30931 1.13389i
\(190\) 0 0
\(191\) −6.00000 10.3923i −0.434145 0.751961i 0.563081 0.826402i \(-0.309616\pi\)
−0.997225 + 0.0744412i \(0.976283\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 0 0
\(195\) −36.0000 −2.57801
\(196\) 0 0
\(197\) −14.0000 −0.997459 −0.498729 0.866758i \(-0.666200\pi\)
−0.498729 + 0.866758i \(0.666200\pi\)
\(198\) 0 0
\(199\) 1.50000 2.59808i 0.106332 0.184173i −0.807950 0.589252i \(-0.799423\pi\)
0.914282 + 0.405079i \(0.132756\pi\)
\(200\) 0 0
\(201\) −15.0000 25.9808i −1.05802 1.83254i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −12.0000 + 20.7846i −0.834058 + 1.44463i
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) −7.50000 + 12.9904i −0.513892 + 0.890086i
\(214\) 0 0
\(215\) −20.0000 34.6410i −1.36399 2.36250i
\(216\) 0 0
\(217\) −20.0000 + 6.92820i −1.35769 + 0.470317i
\(218\) 0 0
\(219\) −24.0000 41.5692i −1.62177 2.80899i
\(220\) 0 0
\(221\) 1.50000 2.59808i 0.100901 0.174766i
\(222\) 0 0
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) 0 0
\(225\) 66.0000 4.40000
\(226\) 0 0
\(227\) 1.50000 2.59808i 0.0995585 0.172440i −0.811943 0.583736i \(-0.801590\pi\)
0.911502 + 0.411296i \(0.134924\pi\)
\(228\) 0 0
\(229\) 5.00000 + 8.66025i 0.330409 + 0.572286i 0.982592 0.185776i \(-0.0594799\pi\)
−0.652183 + 0.758062i \(0.726147\pi\)
\(230\) 0 0
\(231\) −1.50000 + 7.79423i −0.0986928 + 0.512823i
\(232\) 0 0
\(233\) 10.0000 + 17.3205i 0.655122 + 1.13470i 0.981863 + 0.189590i \(0.0607160\pi\)
−0.326741 + 0.945114i \(0.605951\pi\)
\(234\) 0 0
\(235\) 20.0000 34.6410i 1.30466 2.25973i
\(236\) 0 0
\(237\) −33.0000 −2.14358
\(238\) 0 0
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 22.0000 17.3205i 1.40553 1.10657i
\(246\) 0 0
\(247\) 3.00000 + 5.19615i 0.190885 + 0.330623i
\(248\) 0 0
\(249\) 18.0000 31.1769i 1.14070 1.97576i
\(250\) 0 0
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) −6.00000 + 10.3923i −0.375735 + 0.650791i
\(256\) 0 0
\(257\) −5.50000 9.52628i −0.343081 0.594233i 0.641923 0.766769i \(-0.278137\pi\)
−0.985003 + 0.172536i \(0.944804\pi\)
\(258\) 0 0
\(259\) 4.00000 20.7846i 0.248548 1.29149i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.00000 + 10.3923i −0.369976 + 0.640817i −0.989561 0.144112i \(-0.953967\pi\)
0.619586 + 0.784929i \(0.287301\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) −27.0000 −1.65237
\(268\) 0 0
\(269\) 1.00000 1.73205i 0.0609711 0.105605i −0.833929 0.551872i \(-0.813914\pi\)
0.894900 + 0.446267i \(0.147247\pi\)
\(270\) 0 0
\(271\) −4.00000 6.92820i −0.242983 0.420858i 0.718580 0.695444i \(-0.244792\pi\)
−0.961563 + 0.274586i \(0.911459\pi\)
\(272\) 0 0
\(273\) 22.5000 7.79423i 1.36176 0.471728i
\(274\) 0 0
\(275\) −5.50000 9.52628i −0.331662 0.574456i
\(276\) 0 0
\(277\) −4.00000 + 6.92820i −0.240337 + 0.416275i −0.960810 0.277207i \(-0.910591\pi\)
0.720473 + 0.693482i \(0.243925\pi\)
\(278\) 0 0
\(279\) 48.0000 2.87368
\(280\) 0 0
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 0 0
\(283\) −9.50000 + 16.4545i −0.564716 + 0.978117i 0.432360 + 0.901701i \(0.357681\pi\)
−0.997076 + 0.0764162i \(0.975652\pi\)
\(284\) 0 0
\(285\) −12.0000 20.7846i −0.710819 1.23117i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.500000 0.866025i −0.0294118 0.0509427i
\(290\) 0 0
\(291\) 15.0000 25.9808i 0.879316 1.52302i
\(292\) 0 0
\(293\) 1.00000 0.0584206 0.0292103 0.999573i \(-0.490701\pi\)
0.0292103 + 0.999573i \(0.490701\pi\)
\(294\) 0 0
\(295\) −56.0000 −3.26045
\(296\) 0 0
\(297\) 4.50000 7.79423i 0.261116 0.452267i
\(298\) 0 0
\(299\) −6.00000 10.3923i −0.346989 0.601003i
\(300\) 0 0
\(301\) 20.0000 + 17.3205i 1.15278 + 0.998337i
\(302\) 0 0
\(303\) 15.0000 + 25.9808i 0.861727 + 1.49256i
\(304\) 0 0
\(305\) 16.0000 27.7128i 0.916157 1.58683i
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 12.0000 0.682656
\(310\) 0 0
\(311\) 4.50000 7.79423i 0.255172 0.441970i −0.709771 0.704433i \(-0.751201\pi\)
0.964942 + 0.262463i \(0.0845347\pi\)
\(312\) 0 0
\(313\) 9.00000 + 15.5885i 0.508710 + 0.881112i 0.999949 + 0.0100869i \(0.00321082\pi\)
−0.491239 + 0.871025i \(0.663456\pi\)
\(314\) 0 0
\(315\) −60.0000 + 20.7846i −3.38062 + 1.17108i
\(316\) 0 0
\(317\) −3.00000 5.19615i −0.168497 0.291845i 0.769395 0.638774i \(-0.220558\pi\)
−0.937892 + 0.346929i \(0.887225\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 9.00000 0.502331
\(322\) 0 0
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) −16.5000 + 28.5788i −0.915255 + 1.58527i
\(326\) 0 0
\(327\) 12.0000 + 20.7846i 0.663602 + 1.14939i
\(328\) 0 0
\(329\) −5.00000 + 25.9808i −0.275659 + 1.43237i
\(330\) 0 0
\(331\) −5.00000 8.66025i −0.274825 0.476011i 0.695266 0.718752i \(-0.255287\pi\)
−0.970091 + 0.242742i \(0.921953\pi\)
\(332\) 0 0
\(333\) −24.0000 + 41.5692i −1.31519 + 2.27798i
\(334\) 0 0
\(335\) −40.0000 −2.18543
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) 0 0
\(339\) −12.0000 + 20.7846i −0.651751 + 1.12887i
\(340\) 0 0
\(341\) −4.00000 6.92820i −0.216612 0.375183i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 24.0000 + 41.5692i 1.29212 + 2.23801i
\(346\) 0 0
\(347\) 2.00000 3.46410i 0.107366 0.185963i −0.807337 0.590091i \(-0.799092\pi\)
0.914702 + 0.404128i \(0.132425\pi\)
\(348\) 0 0
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 0 0
\(351\) −27.0000 −1.44115
\(352\) 0 0
\(353\) −5.50000 + 9.52628i −0.292735 + 0.507033i −0.974456 0.224580i \(-0.927899\pi\)
0.681720 + 0.731613i \(0.261232\pi\)
\(354\) 0 0
\(355\) 10.0000 + 17.3205i 0.530745 + 0.919277i
\(356\) 0 0
\(357\) 1.50000 7.79423i 0.0793884 0.412514i
\(358\) 0 0
\(359\) 5.00000 + 8.66025i 0.263890 + 0.457071i 0.967272 0.253741i \(-0.0816611\pi\)
−0.703382 + 0.710812i \(0.748328\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 0 0
\(363\) 30.0000 1.57459
\(364\) 0 0
\(365\) −64.0000 −3.34991
\(366\) 0 0
\(367\) −1.50000 + 2.59808i −0.0782994 + 0.135618i −0.902516 0.430656i \(-0.858282\pi\)
0.824217 + 0.566274i \(0.191616\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.50000 + 2.59808i −0.389381 + 0.134885i
\(372\) 0 0
\(373\) −3.50000 6.06218i −0.181223 0.313888i 0.761074 0.648665i \(-0.224672\pi\)
−0.942297 + 0.334777i \(0.891339\pi\)
\(374\) 0 0
\(375\) 36.0000 62.3538i 1.85903 3.21994i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 13.0000 0.667765 0.333883 0.942615i \(-0.391641\pi\)
0.333883 + 0.942615i \(0.391641\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −17.0000 29.4449i −0.868659 1.50456i −0.863367 0.504576i \(-0.831649\pi\)
−0.00529229 0.999986i \(-0.501685\pi\)
\(384\) 0 0
\(385\) 8.00000 + 6.92820i 0.407718 + 0.353094i
\(386\) 0 0
\(387\) −30.0000 51.9615i −1.52499 2.64135i
\(388\) 0 0
\(389\) 1.50000 2.59808i 0.0760530 0.131728i −0.825491 0.564416i \(-0.809102\pi\)
0.901544 + 0.432688i \(0.142435\pi\)
\(390\) 0 0
\(391\) −4.00000 −0.202289
\(392\) 0 0
\(393\) 36.0000 1.81596
\(394\) 0 0
\(395\) −22.0000 + 38.1051i −1.10694 + 1.91728i
\(396\) 0 0
\(397\) −1.00000 1.73205i −0.0501886 0.0869291i 0.839840 0.542834i \(-0.182649\pi\)
−0.890028 + 0.455905i \(0.849316\pi\)
\(398\) 0 0
\(399\) 12.0000 + 10.3923i 0.600751 + 0.520266i
\(400\) 0 0
\(401\) 13.0000 + 22.5167i 0.649189 + 1.12443i 0.983317 + 0.181901i \(0.0582249\pi\)
−0.334128 + 0.942528i \(0.608442\pi\)
\(402\) 0 0
\(403\) −12.0000 + 20.7846i −0.597763 + 1.03536i
\(404\) 0 0
\(405\) 36.0000 1.78885
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −5.50000 + 9.52628i −0.271957 + 0.471044i −0.969363 0.245633i \(-0.921004\pi\)
0.697406 + 0.716677i \(0.254338\pi\)
\(410\) 0 0
\(411\) 25.5000 + 44.1673i 1.25782 + 2.17861i
\(412\) 0 0
\(413\) 35.0000 12.1244i 1.72224 0.596601i
\(414\) 0 0
\(415\) −24.0000 41.5692i −1.17811 2.04055i
\(416\) 0 0
\(417\) −31.5000 + 54.5596i −1.54256 + 2.67180i
\(418\) 0 0
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) 30.0000 51.9615i 1.45865 2.52646i
\(424\) 0 0
\(425\) 5.50000 + 9.52628i 0.266789 + 0.462092i
\(426\) 0 0
\(427\) −4.00000 + 20.7846i −0.193574 + 1.00584i
\(428\) 0 0
\(429\) 4.50000 + 7.79423i 0.217262 + 0.376309i
\(430\) 0 0
\(431\) 9.50000 16.4545i 0.457599 0.792585i −0.541235 0.840872i \(-0.682043\pi\)
0.998833 + 0.0482871i \(0.0153762\pi\)
\(432\) 0 0
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.00000 6.92820i 0.191346 0.331421i
\(438\) 0 0
\(439\) 14.5000 + 25.1147i 0.692047 + 1.19866i 0.971166 + 0.238404i \(0.0766244\pi\)
−0.279119 + 0.960257i \(0.590042\pi\)
\(440\) 0 0
\(441\) 33.0000 25.9808i 1.57143 1.23718i
\(442\) 0 0
\(443\) 3.00000 + 5.19615i 0.142534 + 0.246877i 0.928450 0.371457i \(-0.121142\pi\)
−0.785916 + 0.618333i \(0.787808\pi\)
\(444\) 0 0
\(445\) −18.0000 + 31.1769i −0.853282 + 1.47793i
\(446\) 0 0
\(447\) 33.0000 1.56085
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 3.00000 + 5.19615i 0.140952 + 0.244137i
\(454\) 0 0
\(455\) 6.00000 31.1769i 0.281284 1.46160i
\(456\) 0 0
\(457\) 5.00000 + 8.66025i 0.233890 + 0.405110i 0.958950 0.283577i \(-0.0915211\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) 0 0
\(459\) −4.50000 + 7.79423i −0.210042 + 0.363803i
\(460\) 0 0
\(461\) −17.0000 −0.791769 −0.395884 0.918300i \(-0.629562\pi\)
−0.395884 + 0.918300i \(0.629562\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 48.0000 83.1384i 2.22595 3.85545i
\(466\) 0 0
\(467\) 18.0000 + 31.1769i 0.832941 + 1.44270i 0.895696 + 0.444667i \(0.146678\pi\)
−0.0627555 + 0.998029i \(0.519989\pi\)
\(468\) 0 0
\(469\) 25.0000 8.66025i 1.15439 0.399893i
\(470\) 0 0
\(471\) 25.5000 + 44.1673i 1.17498 + 2.03512i
\(472\) 0 0
\(473\) −5.00000 + 8.66025i −0.229900 + 0.398199i
\(474\) 0 0
\(475\) −22.0000 −1.00943
\(476\) 0 0
\(477\) 18.0000 0.824163
\(478\) 0 0
\(479\) −12.0000 + 20.7846i −0.548294 + 0.949673i 0.450098 + 0.892979i \(0.351389\pi\)
−0.998392 + 0.0566937i \(0.981944\pi\)
\(480\) 0 0
\(481\) −12.0000 20.7846i −0.547153 0.947697i
\(482\) 0 0
\(483\) −24.0000 20.7846i −1.09204 0.945732i
\(484\) 0 0
\(485\) −20.0000 34.6410i −0.908153 1.57297i
\(486\) 0 0
\(487\) −11.5000 + 19.9186i −0.521115 + 0.902597i 0.478584 + 0.878042i \(0.341150\pi\)
−0.999698 + 0.0245553i \(0.992183\pi\)
\(488\) 0 0
\(489\) −36.0000 −1.62798
\(490\) 0 0
\(491\) −26.0000 −1.17336 −0.586682 0.809818i \(-0.699566\pi\)
−0.586682 + 0.809818i \(0.699566\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −12.0000 20.7846i −0.539360 0.934199i
\(496\) 0 0
\(497\) −10.0000 8.66025i −0.448561 0.388465i
\(498\) 0 0
\(499\) 2.50000 + 4.33013i 0.111915 + 0.193843i 0.916542 0.399937i \(-0.130968\pi\)
−0.804627 + 0.593780i \(0.797635\pi\)
\(500\) 0 0
\(501\) 25.5000 44.1673i 1.13926 1.97325i
\(502\) 0 0
\(503\) 33.0000 1.47140 0.735699 0.677309i \(-0.236854\pi\)
0.735699 + 0.677309i \(0.236854\pi\)
\(504\) 0 0
\(505\) 40.0000 1.77998
\(506\) 0 0
\(507\) −6.00000 + 10.3923i −0.266469 + 0.461538i
\(508\) 0 0
\(509\) −19.0000 32.9090i −0.842160 1.45866i −0.888065 0.459718i \(-0.847950\pi\)
0.0459045 0.998946i \(-0.485383\pi\)
\(510\) 0 0
\(511\) 40.0000 13.8564i 1.76950 0.612971i
\(512\) 0 0
\(513\) −9.00000 15.5885i −0.397360 0.688247i
\(514\) 0 0
\(515\) 8.00000 13.8564i 0.352522 0.610586i
\(516\) 0 0
\(517\) −10.0000 −0.439799
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(522\) 0 0
\(523\) −11.0000 19.0526i −0.480996 0.833110i 0.518766 0.854916i \(-0.326392\pi\)
−0.999762 + 0.0218062i \(0.993058\pi\)
\(524\) 0 0
\(525\) −16.5000 + 85.7365i −0.720119 + 3.74185i
\(526\) 0 0
\(527\) 4.00000 + 6.92820i 0.174243 + 0.301797i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) −84.0000 −3.64529
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 6.00000 10.3923i 0.259403 0.449299i
\(536\) 0 0
\(537\) 24.0000 + 41.5692i 1.03568 + 1.79384i
\(538\) 0 0
\(539\) −6.50000 2.59808i −0.279975 0.111907i
\(540\) 0 0
\(541\) −11.0000 19.0526i −0.472927 0.819133i 0.526593 0.850118i \(-0.323469\pi\)
−0.999520 + 0.0309841i \(0.990136\pi\)
\(542\) 0 0
\(543\) −9.00000 + 15.5885i −0.386227 + 0.668965i
\(544\) 0 0
\(545\) 32.0000 1.37073
\(546\) 0 0
\(547\) −1.00000 −0.0427569 −0.0213785 0.999771i \(-0.506805\pi\)
−0.0213785 + 0.999771i \(0.506805\pi\)
\(548\) 0 0
\(549\) 24.0000 41.5692i 1.02430 1.77413i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 5.50000 28.5788i 0.233884 1.21530i
\(554\) 0 0
\(555\) 48.0000 + 83.1384i 2.03749 + 3.52903i
\(556\) 0 0
\(557\) −7.50000 + 12.9904i −0.317785 + 0.550420i −0.980026 0.198871i \(-0.936272\pi\)
0.662240 + 0.749291i \(0.269606\pi\)
\(558\) 0 0
\(559\) 30.0000 1.26886
\(560\) 0 0
\(561\) 3.00000 0.126660
\(562\) 0 0
\(563\) 1.00000 1.73205i 0.0421450 0.0729972i −0.844183 0.536054i \(-0.819914\pi\)
0.886328 + 0.463057i \(0.153248\pi\)
\(564\) 0 0
\(565\) 16.0000 + 27.7128i 0.673125 + 1.16589i
\(566\) 0 0
\(567\) −22.5000 + 7.79423i −0.944911 + 0.327327i
\(568\) 0 0
\(569\) 7.50000 + 12.9904i 0.314416 + 0.544585i 0.979313 0.202350i \(-0.0648579\pi\)
−0.664897 + 0.746935i \(0.731525\pi\)
\(570\) 0 0
\(571\) 2.00000 3.46410i 0.0836974 0.144968i −0.821138 0.570730i \(-0.806660\pi\)
0.904835 + 0.425762i \(0.139994\pi\)
\(572\) 0 0
\(573\) −36.0000 −1.50392
\(574\) 0 0
\(575\) 44.0000 1.83493
\(576\) 0 0
\(577\) 21.5000 37.2391i 0.895057 1.55028i 0.0613223 0.998118i \(-0.480468\pi\)
0.833734 0.552166i \(-0.186198\pi\)
\(578\) 0 0
\(579\) 21.0000 + 36.3731i 0.872730 + 1.51161i
\(580\) 0 0
\(581\) 24.0000 + 20.7846i 0.995688 + 0.862291i
\(582\) 0 0
\(583\) −1.50000 2.59808i −0.0621237 0.107601i
\(584\) 0 0
\(585\) −36.0000 + 62.3538i −1.48842 + 2.57801i
\(586\) 0 0
\(587\) −10.0000 −0.412744 −0.206372 0.978474i \(-0.566166\pi\)
−0.206372 + 0.978474i \(0.566166\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) −21.0000 + 36.3731i −0.863825 + 1.49619i
\(592\) 0 0
\(593\) −10.5000 18.1865i −0.431183 0.746831i 0.565792 0.824548i \(-0.308570\pi\)
−0.996976 + 0.0777165i \(0.975237\pi\)
\(594\) 0 0
\(595\) −8.00000 6.92820i −0.327968 0.284029i
\(596\) 0 0
\(597\) −4.50000 7.79423i −0.184173 0.318997i
\(598\) 0 0
\(599\) −15.0000 + 25.9808i −0.612883 + 1.06155i 0.377869 + 0.925859i \(0.376657\pi\)
−0.990752 + 0.135686i \(0.956676\pi\)
\(600\) 0 0
\(601\) −46.0000 −1.87638 −0.938190 0.346122i \(-0.887498\pi\)
−0.938190 + 0.346122i \(0.887498\pi\)
\(602\) 0 0
\(603\) −60.0000 −2.44339
\(604\) 0 0
\(605\) 20.0000 34.6410i 0.813116 1.40836i
\(606\) 0 0
\(607\) −14.5000 25.1147i −0.588537 1.01938i −0.994424 0.105453i \(-0.966371\pi\)
0.405887 0.913923i \(-0.366962\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.0000 + 25.9808i 0.606835 + 1.05107i
\(612\) 0 0
\(613\) −8.50000 + 14.7224i −0.343312 + 0.594633i −0.985046 0.172294i \(-0.944882\pi\)
0.641734 + 0.766927i \(0.278215\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −44.0000 −1.77137 −0.885687 0.464283i \(-0.846312\pi\)
−0.885687 + 0.464283i \(0.846312\pi\)
\(618\) 0 0
\(619\) 14.5000 25.1147i 0.582804 1.00945i −0.412341 0.911030i \(-0.635289\pi\)
0.995145 0.0984169i \(-0.0313779\pi\)
\(620\) 0 0
\(621\) 18.0000 + 31.1769i 0.722315 + 1.25109i
\(622\) 0 0
\(623\) 4.50000 23.3827i 0.180289 0.936808i
\(624\) 0 0
\(625\) −20.5000 35.5070i −0.820000 1.42028i
\(626\) 0 0
\(627\) −3.00000 + 5.19615i −0.119808 + 0.207514i
\(628\) 0 0
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) −46.0000 −1.83123 −0.915616 0.402055i \(-0.868296\pi\)
−0.915616 + 0.402055i \(0.868296\pi\)
\(632\) 0 0
\(633\) 30.0000 51.9615i 1.19239 2.06529i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.00000 + 20.7846i 0.118864 + 0.823516i
\(638\) 0 0
\(639\) 15.0000 + 25.9808i 0.593391 + 1.02778i
\(640\) 0 0
\(641\) 13.0000 22.5167i 0.513469 0.889355i −0.486409 0.873731i \(-0.661693\pi\)
0.999878 0.0156233i \(-0.00497325\pi\)
\(642\) 0 0
\(643\) 27.0000 1.06478 0.532388 0.846500i \(-0.321295\pi\)
0.532388 + 0.846500i \(0.321295\pi\)
\(644\) 0 0
\(645\) −120.000 −4.72500
\(646\) 0 0
\(647\) −14.0000 + 24.2487i −0.550397 + 0.953315i 0.447849 + 0.894109i \(0.352190\pi\)
−0.998246 + 0.0592060i \(0.981143\pi\)
\(648\) 0 0
\(649\) 7.00000 + 12.1244i 0.274774 + 0.475923i
\(650\) 0 0
\(651\) −12.0000 + 62.3538i −0.470317 + 2.44384i
\(652\) 0 0
\(653\) −23.0000 39.8372i −0.900060 1.55895i −0.827415 0.561591i \(-0.810189\pi\)
−0.0726446 0.997358i \(-0.523144\pi\)
\(654\) 0 0
\(655\) 24.0000 41.5692i 0.937758 1.62424i
\(656\) 0 0
\(657\) −96.0000 −3.74532
\(658\) 0 0
\(659\) 2.00000 0.0779089 0.0389545 0.999241i \(-0.487597\pi\)
0.0389545 + 0.999241i \(0.487597\pi\)
\(660\) 0 0
\(661\) 15.0000 25.9808i 0.583432 1.01053i −0.411636 0.911348i \(-0.635043\pi\)
0.995069 0.0991864i \(-0.0316240\pi\)
\(662\) 0 0
\(663\) −4.50000 7.79423i −0.174766 0.302703i
\(664\) 0 0
\(665\) 20.0000 6.92820i 0.775567 0.268664i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −9.00000 + 15.5885i −0.347960 + 0.602685i
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) −44.0000 −1.69608 −0.848038 0.529936i \(-0.822216\pi\)
−0.848038 + 0.529936i \(0.822216\pi\)
\(674\) 0 0
\(675\) 49.5000 85.7365i 1.90526 3.30000i
\(676\) 0 0
\(677\) 24.0000 + 41.5692i 0.922395 + 1.59763i 0.795698 + 0.605693i \(0.207104\pi\)
0.126697 + 0.991941i \(0.459562\pi\)
\(678\) 0 0
\(679\) 20.0000 + 17.3205i 0.767530 + 0.664700i
\(680\) 0 0
\(681\) −4.50000 7.79423i −0.172440 0.298675i
\(682\) 0 0
\(683\) 4.50000 7.79423i 0.172188 0.298238i −0.766997 0.641651i \(-0.778250\pi\)
0.939184 + 0.343413i \(0.111583\pi\)
\(684\) 0 0
\(685\) 68.0000 2.59815
\(686\) 0 0
\(687\) 30.0000 1.14457
\(688\) 0 0
\(689\) −4.50000 + 7.79423i −0.171436 + 0.296936i
\(690\) 0 0
\(691\) −8.00000 13.8564i −0.304334 0.527123i 0.672779 0.739844i \(-0.265101\pi\)
−0.977113 + 0.212721i \(0.931767\pi\)
\(692\) 0 0
\(693\) 12.0000 + 10.3923i 0.455842 + 0.394771i
\(694\) 0 0
\(695\) 42.0000 + 72.7461i 1.59315 + 2.75942i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 60.0000 2.26941
\(700\) 0 0
\(701\) 39.0000 1.47301 0.736505 0.676432i \(-0.236475\pi\)
0.736505 + 0.676432i \(0.236475\pi\)
\(702\) 0 0
\(703\) 8.00000 13.8564i 0.301726 0.522604i
\(704\) 0 0
\(705\) −60.0000 103.923i −2.25973 3.91397i
\(706\) 0 0
\(707\) −25.0000 + 8.66025i −0.940222 + 0.325702i
\(708\) 0 0
\(709\) 1.00000 + 1.73205i 0.0375558 + 0.0650485i 0.884192 0.467123i \(-0.154709\pi\)
−0.846637 + 0.532172i \(0.821376\pi\)
\(710\) 0 0
\(711\) −33.0000 + 57.1577i −1.23760 + 2.14358i
\(712\) 0 0
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) 12.0000 0.448775
\(716\) 0 0
\(717\) 3.00000 5.19615i 0.112037 0.194054i
\(718\) 0 0
\(719\) 7.50000 + 12.9904i 0.279703 + 0.484459i 0.971311 0.237814i \(-0.0764307\pi\)
−0.691608 + 0.722273i \(0.743097\pi\)
\(720\) 0 0
\(721\) −2.00000 + 10.3923i −0.0744839 + 0.387030i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 5.00000 8.66025i 0.184932 0.320311i
\(732\) 0 0
\(733\) 6.50000 + 11.2583i 0.240083 + 0.415836i 0.960738 0.277458i \(-0.0894920\pi\)
−0.720655 + 0.693294i \(0.756159\pi\)
\(734\) 0 0
\(735\) −12.0000 83.1384i −0.442627 3.06661i
\(736\) 0 0
\(737\) 5.00000 + 8.66025i 0.184177 + 0.319005i
\(738\) 0 0
\(739\) 17.0000 29.4449i 0.625355 1.08315i −0.363117 0.931744i \(-0.618287\pi\)
0.988472 0.151403i \(-0.0483792\pi\)
\(740\) 0 0
\(741\) 18.0000 0.661247
\(742\) 0 0
\(743\) −27.0000 −0.990534 −0.495267 0.868741i \(-0.664930\pi\)
−0.495267 + 0.868741i \(0.664930\pi\)
\(744\) 0 0
\(745\) 22.0000 38.1051i 0.806018 1.39606i
\(746\) 0 0
\(747\) −36.0000 62.3538i −1.31717 2.28141i
\(748\) 0 0
\(749\) −1.50000 + 7.79423i −0.0548088 + 0.284795i
\(750\) 0 0
\(751\) −11.5000 19.9186i −0.419641 0.726839i 0.576262 0.817265i \(-0.304511\pi\)
−0.995903 + 0.0904254i \(0.971177\pi\)
\(752\) 0 0
\(753\) 12.0000 20.7846i 0.437304 0.757433i
\(754\) 0 0
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) 17.0000 0.617876 0.308938 0.951082i \(-0.400027\pi\)
0.308938 + 0.951082i \(0.400027\pi\)
\(758\) 0 0
\(759\) 6.00000 10.3923i 0.217786 0.377217i
\(760\) 0 0
\(761\) 13.5000 + 23.3827i 0.489375 + 0.847622i 0.999925 0.0122260i \(-0.00389175\pi\)
−0.510551 + 0.859848i \(0.670558\pi\)
\(762\) 0 0
\(763\) −20.0000 + 6.92820i −0.724049 + 0.250818i
\(764\) 0 0
\(765\) 12.0000 + 20.7846i 0.433861 + 0.751469i
\(766\) 0 0
\(767\) 21.0000 36.3731i 0.758266 1.31336i
\(768\) 0 0
\(769\) 25.0000 0.901523 0.450762 0.892644i \(-0.351152\pi\)
0.450762 + 0.892644i \(0.351152\pi\)
\(770\) 0 0
\(771\) −33.0000 −1.18847
\(772\) 0 0
\(773\) −16.5000 + 28.5788i −0.593464 + 1.02791i 0.400298 + 0.916385i \(0.368907\pi\)
−0.993762 + 0.111524i \(0.964427\pi\)
\(774\) 0 0
\(775\) −44.0000 76.2102i −1.58053 2.73755i
\(776\) 0 0
\(777\) −48.0000 41.5692i −1.72199 1.49129i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 2.50000 4.33013i 0.0894570 0.154944i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 68.0000 2.42702
\(786\) 0 0
\(787\) 2.00000 3.46410i 0.0712923 0.123482i −0.828176 0.560469i \(-0.810621\pi\)
0.899468 + 0.436987i \(0.143954\pi\)
\(788\) 0 0
\(789\) 18.0000 + 31.1769i 0.640817 + 1.10993i
\(790\) 0 0
\(791\) −16.0000 13.8564i −0.568895 0.492677i
\(792\) 0 0