Properties

Label 4752.2.a
Level $4752$
Weight $2$
Character orbit 4752.a
Rep. character $\chi_{4752}(1,\cdot)$
Character field $\Q$
Dimension $80$
Newform subspaces $44$
Sturm bound $1728$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4752 = 2^{4} \cdot 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4752.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 44 \)
Sturm bound: \(1728\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(7\), \(13\), \(17\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4752))\).

Total New Old
Modular forms 900 80 820
Cusp forms 829 80 749
Eisenstein series 71 0 71

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(108\)\(10\)\(98\)\(100\)\(10\)\(90\)\(8\)\(0\)\(8\)
\(+\)\(+\)\(-\)\(-\)\(117\)\(12\)\(105\)\(108\)\(12\)\(96\)\(9\)\(0\)\(9\)
\(+\)\(-\)\(+\)\(-\)\(114\)\(10\)\(104\)\(105\)\(10\)\(95\)\(9\)\(0\)\(9\)
\(+\)\(-\)\(-\)\(+\)\(111\)\(8\)\(103\)\(102\)\(8\)\(94\)\(9\)\(0\)\(9\)
\(-\)\(+\)\(+\)\(-\)\(117\)\(11\)\(106\)\(108\)\(11\)\(97\)\(9\)\(0\)\(9\)
\(-\)\(+\)\(-\)\(+\)\(108\)\(9\)\(99\)\(99\)\(9\)\(90\)\(9\)\(0\)\(9\)
\(-\)\(-\)\(+\)\(+\)\(111\)\(9\)\(102\)\(102\)\(9\)\(93\)\(9\)\(0\)\(9\)
\(-\)\(-\)\(-\)\(-\)\(114\)\(11\)\(103\)\(105\)\(11\)\(94\)\(9\)\(0\)\(9\)
Plus space\(+\)\(438\)\(36\)\(402\)\(403\)\(36\)\(367\)\(35\)\(0\)\(35\)
Minus space\(-\)\(462\)\(44\)\(418\)\(426\)\(44\)\(382\)\(36\)\(0\)\(36\)

Trace form

\( 80 q + 4 q^{7} - 4 q^{19} + 80 q^{25} - 40 q^{31} + 32 q^{37} - 32 q^{43} + 88 q^{49} + 48 q^{61} + 4 q^{67} + 8 q^{73} + 20 q^{79} + 48 q^{85} - 4 q^{91} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4752))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 11
4752.2.a.a 4752.a 1.a $1$ $37.945$ \(\Q\) None 2376.2.a.a \(0\) \(0\) \(-3\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{5}-4q^{7}-q^{11}+3q^{13}+3q^{17}+\cdots\)
4752.2.a.b 4752.a 1.a $1$ $37.945$ \(\Q\) None 594.2.a.a \(0\) \(0\) \(-3\) \(4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{5}+4q^{7}+q^{11}+5q^{13}-3q^{17}+\cdots\)
4752.2.a.c 4752.a 1.a $1$ $37.945$ \(\Q\) None 297.2.a.a \(0\) \(0\) \(-2\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}-q^{7}-q^{11}-5q^{13}-2q^{17}+\cdots\)
4752.2.a.d 4752.a 1.a $1$ $37.945$ \(\Q\) None 594.2.a.c \(0\) \(0\) \(-2\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}-q^{7}+q^{11}-2q^{13}-q^{17}+\cdots\)
4752.2.a.e 4752.a 1.a $1$ $37.945$ \(\Q\) None 1188.2.a.a \(0\) \(0\) \(-2\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}+q^{7}-q^{11}+3q^{13}-2q^{17}+\cdots\)
4752.2.a.f 4752.a 1.a $1$ $37.945$ \(\Q\) None 594.2.a.b \(0\) \(0\) \(-2\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}+q^{7}-q^{11}+6q^{13}-5q^{17}+\cdots\)
4752.2.a.g 4752.a 1.a $1$ $37.945$ \(\Q\) None 297.2.a.b \(0\) \(0\) \(-2\) \(5\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}+5q^{7}-q^{11}-2q^{13}+7q^{17}+\cdots\)
4752.2.a.h 4752.a 1.a $1$ $37.945$ \(\Q\) None 594.2.a.d \(0\) \(0\) \(-1\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-4q^{7}-q^{11}+q^{13}-5q^{17}+\cdots\)
4752.2.a.i 4752.a 1.a $1$ $37.945$ \(\Q\) None 2376.2.a.b \(0\) \(0\) \(0\) \(-1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{7}-q^{11}-3q^{13}+5q^{19}+4q^{23}+\cdots\)
4752.2.a.j 4752.a 1.a $1$ $37.945$ \(\Q\) None 2376.2.a.b \(0\) \(0\) \(0\) \(-1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{7}+q^{11}-3q^{13}+5q^{19}-4q^{23}+\cdots\)
4752.2.a.k 4752.a 1.a $1$ $37.945$ \(\Q\) None 1188.2.a.b \(0\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{7}-q^{11}-4q^{13}-3q^{17}+4q^{19}+\cdots\)
4752.2.a.l 4752.a 1.a $1$ $37.945$ \(\Q\) None 1188.2.a.b \(0\) \(0\) \(0\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{7}+q^{11}-4q^{13}+3q^{17}+4q^{19}+\cdots\)
4752.2.a.m 4752.a 1.a $1$ $37.945$ \(\Q\) None 594.2.a.d \(0\) \(0\) \(1\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-4q^{7}+q^{11}+q^{13}+5q^{17}+\cdots\)
4752.2.a.n 4752.a 1.a $1$ $37.945$ \(\Q\) None 594.2.a.c \(0\) \(0\) \(2\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}-q^{7}-q^{11}-2q^{13}+q^{17}+\cdots\)
4752.2.a.o 4752.a 1.a $1$ $37.945$ \(\Q\) None 297.2.a.a \(0\) \(0\) \(2\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}-q^{7}+q^{11}-5q^{13}+2q^{17}+\cdots\)
4752.2.a.p 4752.a 1.a $1$ $37.945$ \(\Q\) None 1188.2.a.a \(0\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+q^{7}+q^{11}+3q^{13}+2q^{17}+\cdots\)
4752.2.a.q 4752.a 1.a $1$ $37.945$ \(\Q\) None 594.2.a.b \(0\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+q^{7}+q^{11}+6q^{13}+5q^{17}+\cdots\)
4752.2.a.r 4752.a 1.a $1$ $37.945$ \(\Q\) None 297.2.a.b \(0\) \(0\) \(2\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+5q^{7}+q^{11}-2q^{13}-7q^{17}+\cdots\)
4752.2.a.s 4752.a 1.a $1$ $37.945$ \(\Q\) None 2376.2.a.a \(0\) \(0\) \(3\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{5}-4q^{7}+q^{11}+3q^{13}-3q^{17}+\cdots\)
4752.2.a.t 4752.a 1.a $1$ $37.945$ \(\Q\) None 594.2.a.a \(0\) \(0\) \(3\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{5}+4q^{7}-q^{11}+5q^{13}+3q^{17}+\cdots\)
4752.2.a.u 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{10}) \) None 594.2.a.i \(0\) \(0\) \(-2\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{5}-2q^{7}-q^{11}+(1+\beta )q^{13}+\cdots\)
4752.2.a.v 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{7}) \) None 1188.2.a.e \(0\) \(0\) \(-2\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{5}+\beta q^{7}+q^{11}-\beta q^{13}+\cdots\)
4752.2.a.w 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{3}) \) None 297.2.a.e \(0\) \(0\) \(-2\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{5}+(2+\beta )q^{7}+q^{11}+(-2+\cdots)q^{13}+\cdots\)
4752.2.a.x 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{7}) \) None 2376.2.a.i \(0\) \(0\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{7}-q^{11}+(2-\beta )q^{17}-2\beta q^{19}+\cdots\)
4752.2.a.y 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{7}) \) None 2376.2.a.i \(0\) \(0\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{7}+q^{11}+(-2-\beta )q^{17}+2\beta q^{19}+\cdots\)
4752.2.a.z 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{2}) \) None 2376.2.a.e \(0\) \(0\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2\beta q^{5}+(1+\beta )q^{7}-q^{11}+(-4-2\beta )q^{13}+\cdots\)
4752.2.a.ba 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{2}) \) None 2376.2.a.f \(0\) \(0\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+(1-\beta )q^{7}-q^{11}+(-1-\beta )q^{13}+\cdots\)
4752.2.a.bb 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{2}) \) None 2376.2.a.e \(0\) \(0\) \(0\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{5}+(1-\beta )q^{7}+q^{11}+(-4+2\beta )q^{13}+\cdots\)
4752.2.a.bc 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{2}) \) None 2376.2.a.f \(0\) \(0\) \(0\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+(1+\beta )q^{7}+q^{11}+(-1+\beta )q^{13}+\cdots\)
4752.2.a.bd 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{10}) \) None 594.2.a.i \(0\) \(0\) \(2\) \(-4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}-2q^{7}+q^{11}+(1-\beta )q^{13}+\cdots\)
4752.2.a.be 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{7}) \) None 1188.2.a.e \(0\) \(0\) \(2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}-\beta q^{7}-q^{11}+\beta q^{13}+\cdots\)
4752.2.a.bf 4752.a 1.a $2$ $37.945$ \(\Q(\sqrt{3}) \) None 297.2.a.e \(0\) \(0\) \(2\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}+(2-\beta )q^{7}-q^{11}+(-2+\cdots)q^{13}+\cdots\)
4752.2.a.bg 4752.a 1.a $3$ $37.945$ 3.3.564.1 None 297.2.a.g \(0\) \(0\) \(-2\) \(-7\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{5}+(-2-\beta _{1})q^{7}+q^{11}+\cdots\)
4752.2.a.bh 4752.a 1.a $3$ $37.945$ 3.3.788.1 None 2376.2.a.l \(0\) \(0\) \(-2\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{2})q^{5}-\beta _{1}q^{7}+q^{11}+(1+\cdots)q^{13}+\cdots\)
4752.2.a.bi 4752.a 1.a $3$ $37.945$ 3.3.1016.1 None 2376.2.a.m \(0\) \(0\) \(-2\) \(-1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{5}+(-\beta _{1}-\beta _{2})q^{7}+q^{11}+\cdots\)
4752.2.a.bj 4752.a 1.a $3$ $37.945$ 3.3.564.1 None 2376.2.a.k \(0\) \(0\) \(-2\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{5}+(1-\beta _{1}-\beta _{2})q^{7}+\cdots\)
4752.2.a.bk 4752.a 1.a $3$ $37.945$ 3.3.7032.1 None 2376.2.a.n \(0\) \(0\) \(-1\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{5}+(1-\beta _{1})q^{7}+q^{11}+(-1+\cdots)q^{13}+\cdots\)
4752.2.a.bl 4752.a 1.a $3$ $37.945$ 3.3.3124.1 None 1188.2.a.g \(0\) \(0\) \(0\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{5}+\beta _{2}q^{7}-q^{11}+(2-\beta _{1})q^{13}+\cdots\)
4752.2.a.bm 4752.a 1.a $3$ $37.945$ 3.3.3124.1 None 1188.2.a.g \(0\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}+\beta _{2}q^{7}+q^{11}+(2-\beta _{1})q^{13}+\cdots\)
4752.2.a.bn 4752.a 1.a $3$ $37.945$ 3.3.7032.1 None 2376.2.a.n \(0\) \(0\) \(1\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}+(1-\beta _{1})q^{7}-q^{11}+(-1+\cdots)q^{13}+\cdots\)
4752.2.a.bo 4752.a 1.a $3$ $37.945$ 3.3.564.1 None 297.2.a.g \(0\) \(0\) \(2\) \(-7\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{5}+(-2-\beta _{1})q^{7}-q^{11}+\cdots\)
4752.2.a.bp 4752.a 1.a $3$ $37.945$ 3.3.788.1 None 2376.2.a.l \(0\) \(0\) \(2\) \(-1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{2})q^{5}-\beta _{1}q^{7}-q^{11}+(1-2\beta _{1}+\cdots)q^{13}+\cdots\)
4752.2.a.bq 4752.a 1.a $3$ $37.945$ 3.3.1016.1 None 2376.2.a.m \(0\) \(0\) \(2\) \(-1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{5}+(-\beta _{1}-\beta _{2})q^{7}-q^{11}+\cdots\)
4752.2.a.br 4752.a 1.a $3$ $37.945$ 3.3.564.1 None 2376.2.a.k \(0\) \(0\) \(2\) \(3\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{5}+(1-\beta _{1}-\beta _{2})q^{7}+q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4752))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4752)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(297))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(396))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(432))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(528))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(594))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(792))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1188))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1584))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2376))\)\(^{\oplus 2}\)