Properties

Label 475.6.a.c.1.1
Level $475$
Weight $6$
Character 475.1
Self dual yes
Analytic conductor $76.182$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,6,Mod(1,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.1823144112\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.00000 q^{2} +11.0000 q^{3} +17.0000 q^{4} +77.0000 q^{6} +197.000 q^{7} -105.000 q^{8} -122.000 q^{9} -468.000 q^{11} +187.000 q^{12} +921.000 q^{13} +1379.00 q^{14} -1279.00 q^{16} +1107.00 q^{17} -854.000 q^{18} +361.000 q^{19} +2167.00 q^{21} -3276.00 q^{22} +3641.00 q^{23} -1155.00 q^{24} +6447.00 q^{26} -4015.00 q^{27} +3349.00 q^{28} +7525.00 q^{29} +1422.00 q^{31} -5593.00 q^{32} -5148.00 q^{33} +7749.00 q^{34} -2074.00 q^{36} +11282.0 q^{37} +2527.00 q^{38} +10131.0 q^{39} -678.000 q^{41} +15169.0 q^{42} -5974.00 q^{43} -7956.00 q^{44} +25487.0 q^{46} +11072.0 q^{47} -14069.0 q^{48} +22002.0 q^{49} +12177.0 q^{51} +15657.0 q^{52} +17461.0 q^{53} -28105.0 q^{54} -20685.0 q^{56} +3971.00 q^{57} +52675.0 q^{58} -46305.0 q^{59} +16292.0 q^{61} +9954.00 q^{62} -24034.0 q^{63} +1777.00 q^{64} -36036.0 q^{66} -36373.0 q^{67} +18819.0 q^{68} +40051.0 q^{69} -82208.0 q^{71} +12810.0 q^{72} +43861.0 q^{73} +78974.0 q^{74} +6137.00 q^{76} -92196.0 q^{77} +70917.0 q^{78} -30130.0 q^{79} -14519.0 q^{81} -4746.00 q^{82} +91626.0 q^{83} +36839.0 q^{84} -41818.0 q^{86} +82775.0 q^{87} +49140.0 q^{88} +79170.0 q^{89} +181437. q^{91} +61897.0 q^{92} +15642.0 q^{93} +77504.0 q^{94} -61523.0 q^{96} -128718. q^{97} +154014. q^{98} +57096.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.00000 1.23744 0.618718 0.785613i \(-0.287652\pi\)
0.618718 + 0.785613i \(0.287652\pi\)
\(3\) 11.0000 0.705650 0.352825 0.935689i \(-0.385221\pi\)
0.352825 + 0.935689i \(0.385221\pi\)
\(4\) 17.0000 0.531250
\(5\) 0 0
\(6\) 77.0000 0.873198
\(7\) 197.000 1.51957 0.759786 0.650174i \(-0.225304\pi\)
0.759786 + 0.650174i \(0.225304\pi\)
\(8\) −105.000 −0.580049
\(9\) −122.000 −0.502058
\(10\) 0 0
\(11\) −468.000 −1.16618 −0.583088 0.812409i \(-0.698156\pi\)
−0.583088 + 0.812409i \(0.698156\pi\)
\(12\) 187.000 0.374877
\(13\) 921.000 1.51148 0.755738 0.654874i \(-0.227278\pi\)
0.755738 + 0.654874i \(0.227278\pi\)
\(14\) 1379.00 1.88037
\(15\) 0 0
\(16\) −1279.00 −1.24902
\(17\) 1107.00 0.929021 0.464510 0.885568i \(-0.346230\pi\)
0.464510 + 0.885568i \(0.346230\pi\)
\(18\) −854.000 −0.621265
\(19\) 361.000 0.229416
\(20\) 0 0
\(21\) 2167.00 1.07229
\(22\) −3276.00 −1.44307
\(23\) 3641.00 1.43516 0.717581 0.696475i \(-0.245249\pi\)
0.717581 + 0.696475i \(0.245249\pi\)
\(24\) −1155.00 −0.409311
\(25\) 0 0
\(26\) 6447.00 1.87036
\(27\) −4015.00 −1.05993
\(28\) 3349.00 0.807272
\(29\) 7525.00 1.66154 0.830771 0.556614i \(-0.187900\pi\)
0.830771 + 0.556614i \(0.187900\pi\)
\(30\) 0 0
\(31\) 1422.00 0.265764 0.132882 0.991132i \(-0.457577\pi\)
0.132882 + 0.991132i \(0.457577\pi\)
\(32\) −5593.00 −0.965539
\(33\) −5148.00 −0.822913
\(34\) 7749.00 1.14960
\(35\) 0 0
\(36\) −2074.00 −0.266718
\(37\) 11282.0 1.35482 0.677410 0.735605i \(-0.263102\pi\)
0.677410 + 0.735605i \(0.263102\pi\)
\(38\) 2527.00 0.283887
\(39\) 10131.0 1.06657
\(40\) 0 0
\(41\) −678.000 −0.0629898 −0.0314949 0.999504i \(-0.510027\pi\)
−0.0314949 + 0.999504i \(0.510027\pi\)
\(42\) 15169.0 1.32689
\(43\) −5974.00 −0.492713 −0.246357 0.969179i \(-0.579233\pi\)
−0.246357 + 0.969179i \(0.579233\pi\)
\(44\) −7956.00 −0.619531
\(45\) 0 0
\(46\) 25487.0 1.77592
\(47\) 11072.0 0.731108 0.365554 0.930790i \(-0.380880\pi\)
0.365554 + 0.930790i \(0.380880\pi\)
\(48\) −14069.0 −0.881374
\(49\) 22002.0 1.30910
\(50\) 0 0
\(51\) 12177.0 0.655564
\(52\) 15657.0 0.802972
\(53\) 17461.0 0.853846 0.426923 0.904288i \(-0.359598\pi\)
0.426923 + 0.904288i \(0.359598\pi\)
\(54\) −28105.0 −1.31159
\(55\) 0 0
\(56\) −20685.0 −0.881425
\(57\) 3971.00 0.161887
\(58\) 52675.0 2.05605
\(59\) −46305.0 −1.73180 −0.865900 0.500217i \(-0.833254\pi\)
−0.865900 + 0.500217i \(0.833254\pi\)
\(60\) 0 0
\(61\) 16292.0 0.560596 0.280298 0.959913i \(-0.409567\pi\)
0.280298 + 0.959913i \(0.409567\pi\)
\(62\) 9954.00 0.328866
\(63\) −24034.0 −0.762912
\(64\) 1777.00 0.0542297
\(65\) 0 0
\(66\) −36036.0 −1.01830
\(67\) −36373.0 −0.989902 −0.494951 0.868921i \(-0.664814\pi\)
−0.494951 + 0.868921i \(0.664814\pi\)
\(68\) 18819.0 0.493542
\(69\) 40051.0 1.01272
\(70\) 0 0
\(71\) −82208.0 −1.93539 −0.967694 0.252126i \(-0.918870\pi\)
−0.967694 + 0.252126i \(0.918870\pi\)
\(72\) 12810.0 0.291218
\(73\) 43861.0 0.963322 0.481661 0.876358i \(-0.340034\pi\)
0.481661 + 0.876358i \(0.340034\pi\)
\(74\) 78974.0 1.67650
\(75\) 0 0
\(76\) 6137.00 0.121877
\(77\) −92196.0 −1.77209
\(78\) 70917.0 1.31982
\(79\) −30130.0 −0.543165 −0.271582 0.962415i \(-0.587547\pi\)
−0.271582 + 0.962415i \(0.587547\pi\)
\(80\) 0 0
\(81\) −14519.0 −0.245881
\(82\) −4746.00 −0.0779459
\(83\) 91626.0 1.45990 0.729951 0.683500i \(-0.239543\pi\)
0.729951 + 0.683500i \(0.239543\pi\)
\(84\) 36839.0 0.569652
\(85\) 0 0
\(86\) −41818.0 −0.609701
\(87\) 82775.0 1.17247
\(88\) 49140.0 0.676439
\(89\) 79170.0 1.05946 0.529731 0.848166i \(-0.322293\pi\)
0.529731 + 0.848166i \(0.322293\pi\)
\(90\) 0 0
\(91\) 181437. 2.29680
\(92\) 61897.0 0.762430
\(93\) 15642.0 0.187536
\(94\) 77504.0 0.904700
\(95\) 0 0
\(96\) −61523.0 −0.681333
\(97\) −128718. −1.38902 −0.694512 0.719481i \(-0.744380\pi\)
−0.694512 + 0.719481i \(0.744380\pi\)
\(98\) 154014. 1.61993
\(99\) 57096.0 0.585488
\(100\) 0 0
\(101\) 63432.0 0.618735 0.309368 0.950942i \(-0.399883\pi\)
0.309368 + 0.950942i \(0.399883\pi\)
\(102\) 85239.0 0.811219
\(103\) 49436.0 0.459145 0.229573 0.973292i \(-0.426267\pi\)
0.229573 + 0.973292i \(0.426267\pi\)
\(104\) −96705.0 −0.876729
\(105\) 0 0
\(106\) 122227. 1.05658
\(107\) −42603.0 −0.359733 −0.179867 0.983691i \(-0.557567\pi\)
−0.179867 + 0.983691i \(0.557567\pi\)
\(108\) −68255.0 −0.563086
\(109\) 41355.0 0.333397 0.166699 0.986008i \(-0.446689\pi\)
0.166699 + 0.986008i \(0.446689\pi\)
\(110\) 0 0
\(111\) 124102. 0.956030
\(112\) −251963. −1.89798
\(113\) 172896. 1.27376 0.636882 0.770961i \(-0.280224\pi\)
0.636882 + 0.770961i \(0.280224\pi\)
\(114\) 27797.0 0.200325
\(115\) 0 0
\(116\) 127925. 0.882695
\(117\) −112362. −0.758848
\(118\) −324135. −2.14299
\(119\) 218079. 1.41171
\(120\) 0 0
\(121\) 57973.0 0.359967
\(122\) 114044. 0.693702
\(123\) −7458.00 −0.0444488
\(124\) 24174.0 0.141187
\(125\) 0 0
\(126\) −168238. −0.944056
\(127\) −190138. −1.04607 −0.523034 0.852312i \(-0.675200\pi\)
−0.523034 + 0.852312i \(0.675200\pi\)
\(128\) 191415. 1.03264
\(129\) −65714.0 −0.347683
\(130\) 0 0
\(131\) −184448. −0.939065 −0.469533 0.882915i \(-0.655578\pi\)
−0.469533 + 0.882915i \(0.655578\pi\)
\(132\) −87516.0 −0.437172
\(133\) 71117.0 0.348614
\(134\) −254611. −1.22494
\(135\) 0 0
\(136\) −116235. −0.538877
\(137\) 274807. 1.25091 0.625455 0.780260i \(-0.284913\pi\)
0.625455 + 0.780260i \(0.284913\pi\)
\(138\) 280357. 1.25318
\(139\) −337360. −1.48101 −0.740503 0.672053i \(-0.765412\pi\)
−0.740503 + 0.672053i \(0.765412\pi\)
\(140\) 0 0
\(141\) 121792. 0.515906
\(142\) −575456. −2.39492
\(143\) −431028. −1.76265
\(144\) 156038. 0.627082
\(145\) 0 0
\(146\) 307027. 1.19205
\(147\) 242022. 0.923765
\(148\) 191794. 0.719748
\(149\) −54420.0 −0.200813 −0.100407 0.994946i \(-0.532014\pi\)
−0.100407 + 0.994946i \(0.532014\pi\)
\(150\) 0 0
\(151\) −487498. −1.73992 −0.869962 0.493118i \(-0.835857\pi\)
−0.869962 + 0.493118i \(0.835857\pi\)
\(152\) −37905.0 −0.133072
\(153\) −135054. −0.466422
\(154\) −645372. −2.19285
\(155\) 0 0
\(156\) 172227. 0.566617
\(157\) 339482. 1.09918 0.549588 0.835436i \(-0.314785\pi\)
0.549588 + 0.835436i \(0.314785\pi\)
\(158\) −210910. −0.672132
\(159\) 192071. 0.602517
\(160\) 0 0
\(161\) 717277. 2.18083
\(162\) −101633. −0.304262
\(163\) −300374. −0.885510 −0.442755 0.896643i \(-0.645999\pi\)
−0.442755 + 0.896643i \(0.645999\pi\)
\(164\) −11526.0 −0.0334633
\(165\) 0 0
\(166\) 641382. 1.80654
\(167\) 165122. 0.458156 0.229078 0.973408i \(-0.426429\pi\)
0.229078 + 0.973408i \(0.426429\pi\)
\(168\) −227535. −0.621978
\(169\) 476948. 1.28456
\(170\) 0 0
\(171\) −44042.0 −0.115180
\(172\) −101558. −0.261754
\(173\) 581406. 1.47694 0.738472 0.674284i \(-0.235548\pi\)
0.738472 + 0.674284i \(0.235548\pi\)
\(174\) 579425. 1.45086
\(175\) 0 0
\(176\) 598572. 1.45658
\(177\) −509355. −1.22205
\(178\) 554190. 1.31102
\(179\) 150520. 0.351125 0.175562 0.984468i \(-0.443826\pi\)
0.175562 + 0.984468i \(0.443826\pi\)
\(180\) 0 0
\(181\) −208598. −0.473275 −0.236638 0.971598i \(-0.576045\pi\)
−0.236638 + 0.971598i \(0.576045\pi\)
\(182\) 1.27006e6 2.84214
\(183\) 179212. 0.395585
\(184\) −382305. −0.832464
\(185\) 0 0
\(186\) 109494. 0.232064
\(187\) −518076. −1.08340
\(188\) 188224. 0.388401
\(189\) −790955. −1.61064
\(190\) 0 0
\(191\) −853463. −1.69278 −0.846391 0.532561i \(-0.821230\pi\)
−0.846391 + 0.532561i \(0.821230\pi\)
\(192\) 19547.0 0.0382672
\(193\) −229674. −0.443832 −0.221916 0.975066i \(-0.571231\pi\)
−0.221916 + 0.975066i \(0.571231\pi\)
\(194\) −901026. −1.71883
\(195\) 0 0
\(196\) 374034. 0.695458
\(197\) −842778. −1.54720 −0.773602 0.633672i \(-0.781547\pi\)
−0.773602 + 0.633672i \(0.781547\pi\)
\(198\) 399672. 0.724504
\(199\) 636865. 1.14003 0.570013 0.821636i \(-0.306938\pi\)
0.570013 + 0.821636i \(0.306938\pi\)
\(200\) 0 0
\(201\) −400103. −0.698525
\(202\) 444024. 0.765646
\(203\) 1.48242e6 2.52483
\(204\) 207009. 0.348268
\(205\) 0 0
\(206\) 346052. 0.568163
\(207\) −444202. −0.720534
\(208\) −1.17796e6 −1.88787
\(209\) −168948. −0.267539
\(210\) 0 0
\(211\) −684173. −1.05794 −0.528968 0.848641i \(-0.677421\pi\)
−0.528968 + 0.848641i \(0.677421\pi\)
\(212\) 296837. 0.453606
\(213\) −904288. −1.36571
\(214\) −298221. −0.445147
\(215\) 0 0
\(216\) 421575. 0.614809
\(217\) 280134. 0.403847
\(218\) 289485. 0.412558
\(219\) 482471. 0.679768
\(220\) 0 0
\(221\) 1.01955e6 1.40419
\(222\) 868714. 1.18303
\(223\) −370094. −0.498368 −0.249184 0.968456i \(-0.580162\pi\)
−0.249184 + 0.968456i \(0.580162\pi\)
\(224\) −1.10182e6 −1.46721
\(225\) 0 0
\(226\) 1.21027e6 1.57620
\(227\) 497827. 0.641230 0.320615 0.947210i \(-0.396110\pi\)
0.320615 + 0.947210i \(0.396110\pi\)
\(228\) 67507.0 0.0860026
\(229\) −848470. −1.06917 −0.534586 0.845114i \(-0.679533\pi\)
−0.534586 + 0.845114i \(0.679533\pi\)
\(230\) 0 0
\(231\) −1.01416e6 −1.25047
\(232\) −790125. −0.963775
\(233\) 153206. 0.184878 0.0924392 0.995718i \(-0.470534\pi\)
0.0924392 + 0.995718i \(0.470534\pi\)
\(234\) −786534. −0.939027
\(235\) 0 0
\(236\) −787185. −0.920019
\(237\) −331430. −0.383284
\(238\) 1.52655e6 1.74691
\(239\) −325035. −0.368074 −0.184037 0.982919i \(-0.558917\pi\)
−0.184037 + 0.982919i \(0.558917\pi\)
\(240\) 0 0
\(241\) 870852. 0.965832 0.482916 0.875667i \(-0.339578\pi\)
0.482916 + 0.875667i \(0.339578\pi\)
\(242\) 405811. 0.445436
\(243\) 815936. 0.886422
\(244\) 276964. 0.297817
\(245\) 0 0
\(246\) −52206.0 −0.0550025
\(247\) 332481. 0.346756
\(248\) −149310. −0.154156
\(249\) 1.00789e6 1.03018
\(250\) 0 0
\(251\) 973812. 0.975643 0.487821 0.872943i \(-0.337792\pi\)
0.487821 + 0.872943i \(0.337792\pi\)
\(252\) −408578. −0.405297
\(253\) −1.70399e6 −1.67365
\(254\) −1.33097e6 −1.29444
\(255\) 0 0
\(256\) 1.28304e6 1.22360
\(257\) −1.38172e6 −1.30493 −0.652464 0.757820i \(-0.726265\pi\)
−0.652464 + 0.757820i \(0.726265\pi\)
\(258\) −459998. −0.430236
\(259\) 2.22255e6 2.05875
\(260\) 0 0
\(261\) −918050. −0.834190
\(262\) −1.29114e6 −1.16203
\(263\) −449064. −0.400331 −0.200165 0.979762i \(-0.564148\pi\)
−0.200165 + 0.979762i \(0.564148\pi\)
\(264\) 540540. 0.477329
\(265\) 0 0
\(266\) 497819. 0.431387
\(267\) 870870. 0.747610
\(268\) −618341. −0.525885
\(269\) 59250.0 0.0499238 0.0249619 0.999688i \(-0.492054\pi\)
0.0249619 + 0.999688i \(0.492054\pi\)
\(270\) 0 0
\(271\) −194843. −0.161162 −0.0805808 0.996748i \(-0.525678\pi\)
−0.0805808 + 0.996748i \(0.525678\pi\)
\(272\) −1.41585e6 −1.16037
\(273\) 1.99581e6 1.62073
\(274\) 1.92365e6 1.54792
\(275\) 0 0
\(276\) 680867. 0.538009
\(277\) −65848.0 −0.0515636 −0.0257818 0.999668i \(-0.508208\pi\)
−0.0257818 + 0.999668i \(0.508208\pi\)
\(278\) −2.36152e6 −1.83265
\(279\) −173484. −0.133429
\(280\) 0 0
\(281\) 270302. 0.204213 0.102107 0.994773i \(-0.467442\pi\)
0.102107 + 0.994773i \(0.467442\pi\)
\(282\) 852544. 0.638402
\(283\) −802174. −0.595391 −0.297696 0.954661i \(-0.596218\pi\)
−0.297696 + 0.954661i \(0.596218\pi\)
\(284\) −1.39754e6 −1.02818
\(285\) 0 0
\(286\) −3.01720e6 −2.18116
\(287\) −133566. −0.0957175
\(288\) 682346. 0.484756
\(289\) −194408. −0.136921
\(290\) 0 0
\(291\) −1.41590e6 −0.980166
\(292\) 745637. 0.511765
\(293\) −533229. −0.362865 −0.181432 0.983403i \(-0.558073\pi\)
−0.181432 + 0.983403i \(0.558073\pi\)
\(294\) 1.69415e6 1.14310
\(295\) 0 0
\(296\) −1.18461e6 −0.785862
\(297\) 1.87902e6 1.23606
\(298\) −380940. −0.248494
\(299\) 3.35336e6 2.16921
\(300\) 0 0
\(301\) −1.17688e6 −0.748713
\(302\) −3.41249e6 −2.15305
\(303\) 697752. 0.436611
\(304\) −461719. −0.286546
\(305\) 0 0
\(306\) −945378. −0.577168
\(307\) 1.19721e6 0.724978 0.362489 0.931988i \(-0.381927\pi\)
0.362489 + 0.931988i \(0.381927\pi\)
\(308\) −1.56733e6 −0.941422
\(309\) 543796. 0.323996
\(310\) 0 0
\(311\) −1.42130e6 −0.833270 −0.416635 0.909074i \(-0.636791\pi\)
−0.416635 + 0.909074i \(0.636791\pi\)
\(312\) −1.06375e6 −0.618664
\(313\) −1.39904e6 −0.807177 −0.403589 0.914941i \(-0.632237\pi\)
−0.403589 + 0.914941i \(0.632237\pi\)
\(314\) 2.37637e6 1.36016
\(315\) 0 0
\(316\) −512210. −0.288556
\(317\) −780993. −0.436515 −0.218257 0.975891i \(-0.570037\pi\)
−0.218257 + 0.975891i \(0.570037\pi\)
\(318\) 1.34450e6 0.745576
\(319\) −3.52170e6 −1.93765
\(320\) 0 0
\(321\) −468633. −0.253846
\(322\) 5.02094e6 2.69864
\(323\) 399627. 0.213132
\(324\) −246823. −0.130624
\(325\) 0 0
\(326\) −2.10262e6 −1.09576
\(327\) 454905. 0.235262
\(328\) 71190.0 0.0365371
\(329\) 2.18118e6 1.11097
\(330\) 0 0
\(331\) −2.95838e6 −1.48417 −0.742086 0.670304i \(-0.766164\pi\)
−0.742086 + 0.670304i \(0.766164\pi\)
\(332\) 1.55764e6 0.775573
\(333\) −1.37640e6 −0.680198
\(334\) 1.15585e6 0.566940
\(335\) 0 0
\(336\) −2.77159e6 −1.33931
\(337\) −2.16116e6 −1.03660 −0.518301 0.855198i \(-0.673435\pi\)
−0.518301 + 0.855198i \(0.673435\pi\)
\(338\) 3.33864e6 1.58956
\(339\) 1.90186e6 0.898832
\(340\) 0 0
\(341\) −665496. −0.309927
\(342\) −308294. −0.142528
\(343\) 1.02341e6 0.469696
\(344\) 627270. 0.285797
\(345\) 0 0
\(346\) 4.06984e6 1.82763
\(347\) 1.83170e6 0.816641 0.408320 0.912839i \(-0.366115\pi\)
0.408320 + 0.912839i \(0.366115\pi\)
\(348\) 1.40718e6 0.622874
\(349\) 1.83019e6 0.804327 0.402163 0.915568i \(-0.368258\pi\)
0.402163 + 0.915568i \(0.368258\pi\)
\(350\) 0 0
\(351\) −3.69782e6 −1.60205
\(352\) 2.61752e6 1.12599
\(353\) 1.01076e6 0.431729 0.215865 0.976423i \(-0.430743\pi\)
0.215865 + 0.976423i \(0.430743\pi\)
\(354\) −3.56548e6 −1.51220
\(355\) 0 0
\(356\) 1.34589e6 0.562840
\(357\) 2.39887e6 0.996176
\(358\) 1.05364e6 0.434495
\(359\) −1.97064e6 −0.806998 −0.403499 0.914980i \(-0.632206\pi\)
−0.403499 + 0.914980i \(0.632206\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) −1.46019e6 −0.585648
\(363\) 637703. 0.254011
\(364\) 3.08443e6 1.22017
\(365\) 0 0
\(366\) 1.25448e6 0.489511
\(367\) 3.63567e6 1.40903 0.704514 0.709690i \(-0.251165\pi\)
0.704514 + 0.709690i \(0.251165\pi\)
\(368\) −4.65684e6 −1.79255
\(369\) 82716.0 0.0316245
\(370\) 0 0
\(371\) 3.43982e6 1.29748
\(372\) 265914. 0.0996286
\(373\) 466191. 0.173497 0.0867485 0.996230i \(-0.472352\pi\)
0.0867485 + 0.996230i \(0.472352\pi\)
\(374\) −3.62653e6 −1.34064
\(375\) 0 0
\(376\) −1.16256e6 −0.424078
\(377\) 6.93053e6 2.51138
\(378\) −5.53668e6 −1.99306
\(379\) −1.88786e6 −0.675107 −0.337554 0.941306i \(-0.609599\pi\)
−0.337554 + 0.941306i \(0.609599\pi\)
\(380\) 0 0
\(381\) −2.09152e6 −0.738158
\(382\) −5.97424e6 −2.09471
\(383\) 4.53236e6 1.57880 0.789400 0.613879i \(-0.210392\pi\)
0.789400 + 0.613879i \(0.210392\pi\)
\(384\) 2.10556e6 0.728686
\(385\) 0 0
\(386\) −1.60772e6 −0.549214
\(387\) 728828. 0.247370
\(388\) −2.18821e6 −0.737919
\(389\) −2.49266e6 −0.835197 −0.417599 0.908632i \(-0.637128\pi\)
−0.417599 + 0.908632i \(0.637128\pi\)
\(390\) 0 0
\(391\) 4.03059e6 1.33330
\(392\) −2.31021e6 −0.759340
\(393\) −2.02893e6 −0.662652
\(394\) −5.89945e6 −1.91457
\(395\) 0 0
\(396\) 970632. 0.311040
\(397\) −4.71605e6 −1.50176 −0.750882 0.660436i \(-0.770372\pi\)
−0.750882 + 0.660436i \(0.770372\pi\)
\(398\) 4.45806e6 1.41071
\(399\) 782287. 0.245999
\(400\) 0 0
\(401\) −3.48844e6 −1.08335 −0.541677 0.840587i \(-0.682210\pi\)
−0.541677 + 0.840587i \(0.682210\pi\)
\(402\) −2.80072e6 −0.864380
\(403\) 1.30966e6 0.401695
\(404\) 1.07834e6 0.328703
\(405\) 0 0
\(406\) 1.03770e7 3.12432
\(407\) −5.27998e6 −1.57996
\(408\) −1.27859e6 −0.380259
\(409\) −2.27305e6 −0.671894 −0.335947 0.941881i \(-0.609056\pi\)
−0.335947 + 0.941881i \(0.609056\pi\)
\(410\) 0 0
\(411\) 3.02288e6 0.882706
\(412\) 840412. 0.243921
\(413\) −9.12208e6 −2.63159
\(414\) −3.10941e6 −0.891616
\(415\) 0 0
\(416\) −5.15115e6 −1.45939
\(417\) −3.71096e6 −1.04507
\(418\) −1.18264e6 −0.331063
\(419\) 4.18803e6 1.16540 0.582700 0.812688i \(-0.301996\pi\)
0.582700 + 0.812688i \(0.301996\pi\)
\(420\) 0 0
\(421\) −1.10202e6 −0.303030 −0.151515 0.988455i \(-0.548415\pi\)
−0.151515 + 0.988455i \(0.548415\pi\)
\(422\) −4.78921e6 −1.30913
\(423\) −1.35078e6 −0.367058
\(424\) −1.83340e6 −0.495272
\(425\) 0 0
\(426\) −6.33002e6 −1.68998
\(427\) 3.20952e6 0.851865
\(428\) −724251. −0.191108
\(429\) −4.74131e6 −1.24381
\(430\) 0 0
\(431\) 69612.0 0.0180506 0.00902529 0.999959i \(-0.497127\pi\)
0.00902529 + 0.999959i \(0.497127\pi\)
\(432\) 5.13518e6 1.32387
\(433\) −4.49422e6 −1.15195 −0.575977 0.817466i \(-0.695378\pi\)
−0.575977 + 0.817466i \(0.695378\pi\)
\(434\) 1.96094e6 0.499735
\(435\) 0 0
\(436\) 703035. 0.177117
\(437\) 1.31440e6 0.329249
\(438\) 3.37730e6 0.841170
\(439\) −161910. −0.0400970 −0.0200485 0.999799i \(-0.506382\pi\)
−0.0200485 + 0.999799i \(0.506382\pi\)
\(440\) 0 0
\(441\) −2.68424e6 −0.657242
\(442\) 7.13683e6 1.73760
\(443\) −8.03624e6 −1.94556 −0.972778 0.231738i \(-0.925559\pi\)
−0.972778 + 0.231738i \(0.925559\pi\)
\(444\) 2.10973e6 0.507891
\(445\) 0 0
\(446\) −2.59066e6 −0.616699
\(447\) −598620. −0.141704
\(448\) 350069. 0.0824060
\(449\) 8.19457e6 1.91827 0.959136 0.282944i \(-0.0913112\pi\)
0.959136 + 0.282944i \(0.0913112\pi\)
\(450\) 0 0
\(451\) 317304. 0.0734572
\(452\) 2.93923e6 0.676687
\(453\) −5.36248e6 −1.22778
\(454\) 3.48479e6 0.793482
\(455\) 0 0
\(456\) −416955. −0.0939025
\(457\) −1.39632e6 −0.312749 −0.156374 0.987698i \(-0.549981\pi\)
−0.156374 + 0.987698i \(0.549981\pi\)
\(458\) −5.93929e6 −1.32303
\(459\) −4.44460e6 −0.984694
\(460\) 0 0
\(461\) 2.09080e6 0.458206 0.229103 0.973402i \(-0.426421\pi\)
0.229103 + 0.973402i \(0.426421\pi\)
\(462\) −7.09909e6 −1.54738
\(463\) 441416. 0.0956964 0.0478482 0.998855i \(-0.484764\pi\)
0.0478482 + 0.998855i \(0.484764\pi\)
\(464\) −9.62448e6 −2.07531
\(465\) 0 0
\(466\) 1.07244e6 0.228775
\(467\) 5.52823e6 1.17299 0.586495 0.809953i \(-0.300507\pi\)
0.586495 + 0.809953i \(0.300507\pi\)
\(468\) −1.91015e6 −0.403138
\(469\) −7.16548e6 −1.50423
\(470\) 0 0
\(471\) 3.73430e6 0.775635
\(472\) 4.86202e6 1.00453
\(473\) 2.79583e6 0.574590
\(474\) −2.32001e6 −0.474290
\(475\) 0 0
\(476\) 3.70734e6 0.749973
\(477\) −2.13024e6 −0.428680
\(478\) −2.27524e6 −0.455469
\(479\) 4.55856e6 0.907797 0.453899 0.891053i \(-0.350033\pi\)
0.453899 + 0.891053i \(0.350033\pi\)
\(480\) 0 0
\(481\) 1.03907e7 2.04778
\(482\) 6.09596e6 1.19516
\(483\) 7.89005e6 1.53890
\(484\) 985541. 0.191232
\(485\) 0 0
\(486\) 5.71155e6 1.09689
\(487\) −2.76910e6 −0.529073 −0.264537 0.964376i \(-0.585219\pi\)
−0.264537 + 0.964376i \(0.585219\pi\)
\(488\) −1.71066e6 −0.325173
\(489\) −3.30411e6 −0.624860
\(490\) 0 0
\(491\) −6.07096e6 −1.13646 −0.568229 0.822870i \(-0.692371\pi\)
−0.568229 + 0.822870i \(0.692371\pi\)
\(492\) −126786. −0.0236134
\(493\) 8.33018e6 1.54361
\(494\) 2.32737e6 0.429089
\(495\) 0 0
\(496\) −1.81874e6 −0.331945
\(497\) −1.61950e7 −2.94096
\(498\) 7.05520e6 1.27478
\(499\) −113670. −0.0204359 −0.0102180 0.999948i \(-0.503253\pi\)
−0.0102180 + 0.999948i \(0.503253\pi\)
\(500\) 0 0
\(501\) 1.81634e6 0.323298
\(502\) 6.81668e6 1.20730
\(503\) −6.19918e6 −1.09248 −0.546241 0.837628i \(-0.683942\pi\)
−0.546241 + 0.837628i \(0.683942\pi\)
\(504\) 2.52357e6 0.442526
\(505\) 0 0
\(506\) −1.19279e7 −2.07104
\(507\) 5.24643e6 0.906450
\(508\) −3.23235e6 −0.555723
\(509\) 3.56709e6 0.610267 0.305133 0.952310i \(-0.401299\pi\)
0.305133 + 0.952310i \(0.401299\pi\)
\(510\) 0 0
\(511\) 8.64062e6 1.46384
\(512\) 2.85601e6 0.481487
\(513\) −1.44942e6 −0.243164
\(514\) −9.67203e6 −1.61477
\(515\) 0 0
\(516\) −1.11714e6 −0.184707
\(517\) −5.18170e6 −0.852600
\(518\) 1.55579e7 2.54757
\(519\) 6.39547e6 1.04221
\(520\) 0 0
\(521\) −1.78665e6 −0.288366 −0.144183 0.989551i \(-0.546055\pi\)
−0.144183 + 0.989551i \(0.546055\pi\)
\(522\) −6.42635e6 −1.03226
\(523\) −1.51608e6 −0.242364 −0.121182 0.992630i \(-0.538668\pi\)
−0.121182 + 0.992630i \(0.538668\pi\)
\(524\) −3.13562e6 −0.498878
\(525\) 0 0
\(526\) −3.14345e6 −0.495384
\(527\) 1.57415e6 0.246900
\(528\) 6.58429e6 1.02784
\(529\) 6.82054e6 1.05969
\(530\) 0 0
\(531\) 5.64921e6 0.869464
\(532\) 1.20899e6 0.185201
\(533\) −624438. −0.0952075
\(534\) 6.09609e6 0.925120
\(535\) 0 0
\(536\) 3.81916e6 0.574191
\(537\) 1.65572e6 0.247771
\(538\) 414750. 0.0617776
\(539\) −1.02969e7 −1.52664
\(540\) 0 0
\(541\) −3.59573e6 −0.528194 −0.264097 0.964496i \(-0.585074\pi\)
−0.264097 + 0.964496i \(0.585074\pi\)
\(542\) −1.36390e6 −0.199427
\(543\) −2.29458e6 −0.333967
\(544\) −6.19145e6 −0.897006
\(545\) 0 0
\(546\) 1.39706e7 2.00556
\(547\) 4.54449e6 0.649407 0.324704 0.945816i \(-0.394735\pi\)
0.324704 + 0.945816i \(0.394735\pi\)
\(548\) 4.67172e6 0.664546
\(549\) −1.98762e6 −0.281451
\(550\) 0 0
\(551\) 2.71652e6 0.381184
\(552\) −4.20536e6 −0.587428
\(553\) −5.93561e6 −0.825377
\(554\) −460936. −0.0638067
\(555\) 0 0
\(556\) −5.73512e6 −0.786784
\(557\) 7.11805e6 0.972127 0.486064 0.873923i \(-0.338432\pi\)
0.486064 + 0.873923i \(0.338432\pi\)
\(558\) −1.21439e6 −0.165109
\(559\) −5.50205e6 −0.744724
\(560\) 0 0
\(561\) −5.69884e6 −0.764503
\(562\) 1.89211e6 0.252701
\(563\) −3.72584e6 −0.495397 −0.247699 0.968837i \(-0.579674\pi\)
−0.247699 + 0.968837i \(0.579674\pi\)
\(564\) 2.07046e6 0.274075
\(565\) 0 0
\(566\) −5.61522e6 −0.736759
\(567\) −2.86024e6 −0.373633
\(568\) 8.63184e6 1.12262
\(569\) 6.90628e6 0.894259 0.447130 0.894469i \(-0.352446\pi\)
0.447130 + 0.894469i \(0.352446\pi\)
\(570\) 0 0
\(571\) −7.64414e6 −0.981156 −0.490578 0.871397i \(-0.663214\pi\)
−0.490578 + 0.871397i \(0.663214\pi\)
\(572\) −7.32748e6 −0.936406
\(573\) −9.38809e6 −1.19451
\(574\) −934962. −0.118444
\(575\) 0 0
\(576\) −216794. −0.0272265
\(577\) −8.30903e6 −1.03899 −0.519495 0.854474i \(-0.673880\pi\)
−0.519495 + 0.854474i \(0.673880\pi\)
\(578\) −1.36086e6 −0.169431
\(579\) −2.52641e6 −0.313190
\(580\) 0 0
\(581\) 1.80503e7 2.21842
\(582\) −9.91129e6 −1.21289
\(583\) −8.17175e6 −0.995735
\(584\) −4.60540e6 −0.558773
\(585\) 0 0
\(586\) −3.73260e6 −0.449022
\(587\) 6.62766e6 0.793899 0.396949 0.917841i \(-0.370069\pi\)
0.396949 + 0.917841i \(0.370069\pi\)
\(588\) 4.11437e6 0.490750
\(589\) 513342. 0.0609703
\(590\) 0 0
\(591\) −9.27056e6 −1.09179
\(592\) −1.44297e7 −1.69220
\(593\) 1.27557e7 1.48960 0.744799 0.667289i \(-0.232545\pi\)
0.744799 + 0.667289i \(0.232545\pi\)
\(594\) 1.31531e7 1.52955
\(595\) 0 0
\(596\) −925140. −0.106682
\(597\) 7.00552e6 0.804460
\(598\) 2.34735e7 2.68427
\(599\) 3.78319e6 0.430815 0.215408 0.976524i \(-0.430892\pi\)
0.215408 + 0.976524i \(0.430892\pi\)
\(600\) 0 0
\(601\) 1.84268e6 0.208096 0.104048 0.994572i \(-0.466820\pi\)
0.104048 + 0.994572i \(0.466820\pi\)
\(602\) −8.23815e6 −0.926485
\(603\) 4.43751e6 0.496988
\(604\) −8.28747e6 −0.924335
\(605\) 0 0
\(606\) 4.88426e6 0.540278
\(607\) 1.54669e7 1.70385 0.851927 0.523661i \(-0.175434\pi\)
0.851927 + 0.523661i \(0.175434\pi\)
\(608\) −2.01907e6 −0.221510
\(609\) 1.63067e7 1.78165
\(610\) 0 0
\(611\) 1.01973e7 1.10505
\(612\) −2.29592e6 −0.247787
\(613\) −1.50804e6 −0.162092 −0.0810462 0.996710i \(-0.525826\pi\)
−0.0810462 + 0.996710i \(0.525826\pi\)
\(614\) 8.38048e6 0.897115
\(615\) 0 0
\(616\) 9.68058e6 1.02790
\(617\) 1.07239e7 1.13407 0.567036 0.823693i \(-0.308090\pi\)
0.567036 + 0.823693i \(0.308090\pi\)
\(618\) 3.80657e6 0.400925
\(619\) 240920. 0.0252724 0.0126362 0.999920i \(-0.495978\pi\)
0.0126362 + 0.999920i \(0.495978\pi\)
\(620\) 0 0
\(621\) −1.46186e7 −1.52117
\(622\) −9.94912e6 −1.03112
\(623\) 1.55965e7 1.60993
\(624\) −1.29575e7 −1.33218
\(625\) 0 0
\(626\) −9.79327e6 −0.998831
\(627\) −1.85843e6 −0.188789
\(628\) 5.77119e6 0.583938
\(629\) 1.24892e7 1.25866
\(630\) 0 0
\(631\) 7.38759e6 0.738634 0.369317 0.929303i \(-0.379592\pi\)
0.369317 + 0.929303i \(0.379592\pi\)
\(632\) 3.16365e6 0.315062
\(633\) −7.52590e6 −0.746534
\(634\) −5.46695e6 −0.540160
\(635\) 0 0
\(636\) 3.26521e6 0.320087
\(637\) 2.02638e7 1.97867
\(638\) −2.46519e7 −2.39772
\(639\) 1.00294e7 0.971677
\(640\) 0 0
\(641\) −7.75177e6 −0.745171 −0.372585 0.927998i \(-0.621529\pi\)
−0.372585 + 0.927998i \(0.621529\pi\)
\(642\) −3.28043e6 −0.314118
\(643\) 9.16769e6 0.874445 0.437222 0.899353i \(-0.355962\pi\)
0.437222 + 0.899353i \(0.355962\pi\)
\(644\) 1.21937e7 1.15857
\(645\) 0 0
\(646\) 2.79739e6 0.263737
\(647\) 2.86492e6 0.269061 0.134531 0.990909i \(-0.457047\pi\)
0.134531 + 0.990909i \(0.457047\pi\)
\(648\) 1.52450e6 0.142623
\(649\) 2.16707e7 2.01958
\(650\) 0 0
\(651\) 3.08147e6 0.284975
\(652\) −5.10636e6 −0.470427
\(653\) −368304. −0.0338005 −0.0169003 0.999857i \(-0.505380\pi\)
−0.0169003 + 0.999857i \(0.505380\pi\)
\(654\) 3.18434e6 0.291122
\(655\) 0 0
\(656\) 867162. 0.0786757
\(657\) −5.35104e6 −0.483643
\(658\) 1.52683e7 1.37476
\(659\) −2.33942e6 −0.209843 −0.104921 0.994481i \(-0.533459\pi\)
−0.104921 + 0.994481i \(0.533459\pi\)
\(660\) 0 0
\(661\) 1.01068e7 0.899726 0.449863 0.893098i \(-0.351473\pi\)
0.449863 + 0.893098i \(0.351473\pi\)
\(662\) −2.07087e7 −1.83657
\(663\) 1.12150e7 0.990869
\(664\) −9.62073e6 −0.846814
\(665\) 0 0
\(666\) −9.63483e6 −0.841702
\(667\) 2.73985e7 2.38458
\(668\) 2.80707e6 0.243396
\(669\) −4.07103e6 −0.351673
\(670\) 0 0
\(671\) −7.62466e6 −0.653753
\(672\) −1.21200e7 −1.03533
\(673\) −1.58182e7 −1.34623 −0.673117 0.739536i \(-0.735045\pi\)
−0.673117 + 0.739536i \(0.735045\pi\)
\(674\) −1.51281e7 −1.28273
\(675\) 0 0
\(676\) 8.10812e6 0.682422
\(677\) −4.41987e6 −0.370628 −0.185314 0.982679i \(-0.559330\pi\)
−0.185314 + 0.982679i \(0.559330\pi\)
\(678\) 1.33130e7 1.11225
\(679\) −2.53574e7 −2.11072
\(680\) 0 0
\(681\) 5.47610e6 0.452484
\(682\) −4.65847e6 −0.383515
\(683\) 1.34927e7 1.10675 0.553373 0.832934i \(-0.313341\pi\)
0.553373 + 0.832934i \(0.313341\pi\)
\(684\) −748714. −0.0611893
\(685\) 0 0
\(686\) 7.16390e6 0.581219
\(687\) −9.33317e6 −0.754462
\(688\) 7.64075e6 0.615410
\(689\) 1.60816e7 1.29057
\(690\) 0 0
\(691\) −5.85270e6 −0.466295 −0.233148 0.972441i \(-0.574903\pi\)
−0.233148 + 0.972441i \(0.574903\pi\)
\(692\) 9.88390e6 0.784627
\(693\) 1.12479e7 0.889690
\(694\) 1.28219e7 1.01054
\(695\) 0 0
\(696\) −8.69138e6 −0.680088
\(697\) −750546. −0.0585188
\(698\) 1.28113e7 0.995304
\(699\) 1.68527e6 0.130459
\(700\) 0 0
\(701\) 1.35498e7 1.04144 0.520722 0.853726i \(-0.325663\pi\)
0.520722 + 0.853726i \(0.325663\pi\)
\(702\) −2.58847e7 −1.98244
\(703\) 4.07280e6 0.310817
\(704\) −831636. −0.0632414
\(705\) 0 0
\(706\) 7.07533e6 0.534238
\(707\) 1.24961e7 0.940213
\(708\) −8.65904e6 −0.649212
\(709\) −1.92155e6 −0.143561 −0.0717804 0.997420i \(-0.522868\pi\)
−0.0717804 + 0.997420i \(0.522868\pi\)
\(710\) 0 0
\(711\) 3.67586e6 0.272700
\(712\) −8.31285e6 −0.614540
\(713\) 5.17750e6 0.381414
\(714\) 1.67921e7 1.23270
\(715\) 0 0
\(716\) 2.55884e6 0.186535
\(717\) −3.57539e6 −0.259732
\(718\) −1.37945e7 −0.998609
\(719\) 1.04598e7 0.754576 0.377288 0.926096i \(-0.376857\pi\)
0.377288 + 0.926096i \(0.376857\pi\)
\(720\) 0 0
\(721\) 9.73889e6 0.697704
\(722\) 912247. 0.0651283
\(723\) 9.57937e6 0.681540
\(724\) −3.54617e6 −0.251427
\(725\) 0 0
\(726\) 4.46392e6 0.314322
\(727\) −1.28779e7 −0.903671 −0.451836 0.892101i \(-0.649231\pi\)
−0.451836 + 0.892101i \(0.649231\pi\)
\(728\) −1.90509e7 −1.33225
\(729\) 1.25034e7 0.871384
\(730\) 0 0
\(731\) −6.61322e6 −0.457741
\(732\) 3.04660e6 0.210154
\(733\) 1.35039e7 0.928324 0.464162 0.885750i \(-0.346355\pi\)
0.464162 + 0.885750i \(0.346355\pi\)
\(734\) 2.54497e7 1.74358
\(735\) 0 0
\(736\) −2.03641e7 −1.38571
\(737\) 1.70226e7 1.15440
\(738\) 579012. 0.0391333
\(739\) −6.14657e6 −0.414020 −0.207010 0.978339i \(-0.566373\pi\)
−0.207010 + 0.978339i \(0.566373\pi\)
\(740\) 0 0
\(741\) 3.65729e6 0.244689
\(742\) 2.40787e7 1.60555
\(743\) −7.99529e6 −0.531328 −0.265664 0.964066i \(-0.585591\pi\)
−0.265664 + 0.964066i \(0.585591\pi\)
\(744\) −1.64241e6 −0.108780
\(745\) 0 0
\(746\) 3.26334e6 0.214692
\(747\) −1.11784e7 −0.732955
\(748\) −8.80729e6 −0.575557
\(749\) −8.39279e6 −0.546641
\(750\) 0 0
\(751\) −7.12326e6 −0.460870 −0.230435 0.973088i \(-0.574015\pi\)
−0.230435 + 0.973088i \(0.574015\pi\)
\(752\) −1.41611e7 −0.913171
\(753\) 1.07119e7 0.688463
\(754\) 4.85137e7 3.10768
\(755\) 0 0
\(756\) −1.34462e7 −0.855650
\(757\) 3.12683e7 1.98319 0.991597 0.129366i \(-0.0412942\pi\)
0.991597 + 0.129366i \(0.0412942\pi\)
\(758\) −1.32151e7 −0.835403
\(759\) −1.87439e7 −1.18101
\(760\) 0 0
\(761\) −1.91573e7 −1.19914 −0.599572 0.800321i \(-0.704663\pi\)
−0.599572 + 0.800321i \(0.704663\pi\)
\(762\) −1.46406e7 −0.913424
\(763\) 8.14694e6 0.506621
\(764\) −1.45089e7 −0.899291
\(765\) 0 0
\(766\) 3.17265e7 1.95367
\(767\) −4.26469e7 −2.61757
\(768\) 1.41135e7 0.863436
\(769\) −1.24760e7 −0.760782 −0.380391 0.924826i \(-0.624211\pi\)
−0.380391 + 0.924826i \(0.624211\pi\)
\(770\) 0 0
\(771\) −1.51989e7 −0.920823
\(772\) −3.90446e6 −0.235786
\(773\) 135051. 0.00812922 0.00406461 0.999992i \(-0.498706\pi\)
0.00406461 + 0.999992i \(0.498706\pi\)
\(774\) 5.10180e6 0.306105
\(775\) 0 0
\(776\) 1.35154e7 0.805702
\(777\) 2.44481e7 1.45276
\(778\) −1.74486e7 −1.03350
\(779\) −244758. −0.0144508
\(780\) 0 0
\(781\) 3.84733e7 2.25700
\(782\) 2.82141e7 1.64987
\(783\) −3.02129e7 −1.76111
\(784\) −2.81406e7 −1.63509
\(785\) 0 0
\(786\) −1.42025e7 −0.819990
\(787\) 2.56828e7 1.47810 0.739052 0.673648i \(-0.235274\pi\)
0.739052 + 0.673648i \(0.235274\pi\)
\(788\) −1.43272e7 −0.821952
\(789\) −4.93970e6 −0.282493
\(790\) 0 0
\(791\) 3.40605e7 1.93557
\(792\) −5.99508e6 −0.339611
\(793\) 1.50049e7 0.847327
\(794\) −3.30123e7 −1.85834
\(795\) 0 0
\(796\) 1.08267e7 0.605639
\(797\) 1.33238e6 0.0742987 0.0371494 0.999310i \(-0.488172\pi\)
0.0371494 + 0.999310i \(0.488172\pi\)
\(798\) 5.47601e6 0.304409
\(799\) 1.22567e7 0.679214
\(800\) 0 0
\(801\) −9.65874e6 −0.531911
\(802\) −2.44191e7 −1.34058
\(803\) −2.05269e7 −1.12340
\(804\) −6.80175e6 −0.371091
\(805\) 0 0
\(806\) 9.16763e6 0.497072
\(807\) 651750. 0.0352287
\(808\) −6.66036e6 −0.358897
\(809\) −3.18053e6 −0.170855 −0.0854277 0.996344i \(-0.527226\pi\)
−0.0854277 + 0.996344i \(0.527226\pi\)
\(810\) 0 0
\(811\) 2.64138e7 1.41019 0.705096 0.709112i \(-0.250904\pi\)
0.705096 + 0.709112i \(0.250904\pi\)
\(812\) 2.52012e7 1.34132
\(813\) −2.14327e6 −0.113724
\(814\) −3.69598e7 −1.95510
\(815\) 0 0
\(816\) −1.55744e7 −0.818814
\(817\) −2.15661e6 −0.113036
\(818\) −1.59114e7 −0.831426
\(819\) −2.21353e7 −1.15312
\(820\) 0 0
\(821\) −3.78773e7 −1.96119 −0.980597 0.196032i \(-0.937194\pi\)
−0.980597 + 0.196032i \(0.937194\pi\)
\(822\) 2.11601e7 1.09229
\(823\) −1.33910e7 −0.689151 −0.344575 0.938759i \(-0.611977\pi\)
−0.344575 + 0.938759i \(0.611977\pi\)
\(824\) −5.19078e6 −0.266327
\(825\) 0 0
\(826\) −6.38546e7 −3.25643
\(827\) 2.00472e7 1.01927 0.509637 0.860390i \(-0.329780\pi\)
0.509637 + 0.860390i \(0.329780\pi\)
\(828\) −7.55143e6 −0.382784
\(829\) −9.53248e6 −0.481748 −0.240874 0.970556i \(-0.577434\pi\)
−0.240874 + 0.970556i \(0.577434\pi\)
\(830\) 0 0
\(831\) −724328. −0.0363859
\(832\) 1.63662e6 0.0819669
\(833\) 2.43562e7 1.21618
\(834\) −2.59767e7 −1.29321
\(835\) 0 0
\(836\) −2.87212e6 −0.142130
\(837\) −5.70933e6 −0.281690
\(838\) 2.93162e7 1.44211
\(839\) −1.60559e7 −0.787460 −0.393730 0.919226i \(-0.628816\pi\)
−0.393730 + 0.919226i \(0.628816\pi\)
\(840\) 0 0
\(841\) 3.61145e7 1.76072
\(842\) −7.71416e6 −0.374980
\(843\) 2.97332e6 0.144103
\(844\) −1.16309e7 −0.562029
\(845\) 0 0
\(846\) −9.45549e6 −0.454211
\(847\) 1.14207e7 0.546995
\(848\) −2.23326e7 −1.06647
\(849\) −8.82391e6 −0.420138
\(850\) 0 0
\(851\) 4.10778e7 1.94439
\(852\) −1.53729e7 −0.725532
\(853\) 3.42215e7 1.61037 0.805187 0.593021i \(-0.202065\pi\)
0.805187 + 0.593021i \(0.202065\pi\)
\(854\) 2.24667e7 1.05413
\(855\) 0 0
\(856\) 4.47332e6 0.208663
\(857\) −9.61977e6 −0.447417 −0.223709 0.974656i \(-0.571816\pi\)
−0.223709 + 0.974656i \(0.571816\pi\)
\(858\) −3.31892e7 −1.53914
\(859\) 2.07271e7 0.958421 0.479211 0.877700i \(-0.340923\pi\)
0.479211 + 0.877700i \(0.340923\pi\)
\(860\) 0 0
\(861\) −1.46923e6 −0.0675431
\(862\) 487284. 0.0223364
\(863\) −2.60906e6 −0.119250 −0.0596249 0.998221i \(-0.518990\pi\)
−0.0596249 + 0.998221i \(0.518990\pi\)
\(864\) 2.24559e7 1.02340
\(865\) 0 0
\(866\) −3.14596e7 −1.42547
\(867\) −2.13849e6 −0.0966182
\(868\) 4.76228e6 0.214544
\(869\) 1.41008e7 0.633426
\(870\) 0 0
\(871\) −3.34995e7 −1.49621
\(872\) −4.34228e6 −0.193386
\(873\) 1.57036e7 0.697370
\(874\) 9.20081e6 0.407425
\(875\) 0 0
\(876\) 8.20201e6 0.361127
\(877\) −278553. −0.0122295 −0.00611475 0.999981i \(-0.501946\pi\)
−0.00611475 + 0.999981i \(0.501946\pi\)
\(878\) −1.13337e6 −0.0496176
\(879\) −5.86552e6 −0.256056
\(880\) 0 0
\(881\) −2.88926e7 −1.25414 −0.627071 0.778962i \(-0.715746\pi\)
−0.627071 + 0.778962i \(0.715746\pi\)
\(882\) −1.87897e7 −0.813296
\(883\) −2.89440e7 −1.24927 −0.624636 0.780916i \(-0.714753\pi\)
−0.624636 + 0.780916i \(0.714753\pi\)
\(884\) 1.73323e7 0.745977
\(885\) 0 0
\(886\) −5.62537e7 −2.40750
\(887\) 1.84363e7 0.786802 0.393401 0.919367i \(-0.371298\pi\)
0.393401 + 0.919367i \(0.371298\pi\)
\(888\) −1.30307e7 −0.554544
\(889\) −3.74572e7 −1.58957
\(890\) 0 0
\(891\) 6.79489e6 0.286740
\(892\) −6.29160e6 −0.264758
\(893\) 3.99699e6 0.167728
\(894\) −4.19034e6 −0.175350
\(895\) 0 0
\(896\) 3.77088e7 1.56918
\(897\) 3.68870e7 1.53071
\(898\) 5.73620e7 2.37374
\(899\) 1.07006e7 0.441577
\(900\) 0 0
\(901\) 1.93293e7 0.793240
\(902\) 2.22113e6 0.0908986
\(903\) −1.29457e7 −0.528329
\(904\) −1.81541e7 −0.738845
\(905\) 0 0
\(906\) −3.75373e7 −1.51930
\(907\) −8.77058e6 −0.354006 −0.177003 0.984210i \(-0.556640\pi\)
−0.177003 + 0.984210i \(0.556640\pi\)
\(908\) 8.46306e6 0.340653
\(909\) −7.73870e6 −0.310641
\(910\) 0 0
\(911\) 1.15811e7 0.462332 0.231166 0.972914i \(-0.425746\pi\)
0.231166 + 0.972914i \(0.425746\pi\)
\(912\) −5.07891e6 −0.202201
\(913\) −4.28810e7 −1.70250
\(914\) −9.77426e6 −0.387007
\(915\) 0 0
\(916\) −1.44240e7 −0.567998
\(917\) −3.63363e7 −1.42698
\(918\) −3.11122e7 −1.21850
\(919\) 1.32806e7 0.518713 0.259357 0.965782i \(-0.416489\pi\)
0.259357 + 0.965782i \(0.416489\pi\)
\(920\) 0 0
\(921\) 1.31693e7 0.511581
\(922\) 1.46356e7 0.567001
\(923\) −7.57136e7 −2.92529
\(924\) −1.72407e7 −0.664315
\(925\) 0 0
\(926\) 3.08991e6 0.118418
\(927\) −6.03119e6 −0.230517
\(928\) −4.20873e7 −1.60428
\(929\) 1.88206e7 0.715475 0.357737 0.933822i \(-0.383548\pi\)
0.357737 + 0.933822i \(0.383548\pi\)
\(930\) 0 0
\(931\) 7.94272e6 0.300328
\(932\) 2.60450e6 0.0982166
\(933\) −1.56343e7 −0.587997
\(934\) 3.86976e7 1.45150
\(935\) 0 0
\(936\) 1.17980e7 0.440169
\(937\) −5.62110e6 −0.209157 −0.104579 0.994517i \(-0.533349\pi\)
−0.104579 + 0.994517i \(0.533349\pi\)
\(938\) −5.01584e7 −1.86139
\(939\) −1.53894e7 −0.569585
\(940\) 0 0
\(941\) −3.34570e7 −1.23172 −0.615861 0.787855i \(-0.711192\pi\)
−0.615861 + 0.787855i \(0.711192\pi\)
\(942\) 2.61401e7 0.959799
\(943\) −2.46860e6 −0.0904006
\(944\) 5.92241e7 2.16306
\(945\) 0 0
\(946\) 1.95708e7 0.711019
\(947\) 7.56871e6 0.274250 0.137125 0.990554i \(-0.456214\pi\)
0.137125 + 0.990554i \(0.456214\pi\)
\(948\) −5.63431e6 −0.203620
\(949\) 4.03960e7 1.45604
\(950\) 0 0
\(951\) −8.59092e6 −0.308027
\(952\) −2.28983e7 −0.818862
\(953\) 3.39295e7 1.21017 0.605083 0.796162i \(-0.293140\pi\)
0.605083 + 0.796162i \(0.293140\pi\)
\(954\) −1.49117e7 −0.530464
\(955\) 0 0
\(956\) −5.52560e6 −0.195539
\(957\) −3.87387e7 −1.36730
\(958\) 3.19099e7 1.12334
\(959\) 5.41370e7 1.90085
\(960\) 0 0
\(961\) −2.66071e7 −0.929370
\(962\) 7.27351e7 2.53400
\(963\) 5.19757e6 0.180607
\(964\) 1.48045e7 0.513098
\(965\) 0 0
\(966\) 5.52303e7 1.90430
\(967\) 2.13057e6 0.0732706 0.0366353 0.999329i \(-0.488336\pi\)
0.0366353 + 0.999329i \(0.488336\pi\)
\(968\) −6.08716e6 −0.208798
\(969\) 4.39590e6 0.150397
\(970\) 0 0
\(971\) −5.18977e7 −1.76644 −0.883222 0.468956i \(-0.844630\pi\)
−0.883222 + 0.468956i \(0.844630\pi\)
\(972\) 1.38709e7 0.470912
\(973\) −6.64599e7 −2.25049
\(974\) −1.93837e7 −0.654695
\(975\) 0 0
\(976\) −2.08375e7 −0.700197
\(977\) −2.16360e7 −0.725172 −0.362586 0.931950i \(-0.618106\pi\)
−0.362586 + 0.931950i \(0.618106\pi\)
\(978\) −2.31288e7 −0.773225
\(979\) −3.70516e7 −1.23552
\(980\) 0 0
\(981\) −5.04531e6 −0.167385
\(982\) −4.24967e7 −1.40630
\(983\) −1.76106e7 −0.581287 −0.290644 0.956831i \(-0.593869\pi\)
−0.290644 + 0.956831i \(0.593869\pi\)
\(984\) 783090. 0.0257824
\(985\) 0 0
\(986\) 5.83112e7 1.91012
\(987\) 2.39930e7 0.783957
\(988\) 5.65218e6 0.184214
\(989\) −2.17513e7 −0.707123
\(990\) 0 0
\(991\) 3.81030e6 0.123247 0.0616233 0.998099i \(-0.480372\pi\)
0.0616233 + 0.998099i \(0.480372\pi\)
\(992\) −7.95325e6 −0.256605
\(993\) −3.25422e7 −1.04731
\(994\) −1.13365e8 −3.63925
\(995\) 0 0
\(996\) 1.71341e7 0.547283
\(997\) −5.67513e7 −1.80816 −0.904082 0.427359i \(-0.859444\pi\)
−0.904082 + 0.427359i \(0.859444\pi\)
\(998\) −795690. −0.0252882
\(999\) −4.52972e7 −1.43601
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.6.a.c.1.1 1
5.4 even 2 95.6.a.a.1.1 1
15.14 odd 2 855.6.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.6.a.a.1.1 1 5.4 even 2
475.6.a.c.1.1 1 1.1 even 1 trivial
855.6.a.b.1.1 1 15.14 odd 2