Properties

Label 475.4.a.f.1.3
Level $475$
Weight $4$
Character 475.1
Self dual yes
Analytic conductor $28.026$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,4,Mod(1,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 475.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.0259072527\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.3144.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.20905\) of defining polynomial
Character \(\chi\) \(=\) 475.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.96257 q^{2} -6.71610 q^{3} +7.70200 q^{4} -26.6130 q^{6} +25.8362 q^{7} -1.18085 q^{8} +18.1060 q^{9} -8.13420 q^{11} -51.7274 q^{12} +4.56640 q^{13} +102.378 q^{14} -66.2952 q^{16} +62.5850 q^{17} +71.7464 q^{18} -19.0000 q^{19} -173.518 q^{21} -32.2324 q^{22} +52.7502 q^{23} +7.93070 q^{24} +18.0947 q^{26} +59.7330 q^{27} +198.990 q^{28} +171.620 q^{29} +168.749 q^{31} -253.253 q^{32} +54.6301 q^{33} +247.998 q^{34} +139.452 q^{36} +147.534 q^{37} -75.2889 q^{38} -30.6684 q^{39} +308.774 q^{41} -687.580 q^{42} +448.950 q^{43} -62.6496 q^{44} +209.027 q^{46} -113.335 q^{47} +445.245 q^{48} +324.509 q^{49} -420.327 q^{51} +35.1704 q^{52} -155.402 q^{53} +236.696 q^{54} -30.5086 q^{56} +127.606 q^{57} +680.059 q^{58} +182.347 q^{59} +404.080 q^{61} +668.681 q^{62} +467.790 q^{63} -473.172 q^{64} +216.476 q^{66} +106.400 q^{67} +482.030 q^{68} -354.276 q^{69} +472.079 q^{71} -21.3805 q^{72} -843.821 q^{73} +584.616 q^{74} -146.338 q^{76} -210.157 q^{77} -121.526 q^{78} -591.036 q^{79} -890.035 q^{81} +1223.54 q^{82} -290.388 q^{83} -1336.44 q^{84} +1779.00 q^{86} -1152.62 q^{87} +9.60526 q^{88} -964.896 q^{89} +117.978 q^{91} +406.282 q^{92} -1133.34 q^{93} -449.099 q^{94} +1700.87 q^{96} +219.495 q^{97} +1285.89 q^{98} -147.278 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - q^{3} + 21 q^{4} - 65 q^{6} + 35 q^{7} - 27 q^{8} + 48 q^{9} + 16 q^{11} + 115 q^{12} - 65 q^{13} + 37 q^{14} + 33 q^{16} - 29 q^{17} - 138 q^{18} - 57 q^{19} - 25 q^{21} - 118 q^{22} + 101 q^{23}+ \cdots + 250 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.96257 1.40098 0.700491 0.713661i \(-0.252964\pi\)
0.700491 + 0.713661i \(0.252964\pi\)
\(3\) −6.71610 −1.29251 −0.646257 0.763120i \(-0.723667\pi\)
−0.646257 + 0.763120i \(0.723667\pi\)
\(4\) 7.70200 0.962750
\(5\) 0 0
\(6\) −26.6130 −1.81079
\(7\) 25.8362 1.39502 0.697512 0.716573i \(-0.254290\pi\)
0.697512 + 0.716573i \(0.254290\pi\)
\(8\) −1.18085 −0.0521866
\(9\) 18.1060 0.670593
\(10\) 0 0
\(11\) −8.13420 −0.222959 −0.111480 0.993767i \(-0.535559\pi\)
−0.111480 + 0.993767i \(0.535559\pi\)
\(12\) −51.7274 −1.24437
\(13\) 4.56640 0.0974224 0.0487112 0.998813i \(-0.484489\pi\)
0.0487112 + 0.998813i \(0.484489\pi\)
\(14\) 102.378 1.95440
\(15\) 0 0
\(16\) −66.2952 −1.03586
\(17\) 62.5850 0.892888 0.446444 0.894812i \(-0.352690\pi\)
0.446444 + 0.894812i \(0.352690\pi\)
\(18\) 71.7464 0.939488
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) −173.518 −1.80309
\(22\) −32.2324 −0.312362
\(23\) 52.7502 0.478225 0.239113 0.970992i \(-0.423144\pi\)
0.239113 + 0.970992i \(0.423144\pi\)
\(24\) 7.93070 0.0674520
\(25\) 0 0
\(26\) 18.0947 0.136487
\(27\) 59.7330 0.425764
\(28\) 198.990 1.34306
\(29\) 171.620 1.09894 0.549468 0.835515i \(-0.314831\pi\)
0.549468 + 0.835515i \(0.314831\pi\)
\(30\) 0 0
\(31\) 168.749 0.977685 0.488842 0.872372i \(-0.337419\pi\)
0.488842 + 0.872372i \(0.337419\pi\)
\(32\) −253.253 −1.39904
\(33\) 54.6301 0.288178
\(34\) 247.998 1.25092
\(35\) 0 0
\(36\) 139.452 0.645613
\(37\) 147.534 0.655528 0.327764 0.944760i \(-0.393705\pi\)
0.327764 + 0.944760i \(0.393705\pi\)
\(38\) −75.2889 −0.321407
\(39\) −30.6684 −0.125920
\(40\) 0 0
\(41\) 308.774 1.17616 0.588078 0.808804i \(-0.299885\pi\)
0.588078 + 0.808804i \(0.299885\pi\)
\(42\) −687.580 −2.52609
\(43\) 448.950 1.59219 0.796096 0.605170i \(-0.206895\pi\)
0.796096 + 0.605170i \(0.206895\pi\)
\(44\) −62.6496 −0.214654
\(45\) 0 0
\(46\) 209.027 0.669985
\(47\) −113.335 −0.351737 −0.175868 0.984414i \(-0.556273\pi\)
−0.175868 + 0.984414i \(0.556273\pi\)
\(48\) 445.245 1.33887
\(49\) 324.509 0.946091
\(50\) 0 0
\(51\) −420.327 −1.15407
\(52\) 35.1704 0.0937934
\(53\) −155.402 −0.402758 −0.201379 0.979513i \(-0.564542\pi\)
−0.201379 + 0.979513i \(0.564542\pi\)
\(54\) 236.696 0.596487
\(55\) 0 0
\(56\) −30.5086 −0.0728016
\(57\) 127.606 0.296523
\(58\) 680.059 1.53959
\(59\) 182.347 0.402365 0.201183 0.979554i \(-0.435522\pi\)
0.201183 + 0.979554i \(0.435522\pi\)
\(60\) 0 0
\(61\) 404.080 0.848149 0.424075 0.905627i \(-0.360599\pi\)
0.424075 + 0.905627i \(0.360599\pi\)
\(62\) 668.681 1.36972
\(63\) 467.790 0.935492
\(64\) −473.172 −0.924164
\(65\) 0 0
\(66\) 216.476 0.403732
\(67\) 106.400 0.194013 0.0970064 0.995284i \(-0.469073\pi\)
0.0970064 + 0.995284i \(0.469073\pi\)
\(68\) 482.030 0.859628
\(69\) −354.276 −0.618113
\(70\) 0 0
\(71\) 472.079 0.789091 0.394546 0.918876i \(-0.370902\pi\)
0.394546 + 0.918876i \(0.370902\pi\)
\(72\) −21.3805 −0.0349960
\(73\) −843.821 −1.35290 −0.676451 0.736488i \(-0.736483\pi\)
−0.676451 + 0.736488i \(0.736483\pi\)
\(74\) 584.616 0.918382
\(75\) 0 0
\(76\) −146.338 −0.220870
\(77\) −210.157 −0.311034
\(78\) −121.526 −0.176411
\(79\) −591.036 −0.841731 −0.420866 0.907123i \(-0.638274\pi\)
−0.420866 + 0.907123i \(0.638274\pi\)
\(80\) 0 0
\(81\) −890.035 −1.22090
\(82\) 1223.54 1.64777
\(83\) −290.388 −0.384027 −0.192013 0.981392i \(-0.561502\pi\)
−0.192013 + 0.981392i \(0.561502\pi\)
\(84\) −1336.44 −1.73592
\(85\) 0 0
\(86\) 1779.00 2.23063
\(87\) −1152.62 −1.42039
\(88\) 9.60526 0.0116355
\(89\) −964.896 −1.14920 −0.574600 0.818435i \(-0.694842\pi\)
−0.574600 + 0.818435i \(0.694842\pi\)
\(90\) 0 0
\(91\) 117.978 0.135907
\(92\) 406.282 0.460411
\(93\) −1133.34 −1.26367
\(94\) −449.099 −0.492777
\(95\) 0 0
\(96\) 1700.87 1.80828
\(97\) 219.495 0.229756 0.114878 0.993380i \(-0.463352\pi\)
0.114878 + 0.993380i \(0.463352\pi\)
\(98\) 1285.89 1.32546
\(99\) −147.278 −0.149515
\(100\) 0 0
\(101\) 1447.94 1.42649 0.713247 0.700913i \(-0.247224\pi\)
0.713247 + 0.700913i \(0.247224\pi\)
\(102\) −1665.58 −1.61683
\(103\) −883.567 −0.845247 −0.422623 0.906305i \(-0.638891\pi\)
−0.422623 + 0.906305i \(0.638891\pi\)
\(104\) −5.39223 −0.00508415
\(105\) 0 0
\(106\) −615.793 −0.564256
\(107\) 1307.82 1.18160 0.590801 0.806817i \(-0.298812\pi\)
0.590801 + 0.806817i \(0.298812\pi\)
\(108\) 460.064 0.409904
\(109\) 870.507 0.764949 0.382475 0.923966i \(-0.375072\pi\)
0.382475 + 0.923966i \(0.375072\pi\)
\(110\) 0 0
\(111\) −990.856 −0.847279
\(112\) −1712.82 −1.44505
\(113\) 1181.41 0.983521 0.491761 0.870730i \(-0.336354\pi\)
0.491761 + 0.870730i \(0.336354\pi\)
\(114\) 505.648 0.415423
\(115\) 0 0
\(116\) 1321.82 1.05800
\(117\) 82.6792 0.0653307
\(118\) 722.564 0.563707
\(119\) 1616.96 1.24560
\(120\) 0 0
\(121\) −1264.83 −0.950289
\(122\) 1601.20 1.18824
\(123\) −2073.76 −1.52020
\(124\) 1299.71 0.941266
\(125\) 0 0
\(126\) 1853.65 1.31061
\(127\) −887.509 −0.620108 −0.310054 0.950719i \(-0.600347\pi\)
−0.310054 + 0.950719i \(0.600347\pi\)
\(128\) 151.044 0.104301
\(129\) −3015.19 −2.05793
\(130\) 0 0
\(131\) −2344.76 −1.56384 −0.781920 0.623379i \(-0.785759\pi\)
−0.781920 + 0.623379i \(0.785759\pi\)
\(132\) 420.761 0.277444
\(133\) −490.888 −0.320040
\(134\) 421.619 0.271809
\(135\) 0 0
\(136\) −73.9034 −0.0465968
\(137\) −2244.82 −1.39991 −0.699956 0.714186i \(-0.746797\pi\)
−0.699956 + 0.714186i \(0.746797\pi\)
\(138\) −1403.84 −0.865964
\(139\) −296.146 −0.180711 −0.0903554 0.995910i \(-0.528800\pi\)
−0.0903554 + 0.995910i \(0.528800\pi\)
\(140\) 0 0
\(141\) 761.170 0.454625
\(142\) 1870.65 1.10550
\(143\) −37.1440 −0.0217212
\(144\) −1200.34 −0.694642
\(145\) 0 0
\(146\) −3343.70 −1.89539
\(147\) −2179.44 −1.22284
\(148\) 1136.31 0.631109
\(149\) 1791.09 0.984780 0.492390 0.870375i \(-0.336123\pi\)
0.492390 + 0.870375i \(0.336123\pi\)
\(150\) 0 0
\(151\) −2352.65 −1.26792 −0.633960 0.773366i \(-0.718571\pi\)
−0.633960 + 0.773366i \(0.718571\pi\)
\(152\) 22.4361 0.0119724
\(153\) 1133.16 0.598764
\(154\) −832.762 −0.435752
\(155\) 0 0
\(156\) −236.208 −0.121229
\(157\) 1438.26 0.731118 0.365559 0.930788i \(-0.380878\pi\)
0.365559 + 0.930788i \(0.380878\pi\)
\(158\) −2342.02 −1.17925
\(159\) 1043.70 0.520570
\(160\) 0 0
\(161\) 1362.86 0.667135
\(162\) −3526.83 −1.71046
\(163\) −127.493 −0.0612640 −0.0306320 0.999531i \(-0.509752\pi\)
−0.0306320 + 0.999531i \(0.509752\pi\)
\(164\) 2378.18 1.13234
\(165\) 0 0
\(166\) −1150.68 −0.538014
\(167\) −3419.05 −1.58428 −0.792139 0.610341i \(-0.791033\pi\)
−0.792139 + 0.610341i \(0.791033\pi\)
\(168\) 204.899 0.0940971
\(169\) −2176.15 −0.990509
\(170\) 0 0
\(171\) −344.014 −0.153844
\(172\) 3457.81 1.53288
\(173\) 362.598 0.159352 0.0796758 0.996821i \(-0.474611\pi\)
0.0796758 + 0.996821i \(0.474611\pi\)
\(174\) −4567.34 −1.98994
\(175\) 0 0
\(176\) 539.258 0.230955
\(177\) −1224.66 −0.520063
\(178\) −3823.47 −1.61001
\(179\) 2417.89 1.00962 0.504809 0.863231i \(-0.331563\pi\)
0.504809 + 0.863231i \(0.331563\pi\)
\(180\) 0 0
\(181\) −2444.64 −1.00391 −0.501957 0.864892i \(-0.667387\pi\)
−0.501957 + 0.864892i \(0.667387\pi\)
\(182\) 467.498 0.190403
\(183\) −2713.84 −1.09624
\(184\) −62.2900 −0.0249570
\(185\) 0 0
\(186\) −4490.93 −1.77038
\(187\) −509.079 −0.199078
\(188\) −872.908 −0.338635
\(189\) 1543.27 0.593951
\(190\) 0 0
\(191\) −1387.66 −0.525693 −0.262846 0.964838i \(-0.584661\pi\)
−0.262846 + 0.964838i \(0.584661\pi\)
\(192\) 3177.87 1.19449
\(193\) 3208.03 1.19647 0.598237 0.801319i \(-0.295868\pi\)
0.598237 + 0.801319i \(0.295868\pi\)
\(194\) 869.764 0.321884
\(195\) 0 0
\(196\) 2499.37 0.910849
\(197\) 3445.36 1.24605 0.623025 0.782202i \(-0.285903\pi\)
0.623025 + 0.782202i \(0.285903\pi\)
\(198\) −583.599 −0.209468
\(199\) 2025.71 0.721602 0.360801 0.932643i \(-0.382503\pi\)
0.360801 + 0.932643i \(0.382503\pi\)
\(200\) 0 0
\(201\) −714.595 −0.250764
\(202\) 5737.59 1.99849
\(203\) 4434.02 1.53304
\(204\) −3237.36 −1.11108
\(205\) 0 0
\(206\) −3501.20 −1.18418
\(207\) 955.095 0.320694
\(208\) −302.730 −0.100916
\(209\) 154.550 0.0511504
\(210\) 0 0
\(211\) 4309.54 1.40607 0.703036 0.711155i \(-0.251827\pi\)
0.703036 + 0.711155i \(0.251827\pi\)
\(212\) −1196.91 −0.387755
\(213\) −3170.53 −1.01991
\(214\) 5182.33 1.65540
\(215\) 0 0
\(216\) −70.5357 −0.0222192
\(217\) 4359.84 1.36389
\(218\) 3449.45 1.07168
\(219\) 5667.19 1.74864
\(220\) 0 0
\(221\) 285.788 0.0869873
\(222\) −3926.34 −1.18702
\(223\) −825.648 −0.247935 −0.123968 0.992286i \(-0.539562\pi\)
−0.123968 + 0.992286i \(0.539562\pi\)
\(224\) −6543.09 −1.95169
\(225\) 0 0
\(226\) 4681.43 1.37790
\(227\) 1501.19 0.438931 0.219466 0.975620i \(-0.429569\pi\)
0.219466 + 0.975620i \(0.429569\pi\)
\(228\) 982.821 0.285478
\(229\) −5250.40 −1.51509 −0.757547 0.652781i \(-0.773602\pi\)
−0.757547 + 0.652781i \(0.773602\pi\)
\(230\) 0 0
\(231\) 1411.43 0.402015
\(232\) −202.658 −0.0573497
\(233\) −2139.06 −0.601435 −0.300717 0.953713i \(-0.597226\pi\)
−0.300717 + 0.953713i \(0.597226\pi\)
\(234\) 327.623 0.0915272
\(235\) 0 0
\(236\) 1404.44 0.387377
\(237\) 3969.46 1.08795
\(238\) 6407.32 1.74506
\(239\) 3772.70 1.02107 0.510534 0.859857i \(-0.329448\pi\)
0.510534 + 0.859857i \(0.329448\pi\)
\(240\) 0 0
\(241\) 6415.39 1.71474 0.857369 0.514702i \(-0.172097\pi\)
0.857369 + 0.514702i \(0.172097\pi\)
\(242\) −5012.00 −1.33134
\(243\) 4364.77 1.15226
\(244\) 3112.22 0.816555
\(245\) 0 0
\(246\) −8217.41 −2.12977
\(247\) −86.7616 −0.0223502
\(248\) −199.267 −0.0510221
\(249\) 1950.27 0.496360
\(250\) 0 0
\(251\) −6277.31 −1.57857 −0.789283 0.614029i \(-0.789548\pi\)
−0.789283 + 0.614029i \(0.789548\pi\)
\(252\) 3602.92 0.900645
\(253\) −429.081 −0.106625
\(254\) −3516.82 −0.868760
\(255\) 0 0
\(256\) 4383.90 1.07029
\(257\) 3183.98 0.772807 0.386404 0.922330i \(-0.373717\pi\)
0.386404 + 0.922330i \(0.373717\pi\)
\(258\) −11947.9 −2.88312
\(259\) 3811.73 0.914476
\(260\) 0 0
\(261\) 3107.36 0.736938
\(262\) −9291.31 −2.19091
\(263\) 2624.18 0.615261 0.307630 0.951506i \(-0.400464\pi\)
0.307630 + 0.951506i \(0.400464\pi\)
\(264\) −64.5099 −0.0150391
\(265\) 0 0
\(266\) −1945.18 −0.448371
\(267\) 6480.34 1.48536
\(268\) 819.495 0.186786
\(269\) 7444.76 1.68742 0.843708 0.536803i \(-0.180368\pi\)
0.843708 + 0.536803i \(0.180368\pi\)
\(270\) 0 0
\(271\) −4004.49 −0.897621 −0.448810 0.893627i \(-0.648152\pi\)
−0.448810 + 0.893627i \(0.648152\pi\)
\(272\) −4149.08 −0.924909
\(273\) −792.355 −0.175661
\(274\) −8895.27 −1.96125
\(275\) 0 0
\(276\) −2728.63 −0.595088
\(277\) 5830.66 1.26473 0.632365 0.774671i \(-0.282084\pi\)
0.632365 + 0.774671i \(0.282084\pi\)
\(278\) −1173.50 −0.253172
\(279\) 3055.37 0.655628
\(280\) 0 0
\(281\) −7504.37 −1.59314 −0.796572 0.604544i \(-0.793355\pi\)
−0.796572 + 0.604544i \(0.793355\pi\)
\(282\) 3016.19 0.636921
\(283\) −5910.87 −1.24157 −0.620785 0.783980i \(-0.713186\pi\)
−0.620785 + 0.783980i \(0.713186\pi\)
\(284\) 3635.95 0.759697
\(285\) 0 0
\(286\) −147.186 −0.0304311
\(287\) 7977.54 1.64076
\(288\) −4585.40 −0.938184
\(289\) −996.118 −0.202752
\(290\) 0 0
\(291\) −1474.15 −0.296962
\(292\) −6499.11 −1.30251
\(293\) −3245.59 −0.647131 −0.323566 0.946206i \(-0.604882\pi\)
−0.323566 + 0.946206i \(0.604882\pi\)
\(294\) −8636.18 −1.71317
\(295\) 0 0
\(296\) −174.216 −0.0342098
\(297\) −485.880 −0.0949280
\(298\) 7097.35 1.37966
\(299\) 240.878 0.0465898
\(300\) 0 0
\(301\) 11599.2 2.22115
\(302\) −9322.54 −1.77633
\(303\) −9724.54 −1.84376
\(304\) 1259.61 0.237643
\(305\) 0 0
\(306\) 4490.25 0.838857
\(307\) −7489.14 −1.39227 −0.696137 0.717909i \(-0.745099\pi\)
−0.696137 + 0.717909i \(0.745099\pi\)
\(308\) −1618.63 −0.299448
\(309\) 5934.12 1.09249
\(310\) 0 0
\(311\) 2136.71 0.389588 0.194794 0.980844i \(-0.437596\pi\)
0.194794 + 0.980844i \(0.437596\pi\)
\(312\) 36.2147 0.00657133
\(313\) −2212.15 −0.399483 −0.199742 0.979849i \(-0.564010\pi\)
−0.199742 + 0.979849i \(0.564010\pi\)
\(314\) 5699.21 1.02428
\(315\) 0 0
\(316\) −4552.16 −0.810377
\(317\) −429.326 −0.0760674 −0.0380337 0.999276i \(-0.512109\pi\)
−0.0380337 + 0.999276i \(0.512109\pi\)
\(318\) 4135.73 0.729309
\(319\) −1396.00 −0.245018
\(320\) 0 0
\(321\) −8783.43 −1.52724
\(322\) 5400.45 0.934644
\(323\) −1189.11 −0.204842
\(324\) −6855.05 −1.17542
\(325\) 0 0
\(326\) −505.201 −0.0858297
\(327\) −5846.42 −0.988708
\(328\) −364.615 −0.0613796
\(329\) −2928.15 −0.490681
\(330\) 0 0
\(331\) −765.454 −0.127109 −0.0635546 0.997978i \(-0.520244\pi\)
−0.0635546 + 0.997978i \(0.520244\pi\)
\(332\) −2236.57 −0.369722
\(333\) 2671.26 0.439592
\(334\) −13548.3 −2.21954
\(335\) 0 0
\(336\) 11503.4 1.86775
\(337\) 3049.81 0.492978 0.246489 0.969146i \(-0.420723\pi\)
0.246489 + 0.969146i \(0.420723\pi\)
\(338\) −8623.15 −1.38768
\(339\) −7934.48 −1.27121
\(340\) 0 0
\(341\) −1372.64 −0.217984
\(342\) −1363.18 −0.215533
\(343\) −477.732 −0.0752045
\(344\) −530.142 −0.0830912
\(345\) 0 0
\(346\) 1436.82 0.223249
\(347\) 5907.00 0.913845 0.456922 0.889507i \(-0.348952\pi\)
0.456922 + 0.889507i \(0.348952\pi\)
\(348\) −8877.48 −1.36748
\(349\) −12107.4 −1.85700 −0.928502 0.371327i \(-0.878903\pi\)
−0.928502 + 0.371327i \(0.878903\pi\)
\(350\) 0 0
\(351\) 272.765 0.0414789
\(352\) 2060.01 0.311929
\(353\) 2420.40 0.364943 0.182471 0.983211i \(-0.441590\pi\)
0.182471 + 0.983211i \(0.441590\pi\)
\(354\) −4852.81 −0.728599
\(355\) 0 0
\(356\) −7431.63 −1.10639
\(357\) −10859.7 −1.60995
\(358\) 9581.07 1.41446
\(359\) −1455.80 −0.214023 −0.107011 0.994258i \(-0.534128\pi\)
−0.107011 + 0.994258i \(0.534128\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) −9687.06 −1.40647
\(363\) 8494.76 1.22826
\(364\) 908.670 0.130844
\(365\) 0 0
\(366\) −10753.8 −1.53582
\(367\) −8783.80 −1.24935 −0.624674 0.780886i \(-0.714768\pi\)
−0.624674 + 0.780886i \(0.714768\pi\)
\(368\) −3497.08 −0.495375
\(369\) 5590.66 0.788721
\(370\) 0 0
\(371\) −4015.00 −0.561856
\(372\) −8728.95 −1.21660
\(373\) 9199.84 1.27708 0.638538 0.769590i \(-0.279539\pi\)
0.638538 + 0.769590i \(0.279539\pi\)
\(374\) −2017.26 −0.278904
\(375\) 0 0
\(376\) 133.832 0.0183560
\(377\) 783.688 0.107061
\(378\) 6115.34 0.832114
\(379\) −6161.38 −0.835063 −0.417531 0.908662i \(-0.637105\pi\)
−0.417531 + 0.908662i \(0.637105\pi\)
\(380\) 0 0
\(381\) 5960.60 0.801498
\(382\) −5498.70 −0.736486
\(383\) −2630.79 −0.350985 −0.175492 0.984481i \(-0.556152\pi\)
−0.175492 + 0.984481i \(0.556152\pi\)
\(384\) −1014.43 −0.134810
\(385\) 0 0
\(386\) 12712.1 1.67624
\(387\) 8128.69 1.06771
\(388\) 1690.55 0.221197
\(389\) −5866.48 −0.764633 −0.382317 0.924031i \(-0.624874\pi\)
−0.382317 + 0.924031i \(0.624874\pi\)
\(390\) 0 0
\(391\) 3301.37 0.427001
\(392\) −383.196 −0.0493733
\(393\) 15747.7 2.02129
\(394\) 13652.5 1.74569
\(395\) 0 0
\(396\) −1134.33 −0.143945
\(397\) 14254.0 1.80199 0.900993 0.433833i \(-0.142839\pi\)
0.900993 + 0.433833i \(0.142839\pi\)
\(398\) 8027.03 1.01095
\(399\) 3296.85 0.413657
\(400\) 0 0
\(401\) 9909.27 1.23403 0.617014 0.786952i \(-0.288342\pi\)
0.617014 + 0.786952i \(0.288342\pi\)
\(402\) −2831.64 −0.351316
\(403\) 770.576 0.0952484
\(404\) 11152.1 1.37336
\(405\) 0 0
\(406\) 17570.1 2.14776
\(407\) −1200.07 −0.146156
\(408\) 496.343 0.0602270
\(409\) 5805.87 0.701912 0.350956 0.936392i \(-0.385857\pi\)
0.350956 + 0.936392i \(0.385857\pi\)
\(410\) 0 0
\(411\) 15076.4 1.80941
\(412\) −6805.23 −0.813761
\(413\) 4711.15 0.561309
\(414\) 3784.64 0.449287
\(415\) 0 0
\(416\) −1156.45 −0.136298
\(417\) 1988.95 0.233571
\(418\) 612.415 0.0716608
\(419\) 12260.9 1.42955 0.714777 0.699353i \(-0.246528\pi\)
0.714777 + 0.699353i \(0.246528\pi\)
\(420\) 0 0
\(421\) 5837.85 0.675818 0.337909 0.941179i \(-0.390280\pi\)
0.337909 + 0.941179i \(0.390280\pi\)
\(422\) 17076.9 1.96988
\(423\) −2052.05 −0.235872
\(424\) 183.507 0.0210186
\(425\) 0 0
\(426\) −12563.5 −1.42888
\(427\) 10439.9 1.18319
\(428\) 10072.8 1.13759
\(429\) 249.463 0.0280750
\(430\) 0 0
\(431\) −2770.16 −0.309591 −0.154796 0.987946i \(-0.549472\pi\)
−0.154796 + 0.987946i \(0.549472\pi\)
\(432\) −3960.01 −0.441033
\(433\) −5663.00 −0.628513 −0.314257 0.949338i \(-0.601755\pi\)
−0.314257 + 0.949338i \(0.601755\pi\)
\(434\) 17276.2 1.91079
\(435\) 0 0
\(436\) 6704.65 0.736455
\(437\) −1002.25 −0.109712
\(438\) 22456.6 2.44982
\(439\) −8399.20 −0.913148 −0.456574 0.889685i \(-0.650924\pi\)
−0.456574 + 0.889685i \(0.650924\pi\)
\(440\) 0 0
\(441\) 5875.56 0.634442
\(442\) 1132.46 0.121868
\(443\) −6154.68 −0.660085 −0.330043 0.943966i \(-0.607063\pi\)
−0.330043 + 0.943966i \(0.607063\pi\)
\(444\) −7631.58 −0.815717
\(445\) 0 0
\(446\) −3271.69 −0.347352
\(447\) −12029.2 −1.27284
\(448\) −12225.0 −1.28923
\(449\) 3445.03 0.362095 0.181048 0.983474i \(-0.442051\pi\)
0.181048 + 0.983474i \(0.442051\pi\)
\(450\) 0 0
\(451\) −2511.63 −0.262235
\(452\) 9099.24 0.946885
\(453\) 15800.6 1.63880
\(454\) 5948.57 0.614935
\(455\) 0 0
\(456\) −150.683 −0.0154745
\(457\) 502.346 0.0514196 0.0257098 0.999669i \(-0.491815\pi\)
0.0257098 + 0.999669i \(0.491815\pi\)
\(458\) −20805.1 −2.12262
\(459\) 3738.39 0.380159
\(460\) 0 0
\(461\) 546.259 0.0551883 0.0275942 0.999619i \(-0.491215\pi\)
0.0275942 + 0.999619i \(0.491215\pi\)
\(462\) 5592.91 0.563216
\(463\) −18540.2 −1.86098 −0.930490 0.366316i \(-0.880619\pi\)
−0.930490 + 0.366316i \(0.880619\pi\)
\(464\) −11377.6 −1.13835
\(465\) 0 0
\(466\) −8476.18 −0.842599
\(467\) −12475.1 −1.23614 −0.618070 0.786123i \(-0.712085\pi\)
−0.618070 + 0.786123i \(0.712085\pi\)
\(468\) 636.795 0.0628972
\(469\) 2748.98 0.270653
\(470\) 0 0
\(471\) −9659.49 −0.944981
\(472\) −215.324 −0.0209981
\(473\) −3651.85 −0.354994
\(474\) 15729.3 1.52420
\(475\) 0 0
\(476\) 12453.8 1.19920
\(477\) −2813.71 −0.270086
\(478\) 14949.6 1.43050
\(479\) −10569.2 −1.00818 −0.504091 0.863651i \(-0.668172\pi\)
−0.504091 + 0.863651i \(0.668172\pi\)
\(480\) 0 0
\(481\) 673.701 0.0638631
\(482\) 25421.5 2.40232
\(483\) −9153.13 −0.862282
\(484\) −9741.76 −0.914891
\(485\) 0 0
\(486\) 17295.7 1.61430
\(487\) 11227.9 1.04473 0.522366 0.852721i \(-0.325049\pi\)
0.522366 + 0.852721i \(0.325049\pi\)
\(488\) −477.157 −0.0442621
\(489\) 856.256 0.0791846
\(490\) 0 0
\(491\) −536.840 −0.0493427 −0.0246713 0.999696i \(-0.507854\pi\)
−0.0246713 + 0.999696i \(0.507854\pi\)
\(492\) −15972.1 −1.46357
\(493\) 10740.9 0.981226
\(494\) −343.799 −0.0313123
\(495\) 0 0
\(496\) −11187.3 −1.01275
\(497\) 12196.7 1.10080
\(498\) 7728.11 0.695391
\(499\) 1319.91 0.118412 0.0592058 0.998246i \(-0.481143\pi\)
0.0592058 + 0.998246i \(0.481143\pi\)
\(500\) 0 0
\(501\) 22962.7 2.04770
\(502\) −24874.3 −2.21154
\(503\) −1749.27 −0.155062 −0.0775310 0.996990i \(-0.524704\pi\)
−0.0775310 + 0.996990i \(0.524704\pi\)
\(504\) −552.390 −0.0488202
\(505\) 0 0
\(506\) −1700.26 −0.149379
\(507\) 14615.2 1.28025
\(508\) −6835.59 −0.597009
\(509\) 1882.19 0.163903 0.0819516 0.996636i \(-0.473885\pi\)
0.0819516 + 0.996636i \(0.473885\pi\)
\(510\) 0 0
\(511\) −21801.1 −1.88733
\(512\) 16163.2 1.39515
\(513\) −1134.93 −0.0976769
\(514\) 12616.8 1.08269
\(515\) 0 0
\(516\) −23223.0 −1.98127
\(517\) 921.891 0.0784231
\(518\) 15104.3 1.28116
\(519\) −2435.25 −0.205964
\(520\) 0 0
\(521\) −3238.50 −0.272325 −0.136163 0.990686i \(-0.543477\pi\)
−0.136163 + 0.990686i \(0.543477\pi\)
\(522\) 12313.1 1.03244
\(523\) −99.0144 −0.00827839 −0.00413919 0.999991i \(-0.501318\pi\)
−0.00413919 + 0.999991i \(0.501318\pi\)
\(524\) −18059.4 −1.50559
\(525\) 0 0
\(526\) 10398.5 0.861969
\(527\) 10561.2 0.872963
\(528\) −3621.71 −0.298513
\(529\) −9384.42 −0.771301
\(530\) 0 0
\(531\) 3301.57 0.269823
\(532\) −3780.82 −0.308119
\(533\) 1409.98 0.114584
\(534\) 25678.8 2.08096
\(535\) 0 0
\(536\) −125.643 −0.0101249
\(537\) −16238.8 −1.30495
\(538\) 29500.4 2.36404
\(539\) −2639.62 −0.210940
\(540\) 0 0
\(541\) 17183.7 1.36559 0.682794 0.730611i \(-0.260765\pi\)
0.682794 + 0.730611i \(0.260765\pi\)
\(542\) −15868.1 −1.25755
\(543\) 16418.4 1.29757
\(544\) −15849.8 −1.24918
\(545\) 0 0
\(546\) −3139.77 −0.246098
\(547\) 1965.86 0.153664 0.0768319 0.997044i \(-0.475520\pi\)
0.0768319 + 0.997044i \(0.475520\pi\)
\(548\) −17289.6 −1.34777
\(549\) 7316.27 0.568762
\(550\) 0 0
\(551\) −3260.79 −0.252113
\(552\) 418.346 0.0322572
\(553\) −15270.1 −1.17423
\(554\) 23104.4 1.77186
\(555\) 0 0
\(556\) −2280.92 −0.173979
\(557\) −6039.93 −0.459461 −0.229731 0.973254i \(-0.573785\pi\)
−0.229731 + 0.973254i \(0.573785\pi\)
\(558\) 12107.1 0.918523
\(559\) 2050.09 0.155115
\(560\) 0 0
\(561\) 3419.02 0.257311
\(562\) −29736.6 −2.23197
\(563\) −5260.06 −0.393757 −0.196878 0.980428i \(-0.563080\pi\)
−0.196878 + 0.980428i \(0.563080\pi\)
\(564\) 5862.53 0.437690
\(565\) 0 0
\(566\) −23422.3 −1.73942
\(567\) −22995.1 −1.70318
\(568\) −557.454 −0.0411800
\(569\) 20567.4 1.51534 0.757672 0.652635i \(-0.226337\pi\)
0.757672 + 0.652635i \(0.226337\pi\)
\(570\) 0 0
\(571\) 11462.4 0.840080 0.420040 0.907506i \(-0.362016\pi\)
0.420040 + 0.907506i \(0.362016\pi\)
\(572\) −286.083 −0.0209121
\(573\) 9319.64 0.679466
\(574\) 31611.6 2.29868
\(575\) 0 0
\(576\) −8567.25 −0.619737
\(577\) 27029.6 1.95019 0.975094 0.221790i \(-0.0711899\pi\)
0.975094 + 0.221790i \(0.0711899\pi\)
\(578\) −3947.19 −0.284051
\(579\) −21545.5 −1.54646
\(580\) 0 0
\(581\) −7502.52 −0.535726
\(582\) −5841.42 −0.416039
\(583\) 1264.07 0.0897986
\(584\) 996.425 0.0706034
\(585\) 0 0
\(586\) −12860.9 −0.906619
\(587\) −15200.4 −1.06881 −0.534403 0.845230i \(-0.679464\pi\)
−0.534403 + 0.845230i \(0.679464\pi\)
\(588\) −16786.0 −1.17729
\(589\) −3206.23 −0.224296
\(590\) 0 0
\(591\) −23139.4 −1.61054
\(592\) −9780.83 −0.679036
\(593\) 19026.7 1.31759 0.658796 0.752322i \(-0.271066\pi\)
0.658796 + 0.752322i \(0.271066\pi\)
\(594\) −1925.34 −0.132992
\(595\) 0 0
\(596\) 13795.0 0.948096
\(597\) −13604.9 −0.932681
\(598\) 954.499 0.0652715
\(599\) 3927.31 0.267889 0.133945 0.990989i \(-0.457236\pi\)
0.133945 + 0.990989i \(0.457236\pi\)
\(600\) 0 0
\(601\) 13718.1 0.931069 0.465534 0.885030i \(-0.345862\pi\)
0.465534 + 0.885030i \(0.345862\pi\)
\(602\) 45962.6 3.11178
\(603\) 1926.48 0.130104
\(604\) −18120.1 −1.22069
\(605\) 0 0
\(606\) −38534.2 −2.58308
\(607\) −26461.5 −1.76942 −0.884712 0.466138i \(-0.845645\pi\)
−0.884712 + 0.466138i \(0.845645\pi\)
\(608\) 4811.81 0.320961
\(609\) −29779.3 −1.98148
\(610\) 0 0
\(611\) −517.534 −0.0342671
\(612\) 8727.63 0.576460
\(613\) 233.384 0.0153773 0.00768865 0.999970i \(-0.497553\pi\)
0.00768865 + 0.999970i \(0.497553\pi\)
\(614\) −29676.3 −1.95055
\(615\) 0 0
\(616\) 248.163 0.0162318
\(617\) −4202.77 −0.274225 −0.137113 0.990555i \(-0.543782\pi\)
−0.137113 + 0.990555i \(0.543782\pi\)
\(618\) 23514.4 1.53056
\(619\) −23009.4 −1.49407 −0.747033 0.664787i \(-0.768522\pi\)
−0.747033 + 0.664787i \(0.768522\pi\)
\(620\) 0 0
\(621\) 3150.93 0.203611
\(622\) 8466.89 0.545806
\(623\) −24929.2 −1.60316
\(624\) 2033.17 0.130436
\(625\) 0 0
\(626\) −8765.82 −0.559668
\(627\) −1037.97 −0.0661126
\(628\) 11077.5 0.703884
\(629\) 9233.45 0.585313
\(630\) 0 0
\(631\) 18819.3 1.18730 0.593650 0.804723i \(-0.297686\pi\)
0.593650 + 0.804723i \(0.297686\pi\)
\(632\) 697.924 0.0439271
\(633\) −28943.3 −1.81737
\(634\) −1701.24 −0.106569
\(635\) 0 0
\(636\) 8038.56 0.501178
\(637\) 1481.84 0.0921705
\(638\) −5531.74 −0.343266
\(639\) 8547.46 0.529159
\(640\) 0 0
\(641\) 25253.7 1.55610 0.778052 0.628200i \(-0.216208\pi\)
0.778052 + 0.628200i \(0.216208\pi\)
\(642\) −34805.0 −2.13963
\(643\) −11712.1 −0.718324 −0.359162 0.933275i \(-0.616937\pi\)
−0.359162 + 0.933275i \(0.616937\pi\)
\(644\) 10496.8 0.642284
\(645\) 0 0
\(646\) −4711.96 −0.286981
\(647\) 26533.3 1.61226 0.806131 0.591737i \(-0.201558\pi\)
0.806131 + 0.591737i \(0.201558\pi\)
\(648\) 1051.00 0.0637146
\(649\) −1483.25 −0.0897111
\(650\) 0 0
\(651\) −29281.1 −1.76285
\(652\) −981.952 −0.0589819
\(653\) −27898.9 −1.67193 −0.835964 0.548785i \(-0.815091\pi\)
−0.835964 + 0.548785i \(0.815091\pi\)
\(654\) −23166.9 −1.38516
\(655\) 0 0
\(656\) −20470.2 −1.21834
\(657\) −15278.2 −0.907245
\(658\) −11603.0 −0.687436
\(659\) −1274.66 −0.0753468 −0.0376734 0.999290i \(-0.511995\pi\)
−0.0376734 + 0.999290i \(0.511995\pi\)
\(660\) 0 0
\(661\) −5049.52 −0.297131 −0.148565 0.988903i \(-0.547466\pi\)
−0.148565 + 0.988903i \(0.547466\pi\)
\(662\) −3033.17 −0.178078
\(663\) −1919.38 −0.112432
\(664\) 342.904 0.0200411
\(665\) 0 0
\(666\) 10585.1 0.615860
\(667\) 9053.01 0.525538
\(668\) −26333.6 −1.52526
\(669\) 5545.14 0.320460
\(670\) 0 0
\(671\) −3286.86 −0.189103
\(672\) 43944.1 2.52259
\(673\) −8398.64 −0.481045 −0.240523 0.970644i \(-0.577319\pi\)
−0.240523 + 0.970644i \(0.577319\pi\)
\(674\) 12085.1 0.690653
\(675\) 0 0
\(676\) −16760.7 −0.953612
\(677\) −9875.31 −0.560619 −0.280309 0.959910i \(-0.590437\pi\)
−0.280309 + 0.959910i \(0.590437\pi\)
\(678\) −31441.0 −1.78095
\(679\) 5670.91 0.320515
\(680\) 0 0
\(681\) −10082.1 −0.567325
\(682\) −5439.18 −0.305392
\(683\) 8653.78 0.484814 0.242407 0.970175i \(-0.422063\pi\)
0.242407 + 0.970175i \(0.422063\pi\)
\(684\) −2649.60 −0.148114
\(685\) 0 0
\(686\) −1893.05 −0.105360
\(687\) 35262.2 1.95828
\(688\) −29763.2 −1.64929
\(689\) −709.629 −0.0392376
\(690\) 0 0
\(691\) 2916.50 0.160563 0.0802813 0.996772i \(-0.474418\pi\)
0.0802813 + 0.996772i \(0.474418\pi\)
\(692\) 2792.73 0.153416
\(693\) −3805.10 −0.208577
\(694\) 23406.9 1.28028
\(695\) 0 0
\(696\) 1361.07 0.0741254
\(697\) 19324.6 1.05017
\(698\) −47976.5 −2.60163
\(699\) 14366.1 0.777363
\(700\) 0 0
\(701\) −9070.78 −0.488729 −0.244364 0.969683i \(-0.578579\pi\)
−0.244364 + 0.969683i \(0.578579\pi\)
\(702\) 1080.85 0.0581112
\(703\) −2803.16 −0.150388
\(704\) 3848.88 0.206051
\(705\) 0 0
\(706\) 9591.00 0.511278
\(707\) 37409.4 1.98999
\(708\) −9432.34 −0.500690
\(709\) −5957.11 −0.315549 −0.157774 0.987475i \(-0.550432\pi\)
−0.157774 + 0.987475i \(0.550432\pi\)
\(710\) 0 0
\(711\) −10701.3 −0.564459
\(712\) 1139.40 0.0599729
\(713\) 8901.55 0.467553
\(714\) −43032.2 −2.25552
\(715\) 0 0
\(716\) 18622.6 0.972010
\(717\) −25337.8 −1.31975
\(718\) −5768.71 −0.299842
\(719\) −31140.8 −1.61524 −0.807620 0.589703i \(-0.799245\pi\)
−0.807620 + 0.589703i \(0.799245\pi\)
\(720\) 0 0
\(721\) −22828.0 −1.17914
\(722\) 1430.49 0.0737359
\(723\) −43086.4 −2.21632
\(724\) −18828.6 −0.966519
\(725\) 0 0
\(726\) 33661.1 1.72077
\(727\) −14969.7 −0.763682 −0.381841 0.924228i \(-0.624710\pi\)
−0.381841 + 0.924228i \(0.624710\pi\)
\(728\) −139.315 −0.00709251
\(729\) −5283.30 −0.268420
\(730\) 0 0
\(731\) 28097.5 1.42165
\(732\) −20902.0 −1.05541
\(733\) 12414.1 0.625545 0.312772 0.949828i \(-0.398742\pi\)
0.312772 + 0.949828i \(0.398742\pi\)
\(734\) −34806.5 −1.75031
\(735\) 0 0
\(736\) −13359.1 −0.669055
\(737\) −865.481 −0.0432570
\(738\) 22153.4 1.10498
\(739\) 1324.11 0.0659111 0.0329555 0.999457i \(-0.489508\pi\)
0.0329555 + 0.999457i \(0.489508\pi\)
\(740\) 0 0
\(741\) 582.700 0.0288880
\(742\) −15909.8 −0.787150
\(743\) 4391.55 0.216838 0.108419 0.994105i \(-0.465421\pi\)
0.108419 + 0.994105i \(0.465421\pi\)
\(744\) 1338.30 0.0659468
\(745\) 0 0
\(746\) 36455.0 1.78916
\(747\) −5257.76 −0.257525
\(748\) −3920.92 −0.191662
\(749\) 33789.0 1.64836
\(750\) 0 0
\(751\) −31947.5 −1.55230 −0.776152 0.630546i \(-0.782831\pi\)
−0.776152 + 0.630546i \(0.782831\pi\)
\(752\) 7513.58 0.364351
\(753\) 42159.0 2.04032
\(754\) 3105.42 0.149990
\(755\) 0 0
\(756\) 11886.3 0.571826
\(757\) −18569.8 −0.891585 −0.445793 0.895136i \(-0.647078\pi\)
−0.445793 + 0.895136i \(0.647078\pi\)
\(758\) −24414.9 −1.16991
\(759\) 2881.75 0.137814
\(760\) 0 0
\(761\) 5507.32 0.262339 0.131170 0.991360i \(-0.458127\pi\)
0.131170 + 0.991360i \(0.458127\pi\)
\(762\) 23619.3 1.12288
\(763\) 22490.6 1.06712
\(764\) −10687.7 −0.506111
\(765\) 0 0
\(766\) −10424.7 −0.491723
\(767\) 832.669 0.0391994
\(768\) −29442.7 −1.38336
\(769\) −14977.9 −0.702362 −0.351181 0.936308i \(-0.614220\pi\)
−0.351181 + 0.936308i \(0.614220\pi\)
\(770\) 0 0
\(771\) −21384.0 −0.998864
\(772\) 24708.3 1.15190
\(773\) −19545.6 −0.909450 −0.454725 0.890632i \(-0.650262\pi\)
−0.454725 + 0.890632i \(0.650262\pi\)
\(774\) 32210.5 1.49585
\(775\) 0 0
\(776\) −259.190 −0.0119902
\(777\) −25600.0 −1.18197
\(778\) −23246.4 −1.07124
\(779\) −5866.70 −0.269829
\(780\) 0 0
\(781\) −3839.98 −0.175935
\(782\) 13081.9 0.598221
\(783\) 10251.4 0.467887
\(784\) −21513.4 −0.980020
\(785\) 0 0
\(786\) 62401.3 2.83178
\(787\) 4274.62 0.193613 0.0968067 0.995303i \(-0.469137\pi\)
0.0968067 + 0.995303i \(0.469137\pi\)
\(788\) 26536.2 1.19963
\(789\) −17624.2 −0.795233
\(790\) 0 0
\(791\) 30523.2 1.37204
\(792\) 173.913 0.00780268
\(793\) 1845.19 0.0826287
\(794\) 56482.6 2.52455
\(795\) 0 0
\(796\) 15602.0 0.694722
\(797\) 25450.6 1.13112 0.565562 0.824706i \(-0.308659\pi\)
0.565562 + 0.824706i \(0.308659\pi\)
\(798\) 13064.0 0.579525
\(799\) −7093.08 −0.314062
\(800\) 0 0
\(801\) −17470.4 −0.770645
\(802\) 39266.2 1.72885
\(803\) 6863.81 0.301642
\(804\) −5503.81 −0.241423
\(805\) 0 0
\(806\) 3053.46 0.133441
\(807\) −49999.7 −2.18101
\(808\) −1709.80 −0.0744439
\(809\) 4002.04 0.173924 0.0869619 0.996212i \(-0.472284\pi\)
0.0869619 + 0.996212i \(0.472284\pi\)
\(810\) 0 0
\(811\) −37915.1 −1.64165 −0.820826 0.571179i \(-0.806486\pi\)
−0.820826 + 0.571179i \(0.806486\pi\)
\(812\) 34150.8 1.47593
\(813\) 26894.5 1.16019
\(814\) −4755.39 −0.204762
\(815\) 0 0
\(816\) 27865.7 1.19546
\(817\) −8530.05 −0.365274
\(818\) 23006.2 0.983366
\(819\) 2136.12 0.0911379
\(820\) 0 0
\(821\) 4739.43 0.201470 0.100735 0.994913i \(-0.467881\pi\)
0.100735 + 0.994913i \(0.467881\pi\)
\(822\) 59741.5 2.53494
\(823\) −20752.2 −0.878952 −0.439476 0.898254i \(-0.644836\pi\)
−0.439476 + 0.898254i \(0.644836\pi\)
\(824\) 1043.36 0.0441106
\(825\) 0 0
\(826\) 18668.3 0.786384
\(827\) −34264.8 −1.44075 −0.720377 0.693583i \(-0.756031\pi\)
−0.720377 + 0.693583i \(0.756031\pi\)
\(828\) 7356.14 0.308748
\(829\) −39707.5 −1.66357 −0.831784 0.555100i \(-0.812680\pi\)
−0.831784 + 0.555100i \(0.812680\pi\)
\(830\) 0 0
\(831\) −39159.3 −1.63468
\(832\) −2160.69 −0.0900343
\(833\) 20309.4 0.844753
\(834\) 7881.35 0.327229
\(835\) 0 0
\(836\) 1190.34 0.0492450
\(837\) 10079.9 0.416263
\(838\) 48584.6 2.00278
\(839\) −4524.04 −0.186159 −0.0930794 0.995659i \(-0.529671\pi\)
−0.0930794 + 0.995659i \(0.529671\pi\)
\(840\) 0 0
\(841\) 5064.59 0.207659
\(842\) 23132.9 0.946809
\(843\) 50400.1 2.05916
\(844\) 33192.1 1.35370
\(845\) 0 0
\(846\) −8131.39 −0.330453
\(847\) −32678.5 −1.32568
\(848\) 10302.4 0.417201
\(849\) 39698.0 1.60475
\(850\) 0 0
\(851\) 7782.47 0.313490
\(852\) −24419.4 −0.981920
\(853\) 7595.54 0.304884 0.152442 0.988312i \(-0.451286\pi\)
0.152442 + 0.988312i \(0.451286\pi\)
\(854\) 41368.8 1.65762
\(855\) 0 0
\(856\) −1544.34 −0.0616639
\(857\) 19528.9 0.778405 0.389203 0.921152i \(-0.372751\pi\)
0.389203 + 0.921152i \(0.372751\pi\)
\(858\) 988.515 0.0393326
\(859\) 25980.8 1.03196 0.515979 0.856601i \(-0.327428\pi\)
0.515979 + 0.856601i \(0.327428\pi\)
\(860\) 0 0
\(861\) −53578.0 −2.12071
\(862\) −10977.0 −0.433732
\(863\) 48294.6 1.90494 0.952472 0.304625i \(-0.0985311\pi\)
0.952472 + 0.304625i \(0.0985311\pi\)
\(864\) −15127.6 −0.595660
\(865\) 0 0
\(866\) −22440.1 −0.880536
\(867\) 6690.03 0.262059
\(868\) 33579.4 1.31309
\(869\) 4807.61 0.187672
\(870\) 0 0
\(871\) 485.866 0.0189012
\(872\) −1027.94 −0.0399201
\(873\) 3974.17 0.154072
\(874\) −3971.51 −0.153705
\(875\) 0 0
\(876\) 43648.7 1.68351
\(877\) −44377.5 −1.70869 −0.854346 0.519705i \(-0.826042\pi\)
−0.854346 + 0.519705i \(0.826042\pi\)
\(878\) −33282.5 −1.27930
\(879\) 21797.7 0.836426
\(880\) 0 0
\(881\) −12139.4 −0.464231 −0.232116 0.972688i \(-0.574565\pi\)
−0.232116 + 0.972688i \(0.574565\pi\)
\(882\) 23282.4 0.888841
\(883\) −5048.07 −0.192391 −0.0961954 0.995362i \(-0.530667\pi\)
−0.0961954 + 0.995362i \(0.530667\pi\)
\(884\) 2201.14 0.0837470
\(885\) 0 0
\(886\) −24388.4 −0.924767
\(887\) −20373.4 −0.771221 −0.385610 0.922662i \(-0.626009\pi\)
−0.385610 + 0.922662i \(0.626009\pi\)
\(888\) 1170.05 0.0442166
\(889\) −22929.9 −0.865065
\(890\) 0 0
\(891\) 7239.72 0.272211
\(892\) −6359.14 −0.238699
\(893\) 2153.37 0.0806940
\(894\) −47666.5 −1.78323
\(895\) 0 0
\(896\) 3902.40 0.145502
\(897\) −1617.76 −0.0602180
\(898\) 13651.2 0.507289
\(899\) 28960.8 1.07441
\(900\) 0 0
\(901\) −9725.85 −0.359617
\(902\) −9952.52 −0.367386
\(903\) −77901.2 −2.87086
\(904\) −1395.07 −0.0513267
\(905\) 0 0
\(906\) 62611.1 2.29593
\(907\) 7456.13 0.272962 0.136481 0.990643i \(-0.456421\pi\)
0.136481 + 0.990643i \(0.456421\pi\)
\(908\) 11562.2 0.422581
\(909\) 26216.5 0.956596
\(910\) 0 0
\(911\) −10653.2 −0.387440 −0.193720 0.981057i \(-0.562055\pi\)
−0.193720 + 0.981057i \(0.562055\pi\)
\(912\) −8459.66 −0.307157
\(913\) 2362.07 0.0856224
\(914\) 1990.59 0.0720380
\(915\) 0 0
\(916\) −40438.6 −1.45866
\(917\) −60579.8 −2.18159
\(918\) 14813.6 0.532596
\(919\) −12569.7 −0.451183 −0.225591 0.974222i \(-0.572431\pi\)
−0.225591 + 0.974222i \(0.572431\pi\)
\(920\) 0 0
\(921\) 50297.8 1.79953
\(922\) 2164.59 0.0773179
\(923\) 2155.70 0.0768752
\(924\) 10870.9 0.387040
\(925\) 0 0
\(926\) −73466.8 −2.60720
\(927\) −15997.9 −0.566816
\(928\) −43463.4 −1.53745
\(929\) 4920.06 0.173759 0.0868795 0.996219i \(-0.472311\pi\)
0.0868795 + 0.996219i \(0.472311\pi\)
\(930\) 0 0
\(931\) −6165.67 −0.217048
\(932\) −16475.0 −0.579031
\(933\) −14350.4 −0.503548
\(934\) −49433.4 −1.73181
\(935\) 0 0
\(936\) −97.6317 −0.00340939
\(937\) −1991.87 −0.0694465 −0.0347233 0.999397i \(-0.511055\pi\)
−0.0347233 + 0.999397i \(0.511055\pi\)
\(938\) 10893.0 0.379179
\(939\) 14857.0 0.516337
\(940\) 0 0
\(941\) −7640.33 −0.264684 −0.132342 0.991204i \(-0.542250\pi\)
−0.132342 + 0.991204i \(0.542250\pi\)
\(942\) −38276.5 −1.32390
\(943\) 16287.9 0.562467
\(944\) −12088.7 −0.416795
\(945\) 0 0
\(946\) −14470.7 −0.497340
\(947\) 6521.15 0.223769 0.111884 0.993721i \(-0.464311\pi\)
0.111884 + 0.993721i \(0.464311\pi\)
\(948\) 30572.8 1.04742
\(949\) −3853.22 −0.131803
\(950\) 0 0
\(951\) 2883.40 0.0983182
\(952\) −1909.38 −0.0650037
\(953\) 35757.9 1.21544 0.607719 0.794152i \(-0.292085\pi\)
0.607719 + 0.794152i \(0.292085\pi\)
\(954\) −11149.6 −0.378386
\(955\) 0 0
\(956\) 29057.3 0.983034
\(957\) 9375.64 0.316689
\(958\) −41881.3 −1.41244
\(959\) −57997.6 −1.95291
\(960\) 0 0
\(961\) −1314.75 −0.0441323
\(962\) 2669.59 0.0894710
\(963\) 23679.3 0.792374
\(964\) 49411.4 1.65086
\(965\) 0 0
\(966\) −36270.0 −1.20804
\(967\) 6342.30 0.210915 0.105457 0.994424i \(-0.466369\pi\)
0.105457 + 0.994424i \(0.466369\pi\)
\(968\) 1493.58 0.0495924
\(969\) 7986.21 0.264762
\(970\) 0 0
\(971\) 30351.2 1.00311 0.501553 0.865127i \(-0.332762\pi\)
0.501553 + 0.865127i \(0.332762\pi\)
\(972\) 33617.5 1.10934
\(973\) −7651.29 −0.252096
\(974\) 44491.4 1.46365
\(975\) 0 0
\(976\) −26788.5 −0.878566
\(977\) −39843.6 −1.30472 −0.652359 0.757910i \(-0.726220\pi\)
−0.652359 + 0.757910i \(0.726220\pi\)
\(978\) 3392.98 0.110936
\(979\) 7848.66 0.256225
\(980\) 0 0
\(981\) 15761.4 0.512969
\(982\) −2127.27 −0.0691282
\(983\) −24068.7 −0.780949 −0.390475 0.920614i \(-0.627689\pi\)
−0.390475 + 0.920614i \(0.627689\pi\)
\(984\) 2448.79 0.0793340
\(985\) 0 0
\(986\) 42561.5 1.37468
\(987\) 19665.8 0.634213
\(988\) −668.238 −0.0215177
\(989\) 23682.2 0.761426
\(990\) 0 0
\(991\) 3235.83 0.103723 0.0518615 0.998654i \(-0.483485\pi\)
0.0518615 + 0.998654i \(0.483485\pi\)
\(992\) −42736.2 −1.36782
\(993\) 5140.86 0.164290
\(994\) 48330.4 1.54220
\(995\) 0 0
\(996\) 15021.0 0.477871
\(997\) −19444.5 −0.617665 −0.308833 0.951116i \(-0.599938\pi\)
−0.308833 + 0.951116i \(0.599938\pi\)
\(998\) 5230.25 0.165892
\(999\) 8812.68 0.279100
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.4.a.f.1.3 3
5.2 odd 4 475.4.b.f.324.5 6
5.3 odd 4 475.4.b.f.324.2 6
5.4 even 2 19.4.a.b.1.1 3
15.14 odd 2 171.4.a.f.1.3 3
20.19 odd 2 304.4.a.i.1.1 3
35.34 odd 2 931.4.a.c.1.1 3
40.19 odd 2 1216.4.a.u.1.3 3
40.29 even 2 1216.4.a.s.1.1 3
55.54 odd 2 2299.4.a.h.1.3 3
95.94 odd 2 361.4.a.i.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.4.a.b.1.1 3 5.4 even 2
171.4.a.f.1.3 3 15.14 odd 2
304.4.a.i.1.1 3 20.19 odd 2
361.4.a.i.1.3 3 95.94 odd 2
475.4.a.f.1.3 3 1.1 even 1 trivial
475.4.b.f.324.2 6 5.3 odd 4
475.4.b.f.324.5 6 5.2 odd 4
931.4.a.c.1.1 3 35.34 odd 2
1216.4.a.s.1.1 3 40.29 even 2
1216.4.a.u.1.3 3 40.19 odd 2
2299.4.a.h.1.3 3 55.54 odd 2