Defining parameters
Level: | \( N \) | \(=\) | \( 476 = 2^{2} \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 476.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(476, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 156 | 20 | 136 |
Cusp forms | 132 | 20 | 112 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(476, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
476.2.i.a | $2$ | $3.801$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(4\) | \(-4\) | \(q+(-1+\zeta_{6})q^{3}+4\zeta_{6}q^{5}+(-3+2\zeta_{6})q^{7}+\cdots\) |
476.2.i.b | $2$ | $3.801$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(1\) | \(0\) | \(4\) | \(q+(1-\zeta_{6})q^{3}+(3-2\zeta_{6})q^{7}+2\zeta_{6}q^{9}+\cdots\) |
476.2.i.c | $2$ | $3.801$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(-4\) | \(4\) | \(q+(3-3\zeta_{6})q^{3}-4\zeta_{6}q^{5}+(1+2\zeta_{6})q^{7}+\cdots\) |
476.2.i.d | $6$ | $3.801$ | 6.0.1783323.2 | None | \(0\) | \(1\) | \(2\) | \(4\) | \(q+\beta _{1}q^{3}+(\beta _{1}+\beta _{2}+\beta _{4})q^{5}+(1+\beta _{2}+\cdots)q^{7}+\cdots\) |
476.2.i.e | $8$ | $3.801$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-2\) | \(2\) | \(2\) | \(q+(\beta _{1}-\beta _{2})q^{3}+(-\beta _{1}+\beta _{4})q^{5}+(\beta _{2}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(476, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(476, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 2}\)