Properties

Label 476.2.i.b.205.1
Level $476$
Weight $2$
Character 476.205
Analytic conductor $3.801$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [476,2,Mod(137,476)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(476, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("476.137");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 476 = 2^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 476.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.80087913621\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 205.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 476.205
Dual form 476.2.i.b.137.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(2.00000 + 1.73205i) q^{7} +(1.00000 - 1.73205i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{3} +(2.00000 + 1.73205i) q^{7} +(1.00000 - 1.73205i) q^{9} +(2.50000 + 4.33013i) q^{11} -5.00000 q^{13} +(0.500000 + 0.866025i) q^{17} +(3.00000 - 5.19615i) q^{19} +(-0.500000 + 2.59808i) q^{21} +(-2.00000 + 3.46410i) q^{23} +(2.50000 + 4.33013i) q^{25} +5.00000 q^{27} +4.00000 q^{29} +(-2.50000 + 4.33013i) q^{33} +(-4.00000 + 6.92820i) q^{37} +(-2.50000 - 4.33013i) q^{39} +4.00000 q^{41} -6.00000 q^{43} +(3.00000 - 5.19615i) q^{47} +(1.00000 + 6.92820i) q^{49} +(-0.500000 + 0.866025i) q^{51} +(-5.50000 - 9.52628i) q^{53} +6.00000 q^{57} +(-5.00000 - 8.66025i) q^{59} +(5.00000 - 1.73205i) q^{63} +(-5.00000 - 8.66025i) q^{67} -4.00000 q^{69} +9.00000 q^{71} +(-2.00000 - 3.46410i) q^{73} +(-2.50000 + 4.33013i) q^{75} +(-2.50000 + 12.9904i) q^{77} +(-4.50000 + 7.79423i) q^{79} +(-0.500000 - 0.866025i) q^{81} +4.00000 q^{83} +(2.00000 + 3.46410i) q^{87} +(7.50000 - 12.9904i) q^{89} +(-10.0000 - 8.66025i) q^{91} -18.0000 q^{97} +10.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 4 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{3} + 4 q^{7} + 2 q^{9} + 5 q^{11} - 10 q^{13} + q^{17} + 6 q^{19} - q^{21} - 4 q^{23} + 5 q^{25} + 10 q^{27} + 8 q^{29} - 5 q^{33} - 8 q^{37} - 5 q^{39} + 8 q^{41} - 12 q^{43} + 6 q^{47} + 2 q^{49} - q^{51} - 11 q^{53} + 12 q^{57} - 10 q^{59} + 10 q^{63} - 10 q^{67} - 8 q^{69} + 18 q^{71} - 4 q^{73} - 5 q^{75} - 5 q^{77} - 9 q^{79} - q^{81} + 8 q^{83} + 4 q^{87} + 15 q^{89} - 20 q^{91} - 36 q^{97} + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/476\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(309\) \(409\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 0 0
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) 2.00000 + 1.73205i 0.755929 + 0.654654i
\(8\) 0 0
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0 0
\(11\) 2.50000 + 4.33013i 0.753778 + 1.30558i 0.945979 + 0.324227i \(0.105104\pi\)
−0.192201 + 0.981356i \(0.561563\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.500000 + 0.866025i 0.121268 + 0.210042i
\(18\) 0 0
\(19\) 3.00000 5.19615i 0.688247 1.19208i −0.284157 0.958778i \(-0.591714\pi\)
0.972404 0.233301i \(-0.0749529\pi\)
\(20\) 0 0
\(21\) −0.500000 + 2.59808i −0.109109 + 0.566947i
\(22\) 0 0
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 0 0
\(33\) −2.50000 + 4.33013i −0.435194 + 0.753778i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) 0 0
\(39\) −2.50000 4.33013i −0.400320 0.693375i
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 0 0
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) −0.500000 + 0.866025i −0.0700140 + 0.121268i
\(52\) 0 0
\(53\) −5.50000 9.52628i −0.755483 1.30854i −0.945134 0.326683i \(-0.894069\pi\)
0.189651 0.981852i \(-0.439264\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.00000 0.794719
\(58\) 0 0
\(59\) −5.00000 8.66025i −0.650945 1.12747i −0.982894 0.184172i \(-0.941040\pi\)
0.331949 0.943297i \(-0.392294\pi\)
\(60\) 0 0
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) 0 0
\(63\) 5.00000 1.73205i 0.629941 0.218218i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.00000 8.66025i −0.610847 1.05802i −0.991098 0.133135i \(-0.957496\pi\)
0.380251 0.924883i \(-0.375838\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 9.00000 1.06810 0.534052 0.845452i \(-0.320669\pi\)
0.534052 + 0.845452i \(0.320669\pi\)
\(72\) 0 0
\(73\) −2.00000 3.46410i −0.234082 0.405442i 0.724923 0.688830i \(-0.241875\pi\)
−0.959006 + 0.283387i \(0.908542\pi\)
\(74\) 0 0
\(75\) −2.50000 + 4.33013i −0.288675 + 0.500000i
\(76\) 0 0
\(77\) −2.50000 + 12.9904i −0.284901 + 1.48039i
\(78\) 0 0
\(79\) −4.50000 + 7.79423i −0.506290 + 0.876919i 0.493684 + 0.869641i \(0.335650\pi\)
−0.999974 + 0.00727784i \(0.997683\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.00000 + 3.46410i 0.214423 + 0.371391i
\(88\) 0 0
\(89\) 7.50000 12.9904i 0.794998 1.37698i −0.127842 0.991795i \(-0.540805\pi\)
0.922840 0.385183i \(-0.125862\pi\)
\(90\) 0 0
\(91\) −10.0000 8.66025i −1.04828 0.907841i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.0000 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) 10.0000 1.00504
\(100\) 0 0
\(101\) −1.00000 1.73205i −0.0995037 0.172345i 0.811976 0.583691i \(-0.198392\pi\)
−0.911479 + 0.411346i \(0.865059\pi\)
\(102\) 0 0
\(103\) 8.00000 13.8564i 0.788263 1.36531i −0.138767 0.990325i \(-0.544314\pi\)
0.927030 0.374987i \(-0.122353\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.50000 14.7224i 0.821726 1.42327i −0.0826699 0.996577i \(-0.526345\pi\)
0.904396 0.426694i \(-0.140322\pi\)
\(108\) 0 0
\(109\) −8.00000 13.8564i −0.766261 1.32720i −0.939577 0.342337i \(-0.888782\pi\)
0.173316 0.984866i \(-0.444552\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −5.00000 + 8.66025i −0.462250 + 0.800641i
\(118\) 0 0
\(119\) −0.500000 + 2.59808i −0.0458349 + 0.238165i
\(120\) 0 0
\(121\) −7.00000 + 12.1244i −0.636364 + 1.10221i
\(122\) 0 0
\(123\) 2.00000 + 3.46410i 0.180334 + 0.312348i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) −3.00000 5.19615i −0.264135 0.457496i
\(130\) 0 0
\(131\) 2.00000 3.46410i 0.174741 0.302660i −0.765331 0.643637i \(-0.777425\pi\)
0.940072 + 0.340977i \(0.110758\pi\)
\(132\) 0 0
\(133\) 15.0000 5.19615i 1.30066 0.450564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.50000 + 12.9904i 0.640768 + 1.10984i 0.985262 + 0.171054i \(0.0547174\pi\)
−0.344493 + 0.938789i \(0.611949\pi\)
\(138\) 0 0
\(139\) −7.00000 −0.593732 −0.296866 0.954919i \(-0.595942\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) −12.5000 21.6506i −1.04530 1.81052i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.50000 + 4.33013i −0.453632 + 0.357143i
\(148\) 0 0
\(149\) −10.5000 + 18.1865i −0.860194 + 1.48990i 0.0115483 + 0.999933i \(0.496324\pi\)
−0.871742 + 0.489966i \(0.837009\pi\)
\(150\) 0 0
\(151\) 1.00000 + 1.73205i 0.0813788 + 0.140952i 0.903842 0.427865i \(-0.140734\pi\)
−0.822464 + 0.568818i \(0.807401\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −8.50000 14.7224i −0.678374 1.17498i −0.975470 0.220131i \(-0.929352\pi\)
0.297097 0.954847i \(-0.403982\pi\)
\(158\) 0 0
\(159\) 5.50000 9.52628i 0.436178 0.755483i
\(160\) 0 0
\(161\) −10.0000 + 3.46410i −0.788110 + 0.273009i
\(162\) 0 0
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.0000 −1.62503 −0.812514 0.582941i \(-0.801902\pi\)
−0.812514 + 0.582941i \(0.801902\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −6.00000 10.3923i −0.458831 0.794719i
\(172\) 0 0
\(173\) −9.00000 + 15.5885i −0.684257 + 1.18517i 0.289412 + 0.957205i \(0.406540\pi\)
−0.973670 + 0.227964i \(0.926793\pi\)
\(174\) 0 0
\(175\) −2.50000 + 12.9904i −0.188982 + 0.981981i
\(176\) 0 0
\(177\) 5.00000 8.66025i 0.375823 0.650945i
\(178\) 0 0
\(179\) 12.0000 + 20.7846i 0.896922 + 1.55351i 0.831408 + 0.555663i \(0.187536\pi\)
0.0655145 + 0.997852i \(0.479131\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.50000 + 4.33013i −0.182818 + 0.316650i
\(188\) 0 0
\(189\) 10.0000 + 8.66025i 0.727393 + 0.629941i
\(190\) 0 0
\(191\) 6.00000 10.3923i 0.434145 0.751961i −0.563081 0.826402i \(-0.690384\pi\)
0.997225 + 0.0744412i \(0.0237173\pi\)
\(192\) 0 0
\(193\) −5.00000 8.66025i −0.359908 0.623379i 0.628037 0.778183i \(-0.283859\pi\)
−0.987945 + 0.154805i \(0.950525\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 0.500000 + 0.866025i 0.0354441 + 0.0613909i 0.883203 0.468990i \(-0.155382\pi\)
−0.847759 + 0.530381i \(0.822049\pi\)
\(200\) 0 0
\(201\) 5.00000 8.66025i 0.352673 0.610847i
\(202\) 0 0
\(203\) 8.00000 + 6.92820i 0.561490 + 0.486265i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.00000 + 6.92820i 0.278019 + 0.481543i
\(208\) 0 0
\(209\) 30.0000 2.07514
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) 4.50000 + 7.79423i 0.308335 + 0.534052i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.00000 3.46410i 0.135147 0.234082i
\(220\) 0 0
\(221\) −2.50000 4.33013i −0.168168 0.291276i
\(222\) 0 0
\(223\) 18.0000 1.20537 0.602685 0.797980i \(-0.294098\pi\)
0.602685 + 0.797980i \(0.294098\pi\)
\(224\) 0 0
\(225\) 10.0000 0.666667
\(226\) 0 0
\(227\) 4.50000 + 7.79423i 0.298675 + 0.517321i 0.975833 0.218517i \(-0.0701218\pi\)
−0.677158 + 0.735838i \(0.736789\pi\)
\(228\) 0 0
\(229\) −11.0000 + 19.0526i −0.726900 + 1.25903i 0.231287 + 0.972886i \(0.425707\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(230\) 0 0
\(231\) −12.5000 + 4.33013i −0.822440 + 0.284901i
\(232\) 0 0
\(233\) 6.00000 10.3923i 0.393073 0.680823i −0.599780 0.800165i \(-0.704745\pi\)
0.992853 + 0.119342i \(0.0380786\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −9.00000 −0.584613
\(238\) 0 0
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 0 0
\(241\) 10.0000 + 17.3205i 0.644157 + 1.11571i 0.984496 + 0.175409i \(0.0561248\pi\)
−0.340339 + 0.940303i \(0.610542\pi\)
\(242\) 0 0
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −15.0000 + 25.9808i −0.954427 + 1.65312i
\(248\) 0 0
\(249\) 2.00000 + 3.46410i 0.126745 + 0.219529i
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) −20.0000 −1.25739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.50000 + 2.59808i −0.0935674 + 0.162064i −0.909010 0.416775i \(-0.863160\pi\)
0.815442 + 0.578838i \(0.196494\pi\)
\(258\) 0 0
\(259\) −20.0000 + 6.92820i −1.24274 + 0.430498i
\(260\) 0 0
\(261\) 4.00000 6.92820i 0.247594 0.428845i
\(262\) 0 0
\(263\) 4.00000 + 6.92820i 0.246651 + 0.427211i 0.962594 0.270947i \(-0.0873367\pi\)
−0.715944 + 0.698158i \(0.754003\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 15.0000 0.917985
\(268\) 0 0
\(269\) −3.00000 5.19615i −0.182913 0.316815i 0.759958 0.649972i \(-0.225219\pi\)
−0.942871 + 0.333157i \(0.891886\pi\)
\(270\) 0 0
\(271\) −12.0000 + 20.7846i −0.728948 + 1.26258i 0.228380 + 0.973572i \(0.426657\pi\)
−0.957328 + 0.289003i \(0.906676\pi\)
\(272\) 0 0
\(273\) 2.50000 12.9904i 0.151307 0.786214i
\(274\) 0 0
\(275\) −12.5000 + 21.6506i −0.753778 + 1.30558i
\(276\) 0 0
\(277\) −12.0000 20.7846i −0.721010 1.24883i −0.960595 0.277951i \(-0.910345\pi\)
0.239585 0.970875i \(-0.422989\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.00000 0.298275 0.149137 0.988816i \(-0.452350\pi\)
0.149137 + 0.988816i \(0.452350\pi\)
\(282\) 0 0
\(283\) −4.50000 7.79423i −0.267497 0.463319i 0.700718 0.713439i \(-0.252863\pi\)
−0.968215 + 0.250120i \(0.919530\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.00000 + 6.92820i 0.472225 + 0.408959i
\(288\) 0 0
\(289\) −0.500000 + 0.866025i −0.0294118 + 0.0509427i
\(290\) 0 0
\(291\) −9.00000 15.5885i −0.527589 0.913812i
\(292\) 0 0
\(293\) 9.00000 0.525786 0.262893 0.964825i \(-0.415323\pi\)
0.262893 + 0.964825i \(0.415323\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 12.5000 + 21.6506i 0.725324 + 1.25630i
\(298\) 0 0
\(299\) 10.0000 17.3205i 0.578315 1.00167i
\(300\) 0 0
\(301\) −12.0000 10.3923i −0.691669 0.599002i
\(302\) 0 0
\(303\) 1.00000 1.73205i 0.0574485 0.0995037i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) 1.50000 + 2.59808i 0.0850572 + 0.147323i 0.905416 0.424526i \(-0.139559\pi\)
−0.820358 + 0.571850i \(0.806226\pi\)
\(312\) 0 0
\(313\) −3.00000 + 5.19615i −0.169570 + 0.293704i −0.938269 0.345907i \(-0.887571\pi\)
0.768699 + 0.639611i \(0.220905\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 10.0000 + 17.3205i 0.559893 + 0.969762i
\(320\) 0 0
\(321\) 17.0000 0.948847
\(322\) 0 0
\(323\) 6.00000 0.333849
\(324\) 0 0
\(325\) −12.5000 21.6506i −0.693375 1.20096i
\(326\) 0 0
\(327\) 8.00000 13.8564i 0.442401 0.766261i
\(328\) 0 0
\(329\) 15.0000 5.19615i 0.826977 0.286473i
\(330\) 0 0
\(331\) −5.00000 + 8.66025i −0.274825 + 0.476011i −0.970091 0.242742i \(-0.921953\pi\)
0.695266 + 0.718752i \(0.255287\pi\)
\(332\) 0 0
\(333\) 8.00000 + 13.8564i 0.438397 + 0.759326i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) −34.0000 −1.81998 −0.909989 0.414632i \(-0.863910\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(350\) 0 0
\(351\) −25.0000 −1.33440
\(352\) 0 0
\(353\) −5.50000 9.52628i −0.292735 0.507033i 0.681720 0.731613i \(-0.261232\pi\)
−0.974456 + 0.224580i \(0.927899\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −2.50000 + 0.866025i −0.132314 + 0.0458349i
\(358\) 0 0
\(359\) 13.0000 22.5167i 0.686114 1.18838i −0.286972 0.957939i \(-0.592649\pi\)
0.973085 0.230445i \(-0.0740181\pi\)
\(360\) 0 0
\(361\) −8.50000 14.7224i −0.447368 0.774865i
\(362\) 0 0
\(363\) −14.0000 −0.734809
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7.50000 + 12.9904i 0.391497 + 0.678092i 0.992647 0.121044i \(-0.0386241\pi\)
−0.601150 + 0.799136i \(0.705291\pi\)
\(368\) 0 0
\(369\) 4.00000 6.92820i 0.208232 0.360668i
\(370\) 0 0
\(371\) 5.50000 28.5788i 0.285546 1.48374i
\(372\) 0 0
\(373\) 0.500000 0.866025i 0.0258890 0.0448411i −0.852791 0.522253i \(-0.825092\pi\)
0.878680 + 0.477412i \(0.158425\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20.0000 −1.03005
\(378\) 0 0
\(379\) −25.0000 −1.28416 −0.642082 0.766636i \(-0.721929\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(380\) 0 0
\(381\) −2.00000 3.46410i −0.102463 0.177471i
\(382\) 0 0
\(383\) −9.00000 + 15.5885i −0.459879 + 0.796533i −0.998954 0.0457244i \(-0.985440\pi\)
0.539076 + 0.842257i \(0.318774\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.00000 + 10.3923i −0.304997 + 0.528271i
\(388\) 0 0
\(389\) −10.5000 18.1865i −0.532371 0.922094i −0.999286 0.0377914i \(-0.987968\pi\)
0.466915 0.884302i \(-0.345366\pi\)
\(390\) 0 0
\(391\) −4.00000 −0.202289
\(392\) 0 0
\(393\) 4.00000 0.201773
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −7.00000 + 12.1244i −0.351320 + 0.608504i −0.986481 0.163876i \(-0.947600\pi\)
0.635161 + 0.772380i \(0.280934\pi\)
\(398\) 0 0
\(399\) 12.0000 + 10.3923i 0.600751 + 0.520266i
\(400\) 0 0
\(401\) 15.0000 25.9808i 0.749064 1.29742i −0.199207 0.979957i \(-0.563837\pi\)
0.948272 0.317460i \(-0.102830\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −40.0000 −1.98273
\(408\) 0 0
\(409\) −17.5000 30.3109i −0.865319 1.49878i −0.866730 0.498778i \(-0.833782\pi\)
0.00141047 0.999999i \(-0.499551\pi\)
\(410\) 0 0
\(411\) −7.50000 + 12.9904i −0.369948 + 0.640768i
\(412\) 0 0
\(413\) 5.00000 25.9808i 0.246034 1.27843i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −3.50000 6.06218i −0.171396 0.296866i
\(418\) 0 0
\(419\) −5.00000 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) −6.00000 10.3923i −0.291730 0.505291i
\(424\) 0 0
\(425\) −2.50000 + 4.33013i −0.121268 + 0.210042i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 12.5000 21.6506i 0.603506 1.04530i
\(430\) 0 0
\(431\) 8.50000 + 14.7224i 0.409431 + 0.709155i 0.994826 0.101593i \(-0.0323941\pi\)
−0.585395 + 0.810748i \(0.699061\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.0000 + 20.7846i 0.574038 + 0.994263i
\(438\) 0 0
\(439\) 11.5000 19.9186i 0.548865 0.950662i −0.449488 0.893287i \(-0.648393\pi\)
0.998353 0.0573756i \(-0.0182733\pi\)
\(440\) 0 0
\(441\) 13.0000 + 5.19615i 0.619048 + 0.247436i
\(442\) 0 0
\(443\) −1.00000 + 1.73205i −0.0475114 + 0.0822922i −0.888803 0.458289i \(-0.848462\pi\)
0.841292 + 0.540581i \(0.181796\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −21.0000 −0.993266
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) 10.0000 + 17.3205i 0.470882 + 0.815591i
\(452\) 0 0
\(453\) −1.00000 + 1.73205i −0.0469841 + 0.0813788i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.00000 + 12.1244i −0.327446 + 0.567153i −0.982004 0.188858i \(-0.939521\pi\)
0.654558 + 0.756012i \(0.272855\pi\)
\(458\) 0 0
\(459\) 2.50000 + 4.33013i 0.116690 + 0.202113i
\(460\) 0 0
\(461\) −25.0000 −1.16437 −0.582183 0.813058i \(-0.697801\pi\)
−0.582183 + 0.813058i \(0.697801\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.00000 + 13.8564i −0.370196 + 0.641198i −0.989595 0.143878i \(-0.954043\pi\)
0.619400 + 0.785076i \(0.287376\pi\)
\(468\) 0 0
\(469\) 5.00000 25.9808i 0.230879 1.19968i
\(470\) 0 0
\(471\) 8.50000 14.7224i 0.391659 0.678374i
\(472\) 0 0
\(473\) −15.0000 25.9808i −0.689701 1.19460i
\(474\) 0 0
\(475\) 30.0000 1.37649
\(476\) 0 0
\(477\) −22.0000 −1.00731
\(478\) 0 0
\(479\) −12.0000 20.7846i −0.548294 0.949673i −0.998392 0.0566937i \(-0.981944\pi\)
0.450098 0.892979i \(-0.351389\pi\)
\(480\) 0 0
\(481\) 20.0000 34.6410i 0.911922 1.57949i
\(482\) 0 0
\(483\) −8.00000 6.92820i −0.364013 0.315244i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.50000 + 16.4545i 0.430486 + 0.745624i 0.996915 0.0784867i \(-0.0250088\pi\)
−0.566429 + 0.824110i \(0.691675\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −22.0000 −0.992846 −0.496423 0.868081i \(-0.665354\pi\)
−0.496423 + 0.868081i \(0.665354\pi\)
\(492\) 0 0
\(493\) 2.00000 + 3.46410i 0.0900755 + 0.156015i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.0000 + 15.5885i 0.807410 + 0.699238i
\(498\) 0 0
\(499\) 7.50000 12.9904i 0.335746 0.581529i −0.647882 0.761741i \(-0.724345\pi\)
0.983628 + 0.180212i \(0.0576783\pi\)
\(500\) 0 0
\(501\) −10.5000 18.1865i −0.469105 0.812514i
\(502\) 0 0
\(503\) −13.0000 −0.579641 −0.289821 0.957081i \(-0.593596\pi\)
−0.289821 + 0.957081i \(0.593596\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.00000 + 10.3923i 0.266469 + 0.461538i
\(508\) 0 0
\(509\) 13.0000 22.5167i 0.576215 0.998033i −0.419694 0.907666i \(-0.637862\pi\)
0.995908 0.0903676i \(-0.0288042\pi\)
\(510\) 0 0
\(511\) 2.00000 10.3923i 0.0884748 0.459728i
\(512\) 0 0
\(513\) 15.0000 25.9808i 0.662266 1.14708i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 30.0000 1.31940
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) 14.0000 + 24.2487i 0.613351 + 1.06236i 0.990671 + 0.136272i \(0.0435123\pi\)
−0.377320 + 0.926083i \(0.623154\pi\)
\(522\) 0 0
\(523\) −3.00000 + 5.19615i −0.131181 + 0.227212i −0.924132 0.382073i \(-0.875210\pi\)
0.792951 + 0.609285i \(0.208544\pi\)
\(524\) 0 0
\(525\) −12.5000 + 4.33013i −0.545545 + 0.188982i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) −20.0000 −0.867926
\(532\) 0 0
\(533\) −20.0000 −0.866296
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −12.0000 + 20.7846i −0.517838 + 0.896922i
\(538\) 0 0
\(539\) −27.5000 + 21.6506i −1.18451 + 0.932559i
\(540\) 0 0
\(541\) −5.00000 + 8.66025i −0.214967 + 0.372333i −0.953262 0.302144i \(-0.902298\pi\)
0.738296 + 0.674477i \(0.235631\pi\)
\(542\) 0 0
\(543\) 3.00000 + 5.19615i 0.128742 + 0.222988i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −43.0000 −1.83855 −0.919274 0.393619i \(-0.871223\pi\)
−0.919274 + 0.393619i \(0.871223\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0000 20.7846i 0.511217 0.885454i
\(552\) 0 0
\(553\) −22.5000 + 7.79423i −0.956797 + 0.331444i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.50000 + 14.7224i 0.360157 + 0.623809i 0.987986 0.154541i \(-0.0493899\pi\)
−0.627830 + 0.778351i \(0.716057\pi\)
\(558\) 0 0
\(559\) 30.0000 1.26886
\(560\) 0 0
\(561\) −5.00000 −0.211100
\(562\) 0 0
\(563\) 13.0000 + 22.5167i 0.547885 + 0.948964i 0.998419 + 0.0562051i \(0.0179001\pi\)
−0.450535 + 0.892759i \(0.648767\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.500000 2.59808i 0.0209980 0.109109i
\(568\) 0 0
\(569\) −0.500000 + 0.866025i −0.0209611 + 0.0363057i −0.876316 0.481737i \(-0.840006\pi\)
0.855355 + 0.518043i \(0.173339\pi\)
\(570\) 0 0
\(571\) 2.00000 + 3.46410i 0.0836974 + 0.144968i 0.904835 0.425762i \(-0.139994\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) −20.0000 −0.834058
\(576\) 0 0
\(577\) 9.50000 + 16.4545i 0.395490 + 0.685009i 0.993164 0.116731i \(-0.0372414\pi\)
−0.597673 + 0.801740i \(0.703908\pi\)
\(578\) 0 0
\(579\) 5.00000 8.66025i 0.207793 0.359908i
\(580\) 0 0
\(581\) 8.00000 + 6.92820i 0.331896 + 0.287430i
\(582\) 0 0
\(583\) 27.5000 47.6314i 1.13893 1.97269i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 34.0000 1.40333 0.701665 0.712507i \(-0.252440\pi\)
0.701665 + 0.712507i \(0.252440\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 1.00000 + 1.73205i 0.0411345 + 0.0712470i
\(592\) 0 0
\(593\) −22.5000 + 38.9711i −0.923964 + 1.60035i −0.130746 + 0.991416i \(0.541737\pi\)
−0.793219 + 0.608937i \(0.791596\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.500000 + 0.866025i −0.0204636 + 0.0354441i
\(598\) 0 0
\(599\) −15.0000 25.9808i −0.612883 1.06155i −0.990752 0.135686i \(-0.956676\pi\)
0.377869 0.925859i \(-0.376657\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) −20.0000 −0.814463
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −3.50000 + 6.06218i −0.142061 + 0.246056i −0.928272 0.371901i \(-0.878706\pi\)
0.786212 + 0.617957i \(0.212039\pi\)
\(608\) 0 0
\(609\) −2.00000 + 10.3923i −0.0810441 + 0.421117i
\(610\) 0 0
\(611\) −15.0000 + 25.9808i −0.606835 + 1.05107i
\(612\) 0 0
\(613\) −8.50000 14.7224i −0.343312 0.594633i 0.641734 0.766927i \(-0.278215\pi\)
−0.985046 + 0.172294i \(0.944882\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16.0000 0.644136 0.322068 0.946717i \(-0.395622\pi\)
0.322068 + 0.946717i \(0.395622\pi\)
\(618\) 0 0
\(619\) −8.50000 14.7224i −0.341644 0.591744i 0.643094 0.765787i \(-0.277650\pi\)
−0.984738 + 0.174042i \(0.944317\pi\)
\(620\) 0 0
\(621\) −10.0000 + 17.3205i −0.401286 + 0.695048i
\(622\) 0 0
\(623\) 37.5000 12.9904i 1.50241 0.520449i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 15.0000 + 25.9808i 0.599042 + 1.03757i
\(628\) 0 0
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) 18.0000 0.716569 0.358284 0.933613i \(-0.383362\pi\)
0.358284 + 0.933613i \(0.383362\pi\)
\(632\) 0 0
\(633\) 10.0000 + 17.3205i 0.397464 + 0.688428i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5.00000 34.6410i −0.198107 1.37253i
\(638\) 0 0
\(639\) 9.00000 15.5885i 0.356034 0.616670i
\(640\) 0 0
\(641\) −11.0000 19.0526i −0.434474 0.752531i 0.562779 0.826608i \(-0.309732\pi\)
−0.997253 + 0.0740768i \(0.976399\pi\)
\(642\) 0 0
\(643\) 41.0000 1.61688 0.808441 0.588577i \(-0.200312\pi\)
0.808441 + 0.588577i \(0.200312\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14.0000 24.2487i −0.550397 0.953315i −0.998246 0.0592060i \(-0.981143\pi\)
0.447849 0.894109i \(-0.352190\pi\)
\(648\) 0 0
\(649\) 25.0000 43.3013i 0.981336 1.69972i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −21.0000 + 36.3731i −0.821794 + 1.42339i 0.0825519 + 0.996587i \(0.473693\pi\)
−0.904345 + 0.426801i \(0.859640\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −8.00000 −0.312110
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) 11.0000 + 19.0526i 0.427850 + 0.741059i 0.996682 0.0813955i \(-0.0259377\pi\)
−0.568831 + 0.822454i \(0.692604\pi\)
\(662\) 0 0
\(663\) 2.50000 4.33013i 0.0970920 0.168168i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 + 13.8564i −0.309761 + 0.536522i
\(668\) 0 0
\(669\) 9.00000 + 15.5885i 0.347960 + 0.602685i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −24.0000 −0.925132 −0.462566 0.886585i \(-0.653071\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(674\) 0 0
\(675\) 12.5000 + 21.6506i 0.481125 + 0.833333i
\(676\) 0 0
\(677\) −6.00000 + 10.3923i −0.230599 + 0.399409i −0.957984 0.286820i \(-0.907402\pi\)
0.727386 + 0.686229i \(0.240735\pi\)
\(678\) 0 0
\(679\) −36.0000 31.1769i −1.38155 1.19646i
\(680\) 0 0
\(681\) −4.50000 + 7.79423i −0.172440 + 0.298675i
\(682\) 0 0
\(683\) −6.50000 11.2583i −0.248716 0.430788i 0.714454 0.699682i \(-0.246675\pi\)
−0.963170 + 0.268894i \(0.913342\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −22.0000 −0.839352
\(688\) 0 0
\(689\) 27.5000 + 47.6314i 1.04767 + 1.81461i
\(690\) 0 0
\(691\) −12.0000 + 20.7846i −0.456502 + 0.790684i −0.998773 0.0495194i \(-0.984231\pi\)
0.542272 + 0.840203i \(0.317564\pi\)
\(692\) 0 0
\(693\) 20.0000 + 17.3205i 0.759737 + 0.657952i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.00000 + 3.46410i 0.0757554 + 0.131212i
\(698\) 0 0
\(699\) 12.0000 0.453882
\(700\) 0 0
\(701\) 23.0000 0.868698 0.434349 0.900745i \(-0.356978\pi\)
0.434349 + 0.900745i \(0.356978\pi\)
\(702\) 0 0
\(703\) 24.0000 + 41.5692i 0.905177 + 1.56781i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.00000 5.19615i 0.0376089 0.195421i
\(708\) 0 0
\(709\) 5.00000 8.66025i 0.187779 0.325243i −0.756730 0.653727i \(-0.773204\pi\)
0.944509 + 0.328484i \(0.106538\pi\)
\(710\) 0 0
\(711\) 9.00000 + 15.5885i 0.337526 + 0.584613i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 9.00000 + 15.5885i 0.336111 + 0.582162i
\(718\) 0 0
\(719\) −17.5000 + 30.3109i −0.652640 + 1.13041i 0.329840 + 0.944037i \(0.393005\pi\)
−0.982480 + 0.186369i \(0.940328\pi\)
\(720\) 0 0
\(721\) 40.0000 13.8564i 1.48968 0.516040i
\(722\) 0 0
\(723\) −10.0000 + 17.3205i −0.371904 + 0.644157i
\(724\) 0 0
\(725\) 10.0000 + 17.3205i 0.371391 + 0.643268i
\(726\) 0 0
\(727\) 26.0000 0.964287 0.482143 0.876092i \(-0.339858\pi\)
0.482143 + 0.876092i \(0.339858\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −3.00000 5.19615i −0.110959 0.192187i
\(732\) 0 0
\(733\) 2.50000 4.33013i 0.0923396 0.159937i −0.816156 0.577832i \(-0.803899\pi\)
0.908495 + 0.417895i \(0.137232\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.0000 43.3013i 0.920887 1.59502i
\(738\) 0 0
\(739\) 9.00000 + 15.5885i 0.331070 + 0.573431i 0.982722 0.185088i \(-0.0592569\pi\)
−0.651652 + 0.758518i \(0.725924\pi\)
\(740\) 0 0
\(741\) −30.0000 −1.10208
\(742\) 0 0
\(743\) 7.00000 0.256805 0.128403 0.991722i \(-0.459015\pi\)
0.128403 + 0.991722i \(0.459015\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4.00000 6.92820i 0.146352 0.253490i
\(748\) 0 0
\(749\) 42.5000 14.7224i 1.55292 0.537946i
\(750\) 0 0
\(751\) −10.5000 + 18.1865i −0.383150 + 0.663636i −0.991511 0.130025i \(-0.958494\pi\)
0.608360 + 0.793661i \(0.291828\pi\)
\(752\) 0 0
\(753\) −2.00000 3.46410i −0.0728841 0.126239i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 33.0000 1.19941 0.599703 0.800223i \(-0.295286\pi\)
0.599703 + 0.800223i \(0.295286\pi\)
\(758\) 0 0
\(759\) −10.0000 17.3205i −0.362977 0.628695i
\(760\) 0 0
\(761\) −6.50000 + 11.2583i −0.235625 + 0.408114i −0.959454 0.281865i \(-0.909047\pi\)
0.723829 + 0.689979i \(0.242380\pi\)
\(762\) 0 0
\(763\) 8.00000 41.5692i 0.289619 1.50491i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 25.0000 + 43.3013i 0.902698 + 1.56352i
\(768\) 0 0
\(769\) −7.00000 −0.252426 −0.126213 0.992003i \(-0.540282\pi\)
−0.126213 + 0.992003i \(0.540282\pi\)
\(770\) 0 0
\(771\) −3.00000 −0.108042
\(772\) 0 0
\(773\) −0.500000 0.866025i −0.0179838 0.0311488i 0.856893 0.515494i \(-0.172391\pi\)
−0.874877 + 0.484345i \(0.839058\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −16.0000 13.8564i −0.573997 0.497096i
\(778\) 0 0
\(779\) 12.0000 20.7846i 0.429945 0.744686i
\(780\) 0 0
\(781\) 22.5000 + 38.9711i 0.805113 + 1.39450i
\(782\) 0 0
\(783\) 20.0000 0.714742
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 22.0000 + 38.1051i 0.784215 + 1.35830i 0.929467 + 0.368906i \(0.120268\pi\)
−0.145251 + 0.989395i \(0.546399\pi\)
\(788\) 0 0
\(789\) −4.00000 + 6.92820i −0.142404 + 0.246651i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0