Defining parameters
| Level: | \( N \) | \(=\) | \( 4752 = 2^{4} \cdot 3^{3} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4752.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 44 \) | ||
| Sturm bound: | \(1728\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\), \(13\), \(17\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4752))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 900 | 80 | 820 |
| Cusp forms | 829 | 80 | 749 |
| Eisenstein series | 71 | 0 | 71 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(108\) | \(10\) | \(98\) | \(100\) | \(10\) | \(90\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(117\) | \(12\) | \(105\) | \(108\) | \(12\) | \(96\) | \(9\) | \(0\) | \(9\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(114\) | \(10\) | \(104\) | \(105\) | \(10\) | \(95\) | \(9\) | \(0\) | \(9\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(111\) | \(8\) | \(103\) | \(102\) | \(8\) | \(94\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(117\) | \(11\) | \(106\) | \(108\) | \(11\) | \(97\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(108\) | \(9\) | \(99\) | \(99\) | \(9\) | \(90\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(111\) | \(9\) | \(102\) | \(102\) | \(9\) | \(93\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(114\) | \(11\) | \(103\) | \(105\) | \(11\) | \(94\) | \(9\) | \(0\) | \(9\) | |||
| Plus space | \(+\) | \(438\) | \(36\) | \(402\) | \(403\) | \(36\) | \(367\) | \(35\) | \(0\) | \(35\) | |||||
| Minus space | \(-\) | \(462\) | \(44\) | \(418\) | \(426\) | \(44\) | \(382\) | \(36\) | \(0\) | \(36\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4752))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4752))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4752)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(297))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(396))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(432))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(528))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(594))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(792))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1188))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1584))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2376))\)\(^{\oplus 2}\)