Properties

Label 475.4.a.f.1.1
Level $475$
Weight $4$
Character 475.1
Self dual yes
Analytic conductor $28.026$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,4,Mod(1,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 475.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.0259072527\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.3144.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.526440\) of defining polynomial
Character \(\chi\) \(=\) 475.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.07177 q^{2} +8.66998 q^{3} +17.7229 q^{4} -43.9722 q^{6} +15.1058 q^{7} -49.3121 q^{8} +48.1686 q^{9} +12.6171 q^{11} +153.657 q^{12} -46.9571 q^{13} -76.6130 q^{14} +108.317 q^{16} +28.9745 q^{17} -244.300 q^{18} -19.0000 q^{19} +130.967 q^{21} -63.9911 q^{22} +112.166 q^{23} -427.535 q^{24} +238.155 q^{26} +183.531 q^{27} +267.717 q^{28} +295.107 q^{29} -57.6979 q^{31} -154.862 q^{32} +109.390 q^{33} -146.952 q^{34} +853.685 q^{36} +341.167 q^{37} +96.3636 q^{38} -407.117 q^{39} +274.056 q^{41} -664.233 q^{42} -327.536 q^{43} +223.611 q^{44} -568.879 q^{46} -139.140 q^{47} +939.106 q^{48} -114.816 q^{49} +251.209 q^{51} -832.214 q^{52} -296.715 q^{53} -930.828 q^{54} -744.897 q^{56} -164.730 q^{57} -1496.72 q^{58} +459.383 q^{59} -232.911 q^{61} +292.631 q^{62} +727.623 q^{63} -81.1127 q^{64} -554.801 q^{66} +320.784 q^{67} +513.511 q^{68} +972.475 q^{69} -9.54518 q^{71} -2375.30 q^{72} -320.868 q^{73} -1730.32 q^{74} -336.734 q^{76} +190.591 q^{77} +2064.80 q^{78} -89.2323 q^{79} +290.661 q^{81} -1389.95 q^{82} +439.455 q^{83} +2321.10 q^{84} +1661.19 q^{86} +2558.58 q^{87} -622.176 q^{88} +883.164 q^{89} -709.322 q^{91} +1987.90 q^{92} -500.240 q^{93} +705.688 q^{94} -1342.65 q^{96} +1705.87 q^{97} +582.321 q^{98} +607.748 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - q^{3} + 21 q^{4} - 65 q^{6} + 35 q^{7} - 27 q^{8} + 48 q^{9} + 16 q^{11} + 115 q^{12} - 65 q^{13} + 37 q^{14} + 33 q^{16} - 29 q^{17} - 138 q^{18} - 57 q^{19} - 25 q^{21} - 118 q^{22} + 101 q^{23}+ \cdots + 250 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.07177 −1.79314 −0.896571 0.442900i \(-0.853950\pi\)
−0.896571 + 0.442900i \(0.853950\pi\)
\(3\) 8.66998 1.66854 0.834269 0.551357i \(-0.185890\pi\)
0.834269 + 0.551357i \(0.185890\pi\)
\(4\) 17.7229 2.21536
\(5\) 0 0
\(6\) −43.9722 −2.99193
\(7\) 15.1058 0.815634 0.407817 0.913064i \(-0.366290\pi\)
0.407817 + 0.913064i \(0.366290\pi\)
\(8\) −49.3121 −2.17931
\(9\) 48.1686 1.78402
\(10\) 0 0
\(11\) 12.6171 0.345836 0.172918 0.984936i \(-0.444680\pi\)
0.172918 + 0.984936i \(0.444680\pi\)
\(12\) 153.657 3.69641
\(13\) −46.9571 −1.00181 −0.500906 0.865502i \(-0.667000\pi\)
−0.500906 + 0.865502i \(0.667000\pi\)
\(14\) −76.6130 −1.46255
\(15\) 0 0
\(16\) 108.317 1.69245
\(17\) 28.9745 0.413374 0.206687 0.978407i \(-0.433732\pi\)
0.206687 + 0.978407i \(0.433732\pi\)
\(18\) −244.300 −3.19900
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) 130.967 1.36092
\(22\) −63.9911 −0.620134
\(23\) 112.166 1.01688 0.508439 0.861098i \(-0.330223\pi\)
0.508439 + 0.861098i \(0.330223\pi\)
\(24\) −427.535 −3.63626
\(25\) 0 0
\(26\) 238.155 1.79639
\(27\) 183.531 1.30817
\(28\) 267.717 1.80692
\(29\) 295.107 1.88966 0.944828 0.327565i \(-0.106228\pi\)
0.944828 + 0.327565i \(0.106228\pi\)
\(30\) 0 0
\(31\) −57.6979 −0.334285 −0.167143 0.985933i \(-0.553454\pi\)
−0.167143 + 0.985933i \(0.553454\pi\)
\(32\) −154.862 −0.855498
\(33\) 109.390 0.577041
\(34\) −146.952 −0.741238
\(35\) 0 0
\(36\) 853.685 3.95225
\(37\) 341.167 1.51588 0.757940 0.652324i \(-0.226206\pi\)
0.757940 + 0.652324i \(0.226206\pi\)
\(38\) 96.3636 0.411375
\(39\) −407.117 −1.67156
\(40\) 0 0
\(41\) 274.056 1.04391 0.521955 0.852973i \(-0.325203\pi\)
0.521955 + 0.852973i \(0.325203\pi\)
\(42\) −664.233 −2.44032
\(43\) −327.536 −1.16160 −0.580800 0.814046i \(-0.697260\pi\)
−0.580800 + 0.814046i \(0.697260\pi\)
\(44\) 223.611 0.766151
\(45\) 0 0
\(46\) −568.879 −1.82341
\(47\) −139.140 −0.431823 −0.215912 0.976413i \(-0.569272\pi\)
−0.215912 + 0.976413i \(0.569272\pi\)
\(48\) 939.106 2.82392
\(49\) −114.816 −0.334741
\(50\) 0 0
\(51\) 251.209 0.689730
\(52\) −832.214 −2.21937
\(53\) −296.715 −0.769000 −0.384500 0.923125i \(-0.625626\pi\)
−0.384500 + 0.923125i \(0.625626\pi\)
\(54\) −930.828 −2.34574
\(55\) 0 0
\(56\) −744.897 −1.77752
\(57\) −164.730 −0.382789
\(58\) −1496.72 −3.38842
\(59\) 459.383 1.01367 0.506836 0.862043i \(-0.330815\pi\)
0.506836 + 0.862043i \(0.330815\pi\)
\(60\) 0 0
\(61\) −232.911 −0.488873 −0.244436 0.969665i \(-0.578603\pi\)
−0.244436 + 0.969665i \(0.578603\pi\)
\(62\) 292.631 0.599421
\(63\) 727.623 1.45511
\(64\) −81.1127 −0.158423
\(65\) 0 0
\(66\) −554.801 −1.03472
\(67\) 320.784 0.584926 0.292463 0.956277i \(-0.405525\pi\)
0.292463 + 0.956277i \(0.405525\pi\)
\(68\) 513.511 0.915771
\(69\) 972.475 1.69670
\(70\) 0 0
\(71\) −9.54518 −0.0159550 −0.00797749 0.999968i \(-0.502539\pi\)
−0.00797749 + 0.999968i \(0.502539\pi\)
\(72\) −2375.30 −3.88793
\(73\) −320.868 −0.514448 −0.257224 0.966352i \(-0.582808\pi\)
−0.257224 + 0.966352i \(0.582808\pi\)
\(74\) −1730.32 −2.71819
\(75\) 0 0
\(76\) −336.734 −0.508238
\(77\) 190.591 0.282076
\(78\) 2064.80 2.99735
\(79\) −89.2323 −0.127081 −0.0635406 0.997979i \(-0.520239\pi\)
−0.0635406 + 0.997979i \(0.520239\pi\)
\(80\) 0 0
\(81\) 290.661 0.398712
\(82\) −1389.95 −1.87188
\(83\) 439.455 0.581163 0.290581 0.956850i \(-0.406151\pi\)
0.290581 + 0.956850i \(0.406151\pi\)
\(84\) 2321.10 3.01492
\(85\) 0 0
\(86\) 1661.19 2.08292
\(87\) 2558.58 3.15297
\(88\) −622.176 −0.753684
\(89\) 883.164 1.05186 0.525928 0.850529i \(-0.323718\pi\)
0.525928 + 0.850529i \(0.323718\pi\)
\(90\) 0 0
\(91\) −709.322 −0.817112
\(92\) 1987.90 2.25275
\(93\) −500.240 −0.557768
\(94\) 705.688 0.774321
\(95\) 0 0
\(96\) −1342.65 −1.42743
\(97\) 1705.87 1.78562 0.892808 0.450437i \(-0.148732\pi\)
0.892808 + 0.450437i \(0.148732\pi\)
\(98\) 582.321 0.600237
\(99\) 607.748 0.616979
\(100\) 0 0
\(101\) −961.422 −0.947178 −0.473589 0.880746i \(-0.657042\pi\)
−0.473589 + 0.880746i \(0.657042\pi\)
\(102\) −1274.07 −1.23678
\(103\) −173.142 −0.165633 −0.0828166 0.996565i \(-0.526392\pi\)
−0.0828166 + 0.996565i \(0.526392\pi\)
\(104\) 2315.55 2.18326
\(105\) 0 0
\(106\) 1504.87 1.37893
\(107\) −921.087 −0.832194 −0.416097 0.909320i \(-0.636602\pi\)
−0.416097 + 0.909320i \(0.636602\pi\)
\(108\) 3252.70 2.89807
\(109\) 552.454 0.485463 0.242731 0.970094i \(-0.421957\pi\)
0.242731 + 0.970094i \(0.421957\pi\)
\(110\) 0 0
\(111\) 2957.91 2.52930
\(112\) 1636.21 1.38042
\(113\) 1395.26 1.16155 0.580774 0.814064i \(-0.302750\pi\)
0.580774 + 0.814064i \(0.302750\pi\)
\(114\) 835.471 0.686395
\(115\) 0 0
\(116\) 5230.15 4.18627
\(117\) −2261.86 −1.78725
\(118\) −2329.89 −1.81766
\(119\) 437.682 0.337162
\(120\) 0 0
\(121\) −1171.81 −0.880397
\(122\) 1181.27 0.876618
\(123\) 2376.06 1.74180
\(124\) −1022.57 −0.740562
\(125\) 0 0
\(126\) −3690.34 −2.60922
\(127\) −793.013 −0.554083 −0.277041 0.960858i \(-0.589354\pi\)
−0.277041 + 0.960858i \(0.589354\pi\)
\(128\) 1650.28 1.13957
\(129\) −2839.73 −1.93818
\(130\) 0 0
\(131\) 25.0544 0.0167100 0.00835501 0.999965i \(-0.497340\pi\)
0.00835501 + 0.999965i \(0.497340\pi\)
\(132\) 1938.70 1.27835
\(133\) −287.009 −0.187119
\(134\) −1626.95 −1.04886
\(135\) 0 0
\(136\) −1428.80 −0.900869
\(137\) 716.056 0.446546 0.223273 0.974756i \(-0.428326\pi\)
0.223273 + 0.974756i \(0.428326\pi\)
\(138\) −4932.17 −3.04242
\(139\) 666.566 0.406744 0.203372 0.979102i \(-0.434810\pi\)
0.203372 + 0.979102i \(0.434810\pi\)
\(140\) 0 0
\(141\) −1206.34 −0.720514
\(142\) 48.4109 0.0286095
\(143\) −592.462 −0.346463
\(144\) 5217.47 3.01937
\(145\) 0 0
\(146\) 1627.37 0.922479
\(147\) −995.453 −0.558528
\(148\) 6046.46 3.35822
\(149\) −268.063 −0.147386 −0.0736931 0.997281i \(-0.523479\pi\)
−0.0736931 + 0.997281i \(0.523479\pi\)
\(150\) 0 0
\(151\) 2809.46 1.51411 0.757055 0.653352i \(-0.226638\pi\)
0.757055 + 0.653352i \(0.226638\pi\)
\(152\) 936.930 0.499968
\(153\) 1395.66 0.737468
\(154\) −966.633 −0.505802
\(155\) 0 0
\(156\) −7215.28 −3.70311
\(157\) 1999.77 1.01656 0.508278 0.861193i \(-0.330282\pi\)
0.508278 + 0.861193i \(0.330282\pi\)
\(158\) 452.566 0.227875
\(159\) −2572.52 −1.28311
\(160\) 0 0
\(161\) 1694.35 0.829400
\(162\) −1474.16 −0.714946
\(163\) −1642.08 −0.789064 −0.394532 0.918882i \(-0.629093\pi\)
−0.394532 + 0.918882i \(0.629093\pi\)
\(164\) 4857.05 2.31263
\(165\) 0 0
\(166\) −2228.82 −1.04211
\(167\) −2965.92 −1.37431 −0.687155 0.726511i \(-0.741141\pi\)
−0.687155 + 0.726511i \(0.741141\pi\)
\(168\) −6458.24 −2.96586
\(169\) 7.96603 0.00362587
\(170\) 0 0
\(171\) −915.203 −0.409283
\(172\) −5804.88 −2.57336
\(173\) −92.7872 −0.0407773 −0.0203887 0.999792i \(-0.506490\pi\)
−0.0203887 + 0.999792i \(0.506490\pi\)
\(174\) −12976.5 −5.65372
\(175\) 0 0
\(176\) 1366.65 0.585311
\(177\) 3982.84 1.69135
\(178\) −4479.21 −1.88613
\(179\) −3294.07 −1.37548 −0.687738 0.725959i \(-0.741396\pi\)
−0.687738 + 0.725959i \(0.741396\pi\)
\(180\) 0 0
\(181\) 3590.17 1.47434 0.737168 0.675709i \(-0.236162\pi\)
0.737168 + 0.675709i \(0.236162\pi\)
\(182\) 3597.52 1.46520
\(183\) −2019.34 −0.815703
\(184\) −5531.13 −2.21609
\(185\) 0 0
\(186\) 2537.10 1.00016
\(187\) 365.574 0.142960
\(188\) −2465.96 −0.956643
\(189\) 2772.38 1.06699
\(190\) 0 0
\(191\) 480.480 0.182023 0.0910114 0.995850i \(-0.470990\pi\)
0.0910114 + 0.995850i \(0.470990\pi\)
\(192\) −703.246 −0.264335
\(193\) −3504.07 −1.30688 −0.653442 0.756977i \(-0.726675\pi\)
−0.653442 + 0.756977i \(0.726675\pi\)
\(194\) −8651.78 −3.20186
\(195\) 0 0
\(196\) −2034.87 −0.741570
\(197\) −603.790 −0.218367 −0.109183 0.994022i \(-0.534824\pi\)
−0.109183 + 0.994022i \(0.534824\pi\)
\(198\) −3082.36 −1.10633
\(199\) 3063.80 1.09139 0.545695 0.837984i \(-0.316266\pi\)
0.545695 + 0.837984i \(0.316266\pi\)
\(200\) 0 0
\(201\) 2781.20 0.975972
\(202\) 4876.11 1.69843
\(203\) 4457.82 1.54127
\(204\) 4452.13 1.52800
\(205\) 0 0
\(206\) 878.139 0.297004
\(207\) 5402.87 1.81413
\(208\) −5086.24 −1.69552
\(209\) −239.725 −0.0793403
\(210\) 0 0
\(211\) −2772.16 −0.904470 −0.452235 0.891899i \(-0.649373\pi\)
−0.452235 + 0.891899i \(0.649373\pi\)
\(212\) −5258.65 −1.70361
\(213\) −82.7565 −0.0266215
\(214\) 4671.54 1.49224
\(215\) 0 0
\(216\) −9050.32 −2.85091
\(217\) −871.571 −0.272655
\(218\) −2801.92 −0.870504
\(219\) −2781.92 −0.858377
\(220\) 0 0
\(221\) −1360.56 −0.414122
\(222\) −15001.9 −4.53540
\(223\) 5653.47 1.69769 0.848844 0.528644i \(-0.177299\pi\)
0.848844 + 0.528644i \(0.177299\pi\)
\(224\) −2339.30 −0.697773
\(225\) 0 0
\(226\) −7076.44 −2.08282
\(227\) 5083.00 1.48621 0.743106 0.669173i \(-0.233352\pi\)
0.743106 + 0.669173i \(0.233352\pi\)
\(228\) −2919.48 −0.848015
\(229\) 501.966 0.144851 0.0724254 0.997374i \(-0.476926\pi\)
0.0724254 + 0.997374i \(0.476926\pi\)
\(230\) 0 0
\(231\) 1652.42 0.470655
\(232\) −14552.4 −4.11815
\(233\) −2809.38 −0.789909 −0.394955 0.918701i \(-0.629240\pi\)
−0.394955 + 0.918701i \(0.629240\pi\)
\(234\) 11471.6 3.20480
\(235\) 0 0
\(236\) 8141.58 2.24564
\(237\) −773.642 −0.212040
\(238\) −2219.82 −0.604579
\(239\) 2239.56 0.606130 0.303065 0.952970i \(-0.401990\pi\)
0.303065 + 0.952970i \(0.401990\pi\)
\(240\) 0 0
\(241\) −7214.25 −1.92826 −0.964130 0.265431i \(-0.914486\pi\)
−0.964130 + 0.265431i \(0.914486\pi\)
\(242\) 5943.15 1.57868
\(243\) −2435.32 −0.642905
\(244\) −4127.85 −1.08303
\(245\) 0 0
\(246\) −12050.8 −3.12330
\(247\) 892.184 0.229831
\(248\) 2845.21 0.728511
\(249\) 3810.07 0.969693
\(250\) 0 0
\(251\) 6212.82 1.56235 0.781174 0.624313i \(-0.214621\pi\)
0.781174 + 0.624313i \(0.214621\pi\)
\(252\) 12895.6 3.22359
\(253\) 1415.21 0.351673
\(254\) 4021.98 0.993549
\(255\) 0 0
\(256\) −7720.93 −1.88499
\(257\) 2796.37 0.678727 0.339364 0.940655i \(-0.389788\pi\)
0.339364 + 0.940655i \(0.389788\pi\)
\(258\) 14402.5 3.47542
\(259\) 5153.59 1.23640
\(260\) 0 0
\(261\) 14214.9 3.37119
\(262\) −127.070 −0.0299634
\(263\) −2976.00 −0.697748 −0.348874 0.937170i \(-0.613436\pi\)
−0.348874 + 0.937170i \(0.613436\pi\)
\(264\) −5394.26 −1.25755
\(265\) 0 0
\(266\) 1455.65 0.335532
\(267\) 7657.02 1.75506
\(268\) 5685.22 1.29582
\(269\) −25.4734 −0.00577376 −0.00288688 0.999996i \(-0.500919\pi\)
−0.00288688 + 0.999996i \(0.500919\pi\)
\(270\) 0 0
\(271\) −4338.19 −0.972421 −0.486211 0.873842i \(-0.661621\pi\)
−0.486211 + 0.873842i \(0.661621\pi\)
\(272\) 3138.43 0.699615
\(273\) −6149.81 −1.36338
\(274\) −3631.67 −0.800720
\(275\) 0 0
\(276\) 17235.0 3.75880
\(277\) −4276.02 −0.927514 −0.463757 0.885962i \(-0.653499\pi\)
−0.463757 + 0.885962i \(0.653499\pi\)
\(278\) −3380.67 −0.729349
\(279\) −2779.23 −0.596373
\(280\) 0 0
\(281\) −3716.43 −0.788980 −0.394490 0.918900i \(-0.629079\pi\)
−0.394490 + 0.918900i \(0.629079\pi\)
\(282\) 6118.30 1.29198
\(283\) −3748.01 −0.787265 −0.393633 0.919268i \(-0.628782\pi\)
−0.393633 + 0.919268i \(0.628782\pi\)
\(284\) −169.168 −0.0353460
\(285\) 0 0
\(286\) 3004.83 0.621257
\(287\) 4139.82 0.851449
\(288\) −7459.46 −1.52623
\(289\) −4073.48 −0.829122
\(290\) 0 0
\(291\) 14789.9 2.97937
\(292\) −5686.69 −1.13969
\(293\) −8210.10 −1.63699 −0.818497 0.574510i \(-0.805192\pi\)
−0.818497 + 0.574510i \(0.805192\pi\)
\(294\) 5048.71 1.00152
\(295\) 0 0
\(296\) −16823.7 −3.30357
\(297\) 2315.63 0.452413
\(298\) 1359.55 0.264284
\(299\) −5266.98 −1.01872
\(300\) 0 0
\(301\) −4947.69 −0.947442
\(302\) −14248.9 −2.71501
\(303\) −8335.51 −1.58040
\(304\) −2058.02 −0.388275
\(305\) 0 0
\(306\) −7078.48 −1.32238
\(307\) 2814.79 0.523285 0.261642 0.965165i \(-0.415736\pi\)
0.261642 + 0.965165i \(0.415736\pi\)
\(308\) 3377.82 0.624899
\(309\) −1501.14 −0.276366
\(310\) 0 0
\(311\) −8650.75 −1.57730 −0.788648 0.614845i \(-0.789218\pi\)
−0.788648 + 0.614845i \(0.789218\pi\)
\(312\) 20075.8 3.64285
\(313\) −1623.48 −0.293178 −0.146589 0.989197i \(-0.546829\pi\)
−0.146589 + 0.989197i \(0.546829\pi\)
\(314\) −10142.4 −1.82283
\(315\) 0 0
\(316\) −1581.45 −0.281530
\(317\) −9372.31 −1.66057 −0.830286 0.557337i \(-0.811823\pi\)
−0.830286 + 0.557337i \(0.811823\pi\)
\(318\) 13047.2 2.30079
\(319\) 3723.40 0.653512
\(320\) 0 0
\(321\) −7985.80 −1.38855
\(322\) −8593.35 −1.48723
\(323\) −550.516 −0.0948344
\(324\) 5151.34 0.883289
\(325\) 0 0
\(326\) 8328.24 1.41490
\(327\) 4789.76 0.810014
\(328\) −13514.3 −2.27500
\(329\) −2101.82 −0.352210
\(330\) 0 0
\(331\) −1765.55 −0.293182 −0.146591 0.989197i \(-0.546830\pi\)
−0.146591 + 0.989197i \(0.546830\pi\)
\(332\) 7788.41 1.28748
\(333\) 16433.5 2.70436
\(334\) 15042.5 2.46433
\(335\) 0 0
\(336\) 14185.9 2.30329
\(337\) −10189.8 −1.64711 −0.823555 0.567237i \(-0.808012\pi\)
−0.823555 + 0.567237i \(0.808012\pi\)
\(338\) −40.4019 −0.00650169
\(339\) 12096.9 1.93809
\(340\) 0 0
\(341\) −727.980 −0.115608
\(342\) 4641.70 0.733902
\(343\) −6915.66 −1.08866
\(344\) 16151.5 2.53149
\(345\) 0 0
\(346\) 470.595 0.0731195
\(347\) 11350.2 1.75594 0.877971 0.478714i \(-0.158897\pi\)
0.877971 + 0.478714i \(0.158897\pi\)
\(348\) 45345.3 6.98495
\(349\) 511.619 0.0784709 0.0392354 0.999230i \(-0.487508\pi\)
0.0392354 + 0.999230i \(0.487508\pi\)
\(350\) 0 0
\(351\) −8618.09 −1.31054
\(352\) −1953.90 −0.295862
\(353\) −816.097 −0.123049 −0.0615247 0.998106i \(-0.519596\pi\)
−0.0615247 + 0.998106i \(0.519596\pi\)
\(354\) −20200.1 −3.03283
\(355\) 0 0
\(356\) 15652.2 2.33024
\(357\) 3794.70 0.562567
\(358\) 16706.8 2.46642
\(359\) 3998.35 0.587813 0.293906 0.955834i \(-0.405045\pi\)
0.293906 + 0.955834i \(0.405045\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) −18208.5 −2.64369
\(363\) −10159.6 −1.46898
\(364\) −12571.2 −1.81019
\(365\) 0 0
\(366\) 10241.6 1.46267
\(367\) 3123.19 0.444221 0.222111 0.975021i \(-0.428705\pi\)
0.222111 + 0.975021i \(0.428705\pi\)
\(368\) 12149.5 1.72102
\(369\) 13200.9 1.86236
\(370\) 0 0
\(371\) −4482.11 −0.627223
\(372\) −8865.68 −1.23566
\(373\) 7026.28 0.975354 0.487677 0.873024i \(-0.337844\pi\)
0.487677 + 0.873024i \(0.337844\pi\)
\(374\) −1854.11 −0.256347
\(375\) 0 0
\(376\) 6861.30 0.941076
\(377\) −13857.4 −1.89308
\(378\) −14060.9 −1.91326
\(379\) −11595.9 −1.57162 −0.785808 0.618470i \(-0.787753\pi\)
−0.785808 + 0.618470i \(0.787753\pi\)
\(380\) 0 0
\(381\) −6875.41 −0.924508
\(382\) −2436.89 −0.326393
\(383\) 10962.4 1.46254 0.731268 0.682091i \(-0.238929\pi\)
0.731268 + 0.682091i \(0.238929\pi\)
\(384\) 14307.9 1.90142
\(385\) 0 0
\(386\) 17771.8 2.34343
\(387\) −15777.0 −2.07232
\(388\) 30232.9 3.95578
\(389\) 7126.21 0.928825 0.464413 0.885619i \(-0.346265\pi\)
0.464413 + 0.885619i \(0.346265\pi\)
\(390\) 0 0
\(391\) 3249.95 0.420350
\(392\) 5661.82 0.729503
\(393\) 217.221 0.0278813
\(394\) 3062.29 0.391563
\(395\) 0 0
\(396\) 10771.0 1.36683
\(397\) −4895.59 −0.618899 −0.309449 0.950916i \(-0.600145\pi\)
−0.309449 + 0.950916i \(0.600145\pi\)
\(398\) −15538.9 −1.95702
\(399\) −2488.37 −0.312216
\(400\) 0 0
\(401\) −6148.05 −0.765634 −0.382817 0.923824i \(-0.625046\pi\)
−0.382817 + 0.923824i \(0.625046\pi\)
\(402\) −14105.6 −1.75006
\(403\) 2709.32 0.334891
\(404\) −17039.1 −2.09834
\(405\) 0 0
\(406\) −22609.0 −2.76371
\(407\) 4304.54 0.524246
\(408\) −12387.6 −1.50313
\(409\) 2968.47 0.358878 0.179439 0.983769i \(-0.442572\pi\)
0.179439 + 0.983769i \(0.442572\pi\)
\(410\) 0 0
\(411\) 6208.19 0.745079
\(412\) −3068.58 −0.366937
\(413\) 6939.33 0.826785
\(414\) −27402.1 −3.25300
\(415\) 0 0
\(416\) 7271.85 0.857047
\(417\) 5779.12 0.678668
\(418\) 1215.83 0.142268
\(419\) −11101.1 −1.29432 −0.647162 0.762352i \(-0.724044\pi\)
−0.647162 + 0.762352i \(0.724044\pi\)
\(420\) 0 0
\(421\) 3241.73 0.375278 0.187639 0.982238i \(-0.439916\pi\)
0.187639 + 0.982238i \(0.439916\pi\)
\(422\) 14059.7 1.62184
\(423\) −6702.19 −0.770382
\(424\) 14631.7 1.67589
\(425\) 0 0
\(426\) 419.722 0.0477361
\(427\) −3518.30 −0.398741
\(428\) −16324.3 −1.84361
\(429\) −5136.64 −0.578086
\(430\) 0 0
\(431\) 290.271 0.0324405 0.0162202 0.999868i \(-0.494837\pi\)
0.0162202 + 0.999868i \(0.494837\pi\)
\(432\) 19879.5 2.21402
\(433\) −2104.16 −0.233533 −0.116766 0.993159i \(-0.537253\pi\)
−0.116766 + 0.993159i \(0.537253\pi\)
\(434\) 4420.41 0.488909
\(435\) 0 0
\(436\) 9791.06 1.07547
\(437\) −2131.15 −0.233288
\(438\) 14109.2 1.53919
\(439\) 4013.82 0.436376 0.218188 0.975907i \(-0.429985\pi\)
0.218188 + 0.975907i \(0.429985\pi\)
\(440\) 0 0
\(441\) −5530.53 −0.597185
\(442\) 6900.44 0.742580
\(443\) −12013.8 −1.28847 −0.644236 0.764827i \(-0.722824\pi\)
−0.644236 + 0.764827i \(0.722824\pi\)
\(444\) 52422.7 5.60331
\(445\) 0 0
\(446\) −28673.1 −3.04419
\(447\) −2324.10 −0.245920
\(448\) −1225.27 −0.129215
\(449\) 4281.55 0.450020 0.225010 0.974356i \(-0.427759\pi\)
0.225010 + 0.974356i \(0.427759\pi\)
\(450\) 0 0
\(451\) 3457.79 0.361022
\(452\) 24728.0 2.57325
\(453\) 24358.0 2.52635
\(454\) −25779.8 −2.66499
\(455\) 0 0
\(456\) 8123.17 0.834215
\(457\) −293.330 −0.0300249 −0.0150125 0.999887i \(-0.504779\pi\)
−0.0150125 + 0.999887i \(0.504779\pi\)
\(458\) −2545.85 −0.259738
\(459\) 5317.73 0.540763
\(460\) 0 0
\(461\) −5267.87 −0.532210 −0.266105 0.963944i \(-0.585737\pi\)
−0.266105 + 0.963944i \(0.585737\pi\)
\(462\) −8380.69 −0.843951
\(463\) −8076.98 −0.810733 −0.405366 0.914154i \(-0.632856\pi\)
−0.405366 + 0.914154i \(0.632856\pi\)
\(464\) 31965.1 3.19815
\(465\) 0 0
\(466\) 14248.5 1.41642
\(467\) 3160.43 0.313163 0.156582 0.987665i \(-0.449953\pi\)
0.156582 + 0.987665i \(0.449953\pi\)
\(468\) −40086.5 −3.95940
\(469\) 4845.69 0.477086
\(470\) 0 0
\(471\) 17338.0 1.69616
\(472\) −22653.2 −2.20910
\(473\) −4132.56 −0.401724
\(474\) 3923.74 0.380218
\(475\) 0 0
\(476\) 7756.98 0.746934
\(477\) −14292.4 −1.37191
\(478\) −11358.5 −1.08688
\(479\) −249.277 −0.0237782 −0.0118891 0.999929i \(-0.503785\pi\)
−0.0118891 + 0.999929i \(0.503785\pi\)
\(480\) 0 0
\(481\) −16020.2 −1.51863
\(482\) 36589.0 3.45764
\(483\) 14690.0 1.38389
\(484\) −20767.8 −1.95039
\(485\) 0 0
\(486\) 12351.4 1.15282
\(487\) −7265.71 −0.676059 −0.338029 0.941136i \(-0.609760\pi\)
−0.338029 + 0.941136i \(0.609760\pi\)
\(488\) 11485.4 1.06540
\(489\) −14236.8 −1.31658
\(490\) 0 0
\(491\) −8456.47 −0.777261 −0.388630 0.921394i \(-0.627052\pi\)
−0.388630 + 0.921394i \(0.627052\pi\)
\(492\) 42110.5 3.85872
\(493\) 8550.59 0.781134
\(494\) −4524.95 −0.412120
\(495\) 0 0
\(496\) −6249.66 −0.565762
\(497\) −144.187 −0.0130134
\(498\) −19323.8 −1.73880
\(499\) 1905.15 0.170914 0.0854571 0.996342i \(-0.472765\pi\)
0.0854571 + 0.996342i \(0.472765\pi\)
\(500\) 0 0
\(501\) −25714.5 −2.29309
\(502\) −31510.0 −2.80151
\(503\) −6082.63 −0.539187 −0.269593 0.962974i \(-0.586889\pi\)
−0.269593 + 0.962974i \(0.586889\pi\)
\(504\) −35880.6 −3.17113
\(505\) 0 0
\(506\) −7177.61 −0.630600
\(507\) 69.0653 0.00604990
\(508\) −14054.5 −1.22749
\(509\) 13858.9 1.20684 0.603422 0.797422i \(-0.293803\pi\)
0.603422 + 0.797422i \(0.293803\pi\)
\(510\) 0 0
\(511\) −4846.95 −0.419602
\(512\) 25956.6 2.24049
\(513\) −3487.09 −0.300115
\(514\) −14182.6 −1.21705
\(515\) 0 0
\(516\) −50328.2 −4.29375
\(517\) −1755.55 −0.149340
\(518\) −26137.8 −2.21705
\(519\) −804.463 −0.0680385
\(520\) 0 0
\(521\) 4086.72 0.343651 0.171826 0.985127i \(-0.445033\pi\)
0.171826 + 0.985127i \(0.445033\pi\)
\(522\) −72094.7 −6.04502
\(523\) −20188.4 −1.68791 −0.843957 0.536411i \(-0.819780\pi\)
−0.843957 + 0.536411i \(0.819780\pi\)
\(524\) 444.036 0.0370187
\(525\) 0 0
\(526\) 15093.6 1.25116
\(527\) −1671.77 −0.138185
\(528\) 11848.8 0.976615
\(529\) 414.164 0.0340399
\(530\) 0 0
\(531\) 22127.8 1.80841
\(532\) −5086.63 −0.414536
\(533\) −12868.9 −1.04580
\(534\) −38834.7 −3.14708
\(535\) 0 0
\(536\) −15818.6 −1.27473
\(537\) −28559.5 −2.29503
\(538\) 129.195 0.0103532
\(539\) −1448.65 −0.115765
\(540\) 0 0
\(541\) 16356.6 1.29986 0.649932 0.759992i \(-0.274797\pi\)
0.649932 + 0.759992i \(0.274797\pi\)
\(542\) 22002.3 1.74369
\(543\) 31126.7 2.45999
\(544\) −4487.04 −0.353640
\(545\) 0 0
\(546\) 31190.4 2.44474
\(547\) 12751.0 0.996697 0.498349 0.866977i \(-0.333940\pi\)
0.498349 + 0.866977i \(0.333940\pi\)
\(548\) 12690.6 0.989259
\(549\) −11219.0 −0.872159
\(550\) 0 0
\(551\) −5607.04 −0.433517
\(552\) −47954.8 −3.69763
\(553\) −1347.92 −0.103652
\(554\) 21687.0 1.66316
\(555\) 0 0
\(556\) 11813.5 0.901083
\(557\) 7353.77 0.559406 0.279703 0.960087i \(-0.409764\pi\)
0.279703 + 0.960087i \(0.409764\pi\)
\(558\) 14095.6 1.06938
\(559\) 15380.1 1.16370
\(560\) 0 0
\(561\) 3169.52 0.238534
\(562\) 18848.9 1.41475
\(563\) 5597.74 0.419035 0.209517 0.977805i \(-0.432811\pi\)
0.209517 + 0.977805i \(0.432811\pi\)
\(564\) −21379.9 −1.59620
\(565\) 0 0
\(566\) 19009.0 1.41168
\(567\) 4390.65 0.325203
\(568\) 470.693 0.0347708
\(569\) −19640.2 −1.44703 −0.723515 0.690309i \(-0.757475\pi\)
−0.723515 + 0.690309i \(0.757475\pi\)
\(570\) 0 0
\(571\) −9749.71 −0.714558 −0.357279 0.933998i \(-0.616295\pi\)
−0.357279 + 0.933998i \(0.616295\pi\)
\(572\) −10500.1 −0.767539
\(573\) 4165.76 0.303712
\(574\) −20996.2 −1.52677
\(575\) 0 0
\(576\) −3907.09 −0.282631
\(577\) −11197.9 −0.807927 −0.403964 0.914775i \(-0.632368\pi\)
−0.403964 + 0.914775i \(0.632368\pi\)
\(578\) 20659.7 1.48673
\(579\) −30380.2 −2.18059
\(580\) 0 0
\(581\) 6638.31 0.474016
\(582\) −75010.8 −5.34243
\(583\) −3743.69 −0.265948
\(584\) 15822.7 1.12114
\(585\) 0 0
\(586\) 41639.8 2.93536
\(587\) 18654.4 1.31167 0.655833 0.754906i \(-0.272318\pi\)
0.655833 + 0.754906i \(0.272318\pi\)
\(588\) −17642.3 −1.23734
\(589\) 1096.26 0.0766903
\(590\) 0 0
\(591\) −5234.85 −0.364354
\(592\) 36954.2 2.56555
\(593\) −21513.4 −1.48980 −0.744900 0.667176i \(-0.767503\pi\)
−0.744900 + 0.667176i \(0.767503\pi\)
\(594\) −11744.4 −0.811240
\(595\) 0 0
\(596\) −4750.84 −0.326513
\(597\) 26563.1 1.82103
\(598\) 26712.9 1.82671
\(599\) 22762.8 1.55269 0.776346 0.630308i \(-0.217071\pi\)
0.776346 + 0.630308i \(0.217071\pi\)
\(600\) 0 0
\(601\) −13941.0 −0.946195 −0.473098 0.881010i \(-0.656864\pi\)
−0.473098 + 0.881010i \(0.656864\pi\)
\(602\) 25093.5 1.69890
\(603\) 15451.7 1.04352
\(604\) 49791.6 3.35429
\(605\) 0 0
\(606\) 42275.8 2.83389
\(607\) −8031.64 −0.537058 −0.268529 0.963272i \(-0.586538\pi\)
−0.268529 + 0.963272i \(0.586538\pi\)
\(608\) 2942.37 0.196265
\(609\) 38649.2 2.57167
\(610\) 0 0
\(611\) 6533.62 0.432606
\(612\) 24735.1 1.63375
\(613\) 19429.7 1.28019 0.640095 0.768296i \(-0.278895\pi\)
0.640095 + 0.768296i \(0.278895\pi\)
\(614\) −14276.0 −0.938324
\(615\) 0 0
\(616\) −9398.44 −0.614731
\(617\) 11264.0 0.734959 0.367480 0.930032i \(-0.380221\pi\)
0.367480 + 0.930032i \(0.380221\pi\)
\(618\) 7613.45 0.495563
\(619\) −22183.9 −1.44046 −0.720231 0.693734i \(-0.755964\pi\)
−0.720231 + 0.693734i \(0.755964\pi\)
\(620\) 0 0
\(621\) 20585.9 1.33025
\(622\) 43874.6 2.82831
\(623\) 13340.9 0.857930
\(624\) −44097.6 −2.82904
\(625\) 0 0
\(626\) 8233.93 0.525710
\(627\) −2078.41 −0.132382
\(628\) 35441.7 2.25204
\(629\) 9885.16 0.626625
\(630\) 0 0
\(631\) −23139.3 −1.45984 −0.729920 0.683532i \(-0.760443\pi\)
−0.729920 + 0.683532i \(0.760443\pi\)
\(632\) 4400.23 0.276949
\(633\) −24034.5 −1.50914
\(634\) 47534.2 2.97764
\(635\) 0 0
\(636\) −45592.4 −2.84254
\(637\) 5391.42 0.335347
\(638\) −18884.2 −1.17184
\(639\) −459.778 −0.0284640
\(640\) 0 0
\(641\) −4988.45 −0.307382 −0.153691 0.988119i \(-0.549116\pi\)
−0.153691 + 0.988119i \(0.549116\pi\)
\(642\) 40502.2 2.48986
\(643\) 11115.2 0.681712 0.340856 0.940115i \(-0.389283\pi\)
0.340856 + 0.940115i \(0.389283\pi\)
\(644\) 30028.7 1.83742
\(645\) 0 0
\(646\) 2792.09 0.170052
\(647\) −11916.2 −0.724071 −0.362036 0.932164i \(-0.617918\pi\)
−0.362036 + 0.932164i \(0.617918\pi\)
\(648\) −14333.1 −0.868915
\(649\) 5796.09 0.350564
\(650\) 0 0
\(651\) −7556.50 −0.454935
\(652\) −29102.3 −1.74806
\(653\) 18100.5 1.08473 0.542363 0.840144i \(-0.317530\pi\)
0.542363 + 0.840144i \(0.317530\pi\)
\(654\) −24292.6 −1.45247
\(655\) 0 0
\(656\) 29684.9 1.76677
\(657\) −15455.7 −0.917787
\(658\) 10659.9 0.631562
\(659\) 331.740 0.0196096 0.00980481 0.999952i \(-0.496879\pi\)
0.00980481 + 0.999952i \(0.496879\pi\)
\(660\) 0 0
\(661\) −30555.8 −1.79801 −0.899004 0.437939i \(-0.855708\pi\)
−0.899004 + 0.437939i \(0.855708\pi\)
\(662\) 8954.46 0.525717
\(663\) −11796.0 −0.690979
\(664\) −21670.5 −1.26653
\(665\) 0 0
\(666\) −83347.2 −4.84931
\(667\) 33100.9 1.92155
\(668\) −52564.6 −3.04459
\(669\) 49015.5 2.83266
\(670\) 0 0
\(671\) −2938.67 −0.169070
\(672\) −20281.7 −1.16426
\(673\) −3261.14 −0.186787 −0.0933936 0.995629i \(-0.529772\pi\)
−0.0933936 + 0.995629i \(0.529772\pi\)
\(674\) 51680.5 2.95350
\(675\) 0 0
\(676\) 141.181 0.00803259
\(677\) −11556.6 −0.656063 −0.328031 0.944667i \(-0.606385\pi\)
−0.328031 + 0.944667i \(0.606385\pi\)
\(678\) −61352.6 −3.47527
\(679\) 25768.5 1.45641
\(680\) 0 0
\(681\) 44069.5 2.47980
\(682\) 3692.15 0.207302
\(683\) −19704.1 −1.10389 −0.551944 0.833881i \(-0.686114\pi\)
−0.551944 + 0.833881i \(0.686114\pi\)
\(684\) −16220.0 −0.906707
\(685\) 0 0
\(686\) 35074.6 1.95212
\(687\) 4352.03 0.241689
\(688\) −35477.7 −1.96595
\(689\) 13932.9 0.770393
\(690\) 0 0
\(691\) −2956.51 −0.162765 −0.0813827 0.996683i \(-0.525934\pi\)
−0.0813827 + 0.996683i \(0.525934\pi\)
\(692\) −1644.45 −0.0903364
\(693\) 9180.49 0.503230
\(694\) −57565.7 −3.14865
\(695\) 0 0
\(696\) −126169. −6.87129
\(697\) 7940.63 0.431525
\(698\) −2594.81 −0.140709
\(699\) −24357.3 −1.31799
\(700\) 0 0
\(701\) 29022.1 1.56370 0.781848 0.623469i \(-0.214277\pi\)
0.781848 + 0.623469i \(0.214277\pi\)
\(702\) 43709.0 2.34998
\(703\) −6482.18 −0.347767
\(704\) −1023.41 −0.0547885
\(705\) 0 0
\(706\) 4139.05 0.220645
\(707\) −14523.0 −0.772551
\(708\) 70587.4 3.74694
\(709\) −5110.64 −0.270711 −0.135356 0.990797i \(-0.543218\pi\)
−0.135356 + 0.990797i \(0.543218\pi\)
\(710\) 0 0
\(711\) −4298.19 −0.226716
\(712\) −43550.7 −2.29232
\(713\) −6471.73 −0.339927
\(714\) −19245.8 −1.00876
\(715\) 0 0
\(716\) −58380.3 −3.04717
\(717\) 19416.9 1.01135
\(718\) −20278.7 −1.05403
\(719\) −25225.9 −1.30844 −0.654219 0.756305i \(-0.727002\pi\)
−0.654219 + 0.756305i \(0.727002\pi\)
\(720\) 0 0
\(721\) −2615.45 −0.135096
\(722\) −1830.91 −0.0943759
\(723\) −62547.4 −3.21738
\(724\) 63628.0 3.26618
\(725\) 0 0
\(726\) 51527.0 2.63408
\(727\) 12817.7 0.653893 0.326947 0.945043i \(-0.393980\pi\)
0.326947 + 0.945043i \(0.393980\pi\)
\(728\) 34978.2 1.78074
\(729\) −28962.0 −1.47142
\(730\) 0 0
\(731\) −9490.21 −0.480175
\(732\) −35788.4 −1.80707
\(733\) 15307.5 0.771342 0.385671 0.922636i \(-0.373970\pi\)
0.385671 + 0.922636i \(0.373970\pi\)
\(734\) −15840.1 −0.796551
\(735\) 0 0
\(736\) −17370.2 −0.869936
\(737\) 4047.37 0.202289
\(738\) −66951.8 −3.33947
\(739\) 34340.1 1.70936 0.854682 0.519152i \(-0.173752\pi\)
0.854682 + 0.519152i \(0.173752\pi\)
\(740\) 0 0
\(741\) 7735.22 0.383482
\(742\) 22732.2 1.12470
\(743\) 1883.40 0.0929948 0.0464974 0.998918i \(-0.485194\pi\)
0.0464974 + 0.998918i \(0.485194\pi\)
\(744\) 24667.9 1.21555
\(745\) 0 0
\(746\) −35635.7 −1.74895
\(747\) 21167.9 1.03681
\(748\) 6479.03 0.316707
\(749\) −13913.7 −0.678766
\(750\) 0 0
\(751\) −9431.98 −0.458292 −0.229146 0.973392i \(-0.573593\pi\)
−0.229146 + 0.973392i \(0.573593\pi\)
\(752\) −15071.2 −0.730840
\(753\) 53865.0 2.60684
\(754\) 70281.4 3.39456
\(755\) 0 0
\(756\) 49134.5 2.36376
\(757\) 12355.0 0.593196 0.296598 0.955002i \(-0.404148\pi\)
0.296598 + 0.955002i \(0.404148\pi\)
\(758\) 58811.9 2.81813
\(759\) 12269.8 0.586780
\(760\) 0 0
\(761\) −27257.6 −1.29841 −0.649204 0.760614i \(-0.724898\pi\)
−0.649204 + 0.760614i \(0.724898\pi\)
\(762\) 34870.5 1.65777
\(763\) 8345.23 0.395960
\(764\) 8515.49 0.403246
\(765\) 0 0
\(766\) −55598.6 −2.62253
\(767\) −21571.3 −1.01551
\(768\) −66940.3 −3.14518
\(769\) −1191.72 −0.0558835 −0.0279418 0.999610i \(-0.508895\pi\)
−0.0279418 + 0.999610i \(0.508895\pi\)
\(770\) 0 0
\(771\) 24244.5 1.13248
\(772\) −62102.1 −2.89521
\(773\) 7481.03 0.348091 0.174045 0.984738i \(-0.444316\pi\)
0.174045 + 0.984738i \(0.444316\pi\)
\(774\) 80017.2 3.71597
\(775\) 0 0
\(776\) −84120.1 −3.89141
\(777\) 44681.5 2.06299
\(778\) −36142.5 −1.66552
\(779\) −5207.06 −0.239489
\(780\) 0 0
\(781\) −120.432 −0.00551781
\(782\) −16483.0 −0.753748
\(783\) 54161.4 2.47199
\(784\) −12436.5 −0.566532
\(785\) 0 0
\(786\) −1101.70 −0.0499952
\(787\) −27403.6 −1.24121 −0.620604 0.784124i \(-0.713113\pi\)
−0.620604 + 0.784124i \(0.713113\pi\)
\(788\) −10700.9 −0.483761
\(789\) −25801.8 −1.16422
\(790\) 0 0
\(791\) 21076.5 0.947399
\(792\) −29969.3 −1.34459
\(793\) 10936.8 0.489758
\(794\) 24829.3 1.10977
\(795\) 0 0
\(796\) 54299.2 2.41782
\(797\) −30558.5 −1.35814 −0.679070 0.734073i \(-0.737617\pi\)
−0.679070 + 0.734073i \(0.737617\pi\)
\(798\) 12620.4 0.559847
\(799\) −4031.52 −0.178504
\(800\) 0 0
\(801\) 42540.8 1.87654
\(802\) 31181.5 1.37289
\(803\) −4048.42 −0.177915
\(804\) 49290.7 2.16213
\(805\) 0 0
\(806\) −13741.1 −0.600507
\(807\) −220.854 −0.00963374
\(808\) 47409.7 2.06419
\(809\) −28018.7 −1.21766 −0.608829 0.793302i \(-0.708360\pi\)
−0.608829 + 0.793302i \(0.708360\pi\)
\(810\) 0 0
\(811\) 2520.45 0.109131 0.0545654 0.998510i \(-0.482623\pi\)
0.0545654 + 0.998510i \(0.482623\pi\)
\(812\) 79005.3 3.41446
\(813\) −37612.0 −1.62252
\(814\) −21831.7 −0.940048
\(815\) 0 0
\(816\) 27210.1 1.16733
\(817\) 6223.19 0.266490
\(818\) −15055.4 −0.643520
\(819\) −34167.0 −1.45774
\(820\) 0 0
\(821\) 21887.7 0.930434 0.465217 0.885197i \(-0.345976\pi\)
0.465217 + 0.885197i \(0.345976\pi\)
\(822\) −31486.5 −1.33603
\(823\) −8149.95 −0.345188 −0.172594 0.984993i \(-0.555215\pi\)
−0.172594 + 0.984993i \(0.555215\pi\)
\(824\) 8538.02 0.360966
\(825\) 0 0
\(826\) −35194.7 −1.48254
\(827\) −22007.0 −0.925345 −0.462672 0.886529i \(-0.653109\pi\)
−0.462672 + 0.886529i \(0.653109\pi\)
\(828\) 95754.3 4.01895
\(829\) 8082.69 0.338629 0.169314 0.985562i \(-0.445845\pi\)
0.169314 + 0.985562i \(0.445845\pi\)
\(830\) 0 0
\(831\) −37073.0 −1.54759
\(832\) 3808.82 0.158710
\(833\) −3326.74 −0.138373
\(834\) −29310.4 −1.21695
\(835\) 0 0
\(836\) −4248.61 −0.175767
\(837\) −10589.4 −0.437302
\(838\) 56302.0 2.32091
\(839\) −1144.88 −0.0471105 −0.0235552 0.999723i \(-0.507499\pi\)
−0.0235552 + 0.999723i \(0.507499\pi\)
\(840\) 0 0
\(841\) 62699.3 2.57080
\(842\) −16441.3 −0.672927
\(843\) −32221.3 −1.31644
\(844\) −49130.5 −2.00372
\(845\) 0 0
\(846\) 33992.0 1.38140
\(847\) −17701.1 −0.718082
\(848\) −32139.3 −1.30150
\(849\) −32495.2 −1.31358
\(850\) 0 0
\(851\) 38267.3 1.54146
\(852\) −1466.68 −0.0589762
\(853\) 12853.7 0.515948 0.257974 0.966152i \(-0.416945\pi\)
0.257974 + 0.966152i \(0.416945\pi\)
\(854\) 17844.0 0.715000
\(855\) 0 0
\(856\) 45420.7 1.81361
\(857\) −24528.1 −0.977669 −0.488834 0.872377i \(-0.662578\pi\)
−0.488834 + 0.872377i \(0.662578\pi\)
\(858\) 26051.8 1.03659
\(859\) −37536.3 −1.49095 −0.745473 0.666536i \(-0.767776\pi\)
−0.745473 + 0.666536i \(0.767776\pi\)
\(860\) 0 0
\(861\) 35892.2 1.42068
\(862\) −1472.19 −0.0581704
\(863\) 2098.30 0.0827659 0.0413830 0.999143i \(-0.486824\pi\)
0.0413830 + 0.999143i \(0.486824\pi\)
\(864\) −28421.9 −1.11914
\(865\) 0 0
\(866\) 10671.8 0.418757
\(867\) −35317.0 −1.38342
\(868\) −15446.7 −0.604028
\(869\) −1125.85 −0.0439493
\(870\) 0 0
\(871\) −15063.1 −0.585986
\(872\) −27242.7 −1.05797
\(873\) 82169.3 3.18558
\(874\) 10808.7 0.418318
\(875\) 0 0
\(876\) −49303.5 −1.90161
\(877\) 9857.12 0.379534 0.189767 0.981829i \(-0.439227\pi\)
0.189767 + 0.981829i \(0.439227\pi\)
\(878\) −20357.2 −0.782484
\(879\) −71181.5 −2.73139
\(880\) 0 0
\(881\) 2301.91 0.0880289 0.0440144 0.999031i \(-0.485985\pi\)
0.0440144 + 0.999031i \(0.485985\pi\)
\(882\) 28049.6 1.07084
\(883\) −25401.4 −0.968093 −0.484047 0.875042i \(-0.660834\pi\)
−0.484047 + 0.875042i \(0.660834\pi\)
\(884\) −24113.0 −0.917429
\(885\) 0 0
\(886\) 60931.2 2.31041
\(887\) 11451.6 0.433493 0.216746 0.976228i \(-0.430456\pi\)
0.216746 + 0.976228i \(0.430456\pi\)
\(888\) −145861. −5.51214
\(889\) −11979.1 −0.451929
\(890\) 0 0
\(891\) 3667.30 0.137889
\(892\) 100196. 3.76098
\(893\) 2643.67 0.0990671
\(894\) 11787.3 0.440969
\(895\) 0 0
\(896\) 24928.7 0.929475
\(897\) −45664.6 −1.69977
\(898\) −21715.0 −0.806949
\(899\) −17027.1 −0.631685
\(900\) 0 0
\(901\) −8597.18 −0.317884
\(902\) −17537.1 −0.647364
\(903\) −42896.4 −1.58084
\(904\) −68803.2 −2.53137
\(905\) 0 0
\(906\) −123538. −4.53010
\(907\) −53074.7 −1.94302 −0.971508 0.237005i \(-0.923834\pi\)
−0.971508 + 0.237005i \(0.923834\pi\)
\(908\) 90085.2 3.29249
\(909\) −46310.3 −1.68979
\(910\) 0 0
\(911\) −20284.7 −0.737718 −0.368859 0.929485i \(-0.620251\pi\)
−0.368859 + 0.929485i \(0.620251\pi\)
\(912\) −17843.0 −0.647852
\(913\) 5544.65 0.200987
\(914\) 1487.70 0.0538389
\(915\) 0 0
\(916\) 8896.27 0.320896
\(917\) 378.466 0.0136293
\(918\) −26970.3 −0.969665
\(919\) 34782.0 1.24848 0.624240 0.781233i \(-0.285409\pi\)
0.624240 + 0.781233i \(0.285409\pi\)
\(920\) 0 0
\(921\) 24404.2 0.873121
\(922\) 26717.4 0.954329
\(923\) 448.213 0.0159839
\(924\) 29285.6 1.04267
\(925\) 0 0
\(926\) 40964.6 1.45376
\(927\) −8340.02 −0.295493
\(928\) −45700.8 −1.61660
\(929\) −15586.2 −0.550448 −0.275224 0.961380i \(-0.588752\pi\)
−0.275224 + 0.961380i \(0.588752\pi\)
\(930\) 0 0
\(931\) 2181.50 0.0767948
\(932\) −49790.3 −1.74993
\(933\) −75001.8 −2.63178
\(934\) −16029.0 −0.561546
\(935\) 0 0
\(936\) 111537. 3.89498
\(937\) 15194.9 0.529770 0.264885 0.964280i \(-0.414666\pi\)
0.264885 + 0.964280i \(0.414666\pi\)
\(938\) −24576.2 −0.855483
\(939\) −14075.6 −0.489179
\(940\) 0 0
\(941\) −48650.1 −1.68538 −0.842692 0.538396i \(-0.819031\pi\)
−0.842692 + 0.538396i \(0.819031\pi\)
\(942\) −87934.4 −3.04146
\(943\) 30739.7 1.06153
\(944\) 49759.0 1.71559
\(945\) 0 0
\(946\) 20959.4 0.720348
\(947\) −3258.29 −0.111806 −0.0559030 0.998436i \(-0.517804\pi\)
−0.0559030 + 0.998436i \(0.517804\pi\)
\(948\) −13711.2 −0.469744
\(949\) 15067.0 0.515380
\(950\) 0 0
\(951\) −81257.8 −2.77073
\(952\) −21583.0 −0.734780
\(953\) 44488.8 1.51221 0.756104 0.654451i \(-0.227100\pi\)
0.756104 + 0.654451i \(0.227100\pi\)
\(954\) 72487.6 2.46003
\(955\) 0 0
\(956\) 39691.4 1.34279
\(957\) 32281.8 1.09041
\(958\) 1264.27 0.0426376
\(959\) 10816.6 0.364218
\(960\) 0 0
\(961\) −26462.0 −0.888253
\(962\) 81250.9 2.72311
\(963\) −44367.4 −1.48465
\(964\) −127857. −4.27179
\(965\) 0 0
\(966\) −74504.2 −2.48150
\(967\) 5791.53 0.192599 0.0962994 0.995352i \(-0.469299\pi\)
0.0962994 + 0.995352i \(0.469299\pi\)
\(968\) 57784.4 1.91866
\(969\) −4772.96 −0.158235
\(970\) 0 0
\(971\) −17829.5 −0.589265 −0.294632 0.955611i \(-0.595197\pi\)
−0.294632 + 0.955611i \(0.595197\pi\)
\(972\) −43160.8 −1.42426
\(973\) 10069.0 0.331754
\(974\) 36850.0 1.21227
\(975\) 0 0
\(976\) −25228.2 −0.827394
\(977\) 2645.66 0.0866349 0.0433174 0.999061i \(-0.486207\pi\)
0.0433174 + 0.999061i \(0.486207\pi\)
\(978\) 72205.7 2.36082
\(979\) 11143.0 0.363770
\(980\) 0 0
\(981\) 26610.9 0.866076
\(982\) 42889.3 1.39374
\(983\) −3880.50 −0.125909 −0.0629545 0.998016i \(-0.520052\pi\)
−0.0629545 + 0.998016i \(0.520052\pi\)
\(984\) −117168. −3.79593
\(985\) 0 0
\(986\) −43366.6 −1.40068
\(987\) −18222.7 −0.587676
\(988\) 15812.1 0.509158
\(989\) −36738.4 −1.18121
\(990\) 0 0
\(991\) 57787.1 1.85234 0.926170 0.377106i \(-0.123081\pi\)
0.926170 + 0.377106i \(0.123081\pi\)
\(992\) 8935.19 0.285980
\(993\) −15307.3 −0.489186
\(994\) 731.284 0.0233349
\(995\) 0 0
\(996\) 67525.4 2.14822
\(997\) −30649.0 −0.973585 −0.486793 0.873518i \(-0.661833\pi\)
−0.486793 + 0.873518i \(0.661833\pi\)
\(998\) −9662.48 −0.306473
\(999\) 62614.9 1.98303
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.4.a.f.1.1 3
5.2 odd 4 475.4.b.f.324.1 6
5.3 odd 4 475.4.b.f.324.6 6
5.4 even 2 19.4.a.b.1.3 3
15.14 odd 2 171.4.a.f.1.1 3
20.19 odd 2 304.4.a.i.1.3 3
35.34 odd 2 931.4.a.c.1.3 3
40.19 odd 2 1216.4.a.u.1.1 3
40.29 even 2 1216.4.a.s.1.3 3
55.54 odd 2 2299.4.a.h.1.1 3
95.94 odd 2 361.4.a.i.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.4.a.b.1.3 3 5.4 even 2
171.4.a.f.1.1 3 15.14 odd 2
304.4.a.i.1.3 3 20.19 odd 2
361.4.a.i.1.1 3 95.94 odd 2
475.4.a.f.1.1 3 1.1 even 1 trivial
475.4.b.f.324.1 6 5.2 odd 4
475.4.b.f.324.6 6 5.3 odd 4
931.4.a.c.1.3 3 35.34 odd 2
1216.4.a.s.1.3 3 40.29 even 2
1216.4.a.u.1.1 3 40.19 odd 2
2299.4.a.h.1.1 3 55.54 odd 2