Properties

Label 476.2
Level 476
Weight 2
Dimension 3688
Nonzero newspaces 20
Newform subspaces 30
Sturm bound 27648
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 476 = 2^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 20 \)
Newform subspaces: \( 30 \)
Sturm bound: \(27648\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(476))\).

Total New Old
Modular forms 7392 3984 3408
Cusp forms 6433 3688 2745
Eisenstein series 959 296 663

Trace form

\( 3688 q - 26 q^{2} + 2 q^{3} - 26 q^{4} - 46 q^{5} - 32 q^{6} + 8 q^{7} - 74 q^{8} - 56 q^{9} - 44 q^{10} + 10 q^{11} - 56 q^{12} - 56 q^{13} - 58 q^{14} + 36 q^{15} - 66 q^{16} - 39 q^{17} - 70 q^{18} + 14 q^{19}+ \cdots - 152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(476))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
476.2.a \(\chi_{476}(1, \cdot)\) 476.2.a.a 2 1
476.2.a.b 2
476.2.a.c 2
476.2.a.d 2
476.2.b \(\chi_{476}(169, \cdot)\) 476.2.b.a 8 1
476.2.e \(\chi_{476}(475, \cdot)\) 476.2.e.a 8 1
476.2.e.b 20
476.2.e.c 40
476.2.f \(\chi_{476}(307, \cdot)\) 476.2.f.a 64 1
476.2.i \(\chi_{476}(137, \cdot)\) 476.2.i.a 2 2
476.2.i.b 2
476.2.i.c 2
476.2.i.d 6
476.2.i.e 8
476.2.k \(\chi_{476}(55, \cdot)\) 476.2.k.a 136 2
476.2.l \(\chi_{476}(225, \cdot)\) 476.2.l.a 16 2
476.2.p \(\chi_{476}(103, \cdot)\) 476.2.p.a 128 2
476.2.q \(\chi_{476}(271, \cdot)\) 476.2.q.a 16 2
476.2.q.b 120
476.2.t \(\chi_{476}(305, \cdot)\) 476.2.t.a 24 2
476.2.u \(\chi_{476}(253, \cdot)\) 476.2.u.a 40 4
476.2.w \(\chi_{476}(83, \cdot)\) 476.2.w.a 272 4
476.2.z \(\chi_{476}(47, \cdot)\) 476.2.z.a 272 4
476.2.ba \(\chi_{476}(81, \cdot)\) 476.2.ba.a 48 4
476.2.bd \(\chi_{476}(71, \cdot)\) 476.2.bd.a 432 8
476.2.be \(\chi_{476}(41, \cdot)\) 476.2.be.a 96 8
476.2.bh \(\chi_{476}(9, \cdot)\) 476.2.bh.a 96 8
476.2.bj \(\chi_{476}(19, \cdot)\) 476.2.bj.a 544 8
476.2.bl \(\chi_{476}(5, \cdot)\) 476.2.bl.a 192 16
476.2.bm \(\chi_{476}(11, \cdot)\) 476.2.bm.a 1088 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(476))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(476)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(119))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(238))\)\(^{\oplus 2}\)