Properties

Label 475.4.a.d.1.1
Level $475$
Weight $4$
Character 475.1
Self dual yes
Analytic conductor $28.026$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,4,Mod(1,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.0259072527\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{3} -8.00000 q^{4} +22.0000 q^{7} -11.0000 q^{9} -12.0000 q^{11} +32.0000 q^{12} -8.00000 q^{13} +64.0000 q^{16} +66.0000 q^{17} +19.0000 q^{19} -88.0000 q^{21} +30.0000 q^{23} +152.000 q^{27} -176.000 q^{28} -6.00000 q^{29} -64.0000 q^{31} +48.0000 q^{33} +88.0000 q^{36} +16.0000 q^{37} +32.0000 q^{39} +54.0000 q^{41} -182.000 q^{43} +96.0000 q^{44} -594.000 q^{47} -256.000 q^{48} +141.000 q^{49} -264.000 q^{51} +64.0000 q^{52} -396.000 q^{53} -76.0000 q^{57} -564.000 q^{59} -706.000 q^{61} -242.000 q^{63} -512.000 q^{64} +628.000 q^{67} -528.000 q^{68} -120.000 q^{69} -984.000 q^{71} -14.0000 q^{73} -152.000 q^{76} -264.000 q^{77} -328.000 q^{79} -311.000 q^{81} +294.000 q^{83} +704.000 q^{84} +24.0000 q^{87} +918.000 q^{89} -176.000 q^{91} -240.000 q^{92} +256.000 q^{93} +1564.00 q^{97} +132.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) −4.00000 −0.769800 −0.384900 0.922958i \(-0.625764\pi\)
−0.384900 + 0.922958i \(0.625764\pi\)
\(4\) −8.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 22.0000 1.18789 0.593944 0.804506i \(-0.297570\pi\)
0.593944 + 0.804506i \(0.297570\pi\)
\(8\) 0 0
\(9\) −11.0000 −0.407407
\(10\) 0 0
\(11\) −12.0000 −0.328921 −0.164461 0.986384i \(-0.552588\pi\)
−0.164461 + 0.986384i \(0.552588\pi\)
\(12\) 32.0000 0.769800
\(13\) −8.00000 −0.170677 −0.0853385 0.996352i \(-0.527197\pi\)
−0.0853385 + 0.996352i \(0.527197\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 64.0000 1.00000
\(17\) 66.0000 0.941609 0.470804 0.882238i \(-0.343964\pi\)
0.470804 + 0.882238i \(0.343964\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) −88.0000 −0.914437
\(22\) 0 0
\(23\) 30.0000 0.271975 0.135988 0.990711i \(-0.456579\pi\)
0.135988 + 0.990711i \(0.456579\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 152.000 1.08342
\(28\) −176.000 −1.18789
\(29\) −6.00000 −0.0384197 −0.0192099 0.999815i \(-0.506115\pi\)
−0.0192099 + 0.999815i \(0.506115\pi\)
\(30\) 0 0
\(31\) −64.0000 −0.370798 −0.185399 0.982663i \(-0.559358\pi\)
−0.185399 + 0.982663i \(0.559358\pi\)
\(32\) 0 0
\(33\) 48.0000 0.253204
\(34\) 0 0
\(35\) 0 0
\(36\) 88.0000 0.407407
\(37\) 16.0000 0.0710915 0.0355457 0.999368i \(-0.488683\pi\)
0.0355457 + 0.999368i \(0.488683\pi\)
\(38\) 0 0
\(39\) 32.0000 0.131387
\(40\) 0 0
\(41\) 54.0000 0.205692 0.102846 0.994697i \(-0.467205\pi\)
0.102846 + 0.994697i \(0.467205\pi\)
\(42\) 0 0
\(43\) −182.000 −0.645459 −0.322730 0.946491i \(-0.604600\pi\)
−0.322730 + 0.946491i \(0.604600\pi\)
\(44\) 96.0000 0.328921
\(45\) 0 0
\(46\) 0 0
\(47\) −594.000 −1.84349 −0.921743 0.387802i \(-0.873234\pi\)
−0.921743 + 0.387802i \(0.873234\pi\)
\(48\) −256.000 −0.769800
\(49\) 141.000 0.411079
\(50\) 0 0
\(51\) −264.000 −0.724851
\(52\) 64.0000 0.170677
\(53\) −396.000 −1.02632 −0.513158 0.858294i \(-0.671525\pi\)
−0.513158 + 0.858294i \(0.671525\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −76.0000 −0.176604
\(58\) 0 0
\(59\) −564.000 −1.24452 −0.622259 0.782812i \(-0.713785\pi\)
−0.622259 + 0.782812i \(0.713785\pi\)
\(60\) 0 0
\(61\) −706.000 −1.48187 −0.740935 0.671577i \(-0.765617\pi\)
−0.740935 + 0.671577i \(0.765617\pi\)
\(62\) 0 0
\(63\) −242.000 −0.483955
\(64\) −512.000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 628.000 1.14511 0.572555 0.819866i \(-0.305952\pi\)
0.572555 + 0.819866i \(0.305952\pi\)
\(68\) −528.000 −0.941609
\(69\) −120.000 −0.209367
\(70\) 0 0
\(71\) −984.000 −1.64478 −0.822390 0.568925i \(-0.807360\pi\)
−0.822390 + 0.568925i \(0.807360\pi\)
\(72\) 0 0
\(73\) −14.0000 −0.0224462 −0.0112231 0.999937i \(-0.503573\pi\)
−0.0112231 + 0.999937i \(0.503573\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −152.000 −0.229416
\(77\) −264.000 −0.390722
\(78\) 0 0
\(79\) −328.000 −0.467125 −0.233563 0.972342i \(-0.575038\pi\)
−0.233563 + 0.972342i \(0.575038\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) 294.000 0.388804 0.194402 0.980922i \(-0.437723\pi\)
0.194402 + 0.980922i \(0.437723\pi\)
\(84\) 704.000 0.914437
\(85\) 0 0
\(86\) 0 0
\(87\) 24.0000 0.0295755
\(88\) 0 0
\(89\) 918.000 1.09335 0.546673 0.837346i \(-0.315894\pi\)
0.546673 + 0.837346i \(0.315894\pi\)
\(90\) 0 0
\(91\) −176.000 −0.202745
\(92\) −240.000 −0.271975
\(93\) 256.000 0.285440
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1564.00 1.63711 0.818557 0.574425i \(-0.194774\pi\)
0.818557 + 0.574425i \(0.194774\pi\)
\(98\) 0 0
\(99\) 132.000 0.134005
\(100\) 0 0
\(101\) −294.000 −0.289644 −0.144822 0.989458i \(-0.546261\pi\)
−0.144822 + 0.989458i \(0.546261\pi\)
\(102\) 0 0
\(103\) −752.000 −0.719386 −0.359693 0.933071i \(-0.617119\pi\)
−0.359693 + 0.933071i \(0.617119\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 216.000 0.195154 0.0975771 0.995228i \(-0.468891\pi\)
0.0975771 + 0.995228i \(0.468891\pi\)
\(108\) −1216.00 −1.08342
\(109\) −754.000 −0.662570 −0.331285 0.943531i \(-0.607482\pi\)
−0.331285 + 0.943531i \(0.607482\pi\)
\(110\) 0 0
\(111\) −64.0000 −0.0547262
\(112\) 1408.00 1.18789
\(113\) 12.0000 0.00998996 0.00499498 0.999988i \(-0.498410\pi\)
0.00499498 + 0.999988i \(0.498410\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 48.0000 0.0384197
\(117\) 88.0000 0.0695351
\(118\) 0 0
\(119\) 1452.00 1.11853
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) 0 0
\(123\) −216.000 −0.158342
\(124\) 512.000 0.370798
\(125\) 0 0
\(126\) 0 0
\(127\) −344.000 −0.240355 −0.120177 0.992752i \(-0.538346\pi\)
−0.120177 + 0.992752i \(0.538346\pi\)
\(128\) 0 0
\(129\) 728.000 0.496875
\(130\) 0 0
\(131\) 2520.00 1.68071 0.840357 0.542034i \(-0.182346\pi\)
0.840357 + 0.542034i \(0.182346\pi\)
\(132\) −384.000 −0.253204
\(133\) 418.000 0.272520
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −654.000 −0.407847 −0.203923 0.978987i \(-0.565369\pi\)
−0.203923 + 0.978987i \(0.565369\pi\)
\(138\) 0 0
\(139\) −2392.00 −1.45962 −0.729809 0.683652i \(-0.760391\pi\)
−0.729809 + 0.683652i \(0.760391\pi\)
\(140\) 0 0
\(141\) 2376.00 1.41912
\(142\) 0 0
\(143\) 96.0000 0.0561393
\(144\) −704.000 −0.407407
\(145\) 0 0
\(146\) 0 0
\(147\) −564.000 −0.316449
\(148\) −128.000 −0.0710915
\(149\) −1266.00 −0.696072 −0.348036 0.937481i \(-0.613151\pi\)
−0.348036 + 0.937481i \(0.613151\pi\)
\(150\) 0 0
\(151\) 3080.00 1.65991 0.829956 0.557828i \(-0.188365\pi\)
0.829956 + 0.557828i \(0.188365\pi\)
\(152\) 0 0
\(153\) −726.000 −0.383618
\(154\) 0 0
\(155\) 0 0
\(156\) −256.000 −0.131387
\(157\) −1838.00 −0.934321 −0.467160 0.884173i \(-0.654723\pi\)
−0.467160 + 0.884173i \(0.654723\pi\)
\(158\) 0 0
\(159\) 1584.00 0.790059
\(160\) 0 0
\(161\) 660.000 0.323076
\(162\) 0 0
\(163\) 850.000 0.408449 0.204224 0.978924i \(-0.434533\pi\)
0.204224 + 0.978924i \(0.434533\pi\)
\(164\) −432.000 −0.205692
\(165\) 0 0
\(166\) 0 0
\(167\) −3804.00 −1.76265 −0.881324 0.472512i \(-0.843347\pi\)
−0.881324 + 0.472512i \(0.843347\pi\)
\(168\) 0 0
\(169\) −2133.00 −0.970869
\(170\) 0 0
\(171\) −209.000 −0.0934657
\(172\) 1456.00 0.645459
\(173\) 564.000 0.247862 0.123931 0.992291i \(-0.460450\pi\)
0.123931 + 0.992291i \(0.460450\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −768.000 −0.328921
\(177\) 2256.00 0.958030
\(178\) 0 0
\(179\) −1812.00 −0.756621 −0.378311 0.925679i \(-0.623495\pi\)
−0.378311 + 0.925679i \(0.623495\pi\)
\(180\) 0 0
\(181\) −4498.00 −1.84715 −0.923574 0.383421i \(-0.874746\pi\)
−0.923574 + 0.383421i \(0.874746\pi\)
\(182\) 0 0
\(183\) 2824.00 1.14074
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −792.000 −0.309715
\(188\) 4752.00 1.84349
\(189\) 3344.00 1.28699
\(190\) 0 0
\(191\) 3588.00 1.35926 0.679630 0.733555i \(-0.262140\pi\)
0.679630 + 0.733555i \(0.262140\pi\)
\(192\) 2048.00 0.769800
\(193\) 4492.00 1.67534 0.837672 0.546174i \(-0.183916\pi\)
0.837672 + 0.546174i \(0.183916\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1128.00 −0.411079
\(197\) −2466.00 −0.891854 −0.445927 0.895069i \(-0.647126\pi\)
−0.445927 + 0.895069i \(0.647126\pi\)
\(198\) 0 0
\(199\) 824.000 0.293527 0.146763 0.989172i \(-0.453114\pi\)
0.146763 + 0.989172i \(0.453114\pi\)
\(200\) 0 0
\(201\) −2512.00 −0.881507
\(202\) 0 0
\(203\) −132.000 −0.0456383
\(204\) 2112.00 0.724851
\(205\) 0 0
\(206\) 0 0
\(207\) −330.000 −0.110805
\(208\) −512.000 −0.170677
\(209\) −228.000 −0.0754598
\(210\) 0 0
\(211\) 4244.00 1.38469 0.692344 0.721568i \(-0.256578\pi\)
0.692344 + 0.721568i \(0.256578\pi\)
\(212\) 3168.00 1.02632
\(213\) 3936.00 1.26615
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1408.00 −0.440467
\(218\) 0 0
\(219\) 56.0000 0.0172791
\(220\) 0 0
\(221\) −528.000 −0.160711
\(222\) 0 0
\(223\) −5480.00 −1.64560 −0.822798 0.568334i \(-0.807588\pi\)
−0.822798 + 0.568334i \(0.807588\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5544.00 −1.62101 −0.810503 0.585735i \(-0.800806\pi\)
−0.810503 + 0.585735i \(0.800806\pi\)
\(228\) 608.000 0.176604
\(229\) 2930.00 0.845502 0.422751 0.906246i \(-0.361065\pi\)
0.422751 + 0.906246i \(0.361065\pi\)
\(230\) 0 0
\(231\) 1056.00 0.300778
\(232\) 0 0
\(233\) 4398.00 1.23658 0.618289 0.785951i \(-0.287826\pi\)
0.618289 + 0.785951i \(0.287826\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4512.00 1.24452
\(237\) 1312.00 0.359593
\(238\) 0 0
\(239\) −6480.00 −1.75379 −0.876896 0.480680i \(-0.840390\pi\)
−0.876896 + 0.480680i \(0.840390\pi\)
\(240\) 0 0
\(241\) −5770.00 −1.54223 −0.771117 0.636694i \(-0.780302\pi\)
−0.771117 + 0.636694i \(0.780302\pi\)
\(242\) 0 0
\(243\) −2860.00 −0.755017
\(244\) 5648.00 1.48187
\(245\) 0 0
\(246\) 0 0
\(247\) −152.000 −0.0391560
\(248\) 0 0
\(249\) −1176.00 −0.299301
\(250\) 0 0
\(251\) −624.000 −0.156918 −0.0784592 0.996917i \(-0.525000\pi\)
−0.0784592 + 0.996917i \(0.525000\pi\)
\(252\) 1936.00 0.483955
\(253\) −360.000 −0.0894585
\(254\) 0 0
\(255\) 0 0
\(256\) 4096.00 1.00000
\(257\) −120.000 −0.0291260 −0.0145630 0.999894i \(-0.504636\pi\)
−0.0145630 + 0.999894i \(0.504636\pi\)
\(258\) 0 0
\(259\) 352.000 0.0844487
\(260\) 0 0
\(261\) 66.0000 0.0156525
\(262\) 0 0
\(263\) −1842.00 −0.431873 −0.215936 0.976407i \(-0.569280\pi\)
−0.215936 + 0.976407i \(0.569280\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3672.00 −0.841658
\(268\) −5024.00 −1.14511
\(269\) −3234.00 −0.733013 −0.366506 0.930416i \(-0.619446\pi\)
−0.366506 + 0.930416i \(0.619446\pi\)
\(270\) 0 0
\(271\) 4664.00 1.04545 0.522727 0.852500i \(-0.324915\pi\)
0.522727 + 0.852500i \(0.324915\pi\)
\(272\) 4224.00 0.941609
\(273\) 704.000 0.156073
\(274\) 0 0
\(275\) 0 0
\(276\) 960.000 0.209367
\(277\) −5222.00 −1.13271 −0.566353 0.824163i \(-0.691646\pi\)
−0.566353 + 0.824163i \(0.691646\pi\)
\(278\) 0 0
\(279\) 704.000 0.151066
\(280\) 0 0
\(281\) 7566.00 1.60623 0.803113 0.595826i \(-0.203175\pi\)
0.803113 + 0.595826i \(0.203175\pi\)
\(282\) 0 0
\(283\) 5614.00 1.17921 0.589607 0.807690i \(-0.299283\pi\)
0.589607 + 0.807690i \(0.299283\pi\)
\(284\) 7872.00 1.64478
\(285\) 0 0
\(286\) 0 0
\(287\) 1188.00 0.244339
\(288\) 0 0
\(289\) −557.000 −0.113373
\(290\) 0 0
\(291\) −6256.00 −1.26025
\(292\) 112.000 0.0224462
\(293\) −924.000 −0.184234 −0.0921172 0.995748i \(-0.529363\pi\)
−0.0921172 + 0.995748i \(0.529363\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1824.00 −0.356361
\(298\) 0 0
\(299\) −240.000 −0.0464199
\(300\) 0 0
\(301\) −4004.00 −0.766733
\(302\) 0 0
\(303\) 1176.00 0.222968
\(304\) 1216.00 0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) 4480.00 0.832857 0.416429 0.909168i \(-0.363282\pi\)
0.416429 + 0.909168i \(0.363282\pi\)
\(308\) 2112.00 0.390722
\(309\) 3008.00 0.553784
\(310\) 0 0
\(311\) 1272.00 0.231924 0.115962 0.993254i \(-0.463005\pi\)
0.115962 + 0.993254i \(0.463005\pi\)
\(312\) 0 0
\(313\) −1370.00 −0.247402 −0.123701 0.992320i \(-0.539476\pi\)
−0.123701 + 0.992320i \(0.539476\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2624.00 0.467125
\(317\) −3552.00 −0.629338 −0.314669 0.949201i \(-0.601894\pi\)
−0.314669 + 0.949201i \(0.601894\pi\)
\(318\) 0 0
\(319\) 72.0000 0.0126371
\(320\) 0 0
\(321\) −864.000 −0.150230
\(322\) 0 0
\(323\) 1254.00 0.216020
\(324\) 2488.00 0.426612
\(325\) 0 0
\(326\) 0 0
\(327\) 3016.00 0.510046
\(328\) 0 0
\(329\) −13068.0 −2.18985
\(330\) 0 0
\(331\) 4532.00 0.752572 0.376286 0.926504i \(-0.377201\pi\)
0.376286 + 0.926504i \(0.377201\pi\)
\(332\) −2352.00 −0.388804
\(333\) −176.000 −0.0289632
\(334\) 0 0
\(335\) 0 0
\(336\) −5632.00 −0.914437
\(337\) 10036.0 1.62224 0.811121 0.584878i \(-0.198858\pi\)
0.811121 + 0.584878i \(0.198858\pi\)
\(338\) 0 0
\(339\) −48.0000 −0.00769027
\(340\) 0 0
\(341\) 768.000 0.121963
\(342\) 0 0
\(343\) −4444.00 −0.699573
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2178.00 0.336949 0.168474 0.985706i \(-0.446116\pi\)
0.168474 + 0.985706i \(0.446116\pi\)
\(348\) −192.000 −0.0295755
\(349\) −10042.0 −1.54022 −0.770109 0.637913i \(-0.779798\pi\)
−0.770109 + 0.637913i \(0.779798\pi\)
\(350\) 0 0
\(351\) −1216.00 −0.184915
\(352\) 0 0
\(353\) −6102.00 −0.920047 −0.460024 0.887907i \(-0.652159\pi\)
−0.460024 + 0.887907i \(0.652159\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7344.00 −1.09335
\(357\) −5808.00 −0.861042
\(358\) 0 0
\(359\) −1140.00 −0.167596 −0.0837979 0.996483i \(-0.526705\pi\)
−0.0837979 + 0.996483i \(0.526705\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 4748.00 0.686516
\(364\) 1408.00 0.202745
\(365\) 0 0
\(366\) 0 0
\(367\) 5614.00 0.798497 0.399249 0.916843i \(-0.369271\pi\)
0.399249 + 0.916843i \(0.369271\pi\)
\(368\) 1920.00 0.271975
\(369\) −594.000 −0.0838006
\(370\) 0 0
\(371\) −8712.00 −1.21915
\(372\) −2048.00 −0.285440
\(373\) 3652.00 0.506953 0.253476 0.967342i \(-0.418426\pi\)
0.253476 + 0.967342i \(0.418426\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 48.0000 0.00655736
\(378\) 0 0
\(379\) −316.000 −0.0428280 −0.0214140 0.999771i \(-0.506817\pi\)
−0.0214140 + 0.999771i \(0.506817\pi\)
\(380\) 0 0
\(381\) 1376.00 0.185025
\(382\) 0 0
\(383\) 8844.00 1.17991 0.589957 0.807434i \(-0.299145\pi\)
0.589957 + 0.807434i \(0.299145\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2002.00 0.262965
\(388\) −12512.0 −1.63711
\(389\) −7230.00 −0.942354 −0.471177 0.882039i \(-0.656171\pi\)
−0.471177 + 0.882039i \(0.656171\pi\)
\(390\) 0 0
\(391\) 1980.00 0.256094
\(392\) 0 0
\(393\) −10080.0 −1.29381
\(394\) 0 0
\(395\) 0 0
\(396\) −1056.00 −0.134005
\(397\) −3446.00 −0.435642 −0.217821 0.975989i \(-0.569895\pi\)
−0.217821 + 0.975989i \(0.569895\pi\)
\(398\) 0 0
\(399\) −1672.00 −0.209786
\(400\) 0 0
\(401\) −14478.0 −1.80298 −0.901492 0.432795i \(-0.857527\pi\)
−0.901492 + 0.432795i \(0.857527\pi\)
\(402\) 0 0
\(403\) 512.000 0.0632867
\(404\) 2352.00 0.289644
\(405\) 0 0
\(406\) 0 0
\(407\) −192.000 −0.0233835
\(408\) 0 0
\(409\) 9074.00 1.09702 0.548509 0.836145i \(-0.315196\pi\)
0.548509 + 0.836145i \(0.315196\pi\)
\(410\) 0 0
\(411\) 2616.00 0.313960
\(412\) 6016.00 0.719386
\(413\) −12408.0 −1.47835
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 9568.00 1.12361
\(418\) 0 0
\(419\) −7068.00 −0.824092 −0.412046 0.911163i \(-0.635186\pi\)
−0.412046 + 0.911163i \(0.635186\pi\)
\(420\) 0 0
\(421\) −7342.00 −0.849946 −0.424973 0.905206i \(-0.639716\pi\)
−0.424973 + 0.905206i \(0.639716\pi\)
\(422\) 0 0
\(423\) 6534.00 0.751050
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −15532.0 −1.76030
\(428\) −1728.00 −0.195154
\(429\) −384.000 −0.0432161
\(430\) 0 0
\(431\) 2976.00 0.332596 0.166298 0.986076i \(-0.446819\pi\)
0.166298 + 0.986076i \(0.446819\pi\)
\(432\) 9728.00 1.08342
\(433\) −3476.00 −0.385787 −0.192894 0.981220i \(-0.561787\pi\)
−0.192894 + 0.981220i \(0.561787\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6032.00 0.662570
\(437\) 570.000 0.0623954
\(438\) 0 0
\(439\) 6200.00 0.674054 0.337027 0.941495i \(-0.390579\pi\)
0.337027 + 0.941495i \(0.390579\pi\)
\(440\) 0 0
\(441\) −1551.00 −0.167477
\(442\) 0 0
\(443\) −16026.0 −1.71878 −0.859389 0.511323i \(-0.829156\pi\)
−0.859389 + 0.511323i \(0.829156\pi\)
\(444\) 512.000 0.0547262
\(445\) 0 0
\(446\) 0 0
\(447\) 5064.00 0.535837
\(448\) −11264.0 −1.18789
\(449\) −1830.00 −0.192345 −0.0961726 0.995365i \(-0.530660\pi\)
−0.0961726 + 0.995365i \(0.530660\pi\)
\(450\) 0 0
\(451\) −648.000 −0.0676566
\(452\) −96.0000 −0.00998996
\(453\) −12320.0 −1.27780
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −12986.0 −1.32923 −0.664616 0.747185i \(-0.731405\pi\)
−0.664616 + 0.747185i \(0.731405\pi\)
\(458\) 0 0
\(459\) 10032.0 1.02016
\(460\) 0 0
\(461\) −10506.0 −1.06142 −0.530708 0.847554i \(-0.678074\pi\)
−0.530708 + 0.847554i \(0.678074\pi\)
\(462\) 0 0
\(463\) −1562.00 −0.156787 −0.0783934 0.996923i \(-0.524979\pi\)
−0.0783934 + 0.996923i \(0.524979\pi\)
\(464\) −384.000 −0.0384197
\(465\) 0 0
\(466\) 0 0
\(467\) −6.00000 −0.000594533 0 −0.000297266 1.00000i \(-0.500095\pi\)
−0.000297266 1.00000i \(0.500095\pi\)
\(468\) −704.000 −0.0695351
\(469\) 13816.0 1.36026
\(470\) 0 0
\(471\) 7352.00 0.719241
\(472\) 0 0
\(473\) 2184.00 0.212305
\(474\) 0 0
\(475\) 0 0
\(476\) −11616.0 −1.11853
\(477\) 4356.00 0.418129
\(478\) 0 0
\(479\) 3132.00 0.298757 0.149379 0.988780i \(-0.452273\pi\)
0.149379 + 0.988780i \(0.452273\pi\)
\(480\) 0 0
\(481\) −128.000 −0.0121337
\(482\) 0 0
\(483\) −2640.00 −0.248704
\(484\) 9496.00 0.891811
\(485\) 0 0
\(486\) 0 0
\(487\) 12436.0 1.15714 0.578572 0.815631i \(-0.303610\pi\)
0.578572 + 0.815631i \(0.303610\pi\)
\(488\) 0 0
\(489\) −3400.00 −0.314424
\(490\) 0 0
\(491\) −7848.00 −0.721335 −0.360667 0.932695i \(-0.617451\pi\)
−0.360667 + 0.932695i \(0.617451\pi\)
\(492\) 1728.00 0.158342
\(493\) −396.000 −0.0361764
\(494\) 0 0
\(495\) 0 0
\(496\) −4096.00 −0.370798
\(497\) −21648.0 −1.95381
\(498\) 0 0
\(499\) 17720.0 1.58969 0.794846 0.606811i \(-0.207552\pi\)
0.794846 + 0.606811i \(0.207552\pi\)
\(500\) 0 0
\(501\) 15216.0 1.35689
\(502\) 0 0
\(503\) 5094.00 0.451551 0.225776 0.974179i \(-0.427508\pi\)
0.225776 + 0.974179i \(0.427508\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 8532.00 0.747376
\(508\) 2752.00 0.240355
\(509\) −5670.00 −0.493749 −0.246875 0.969047i \(-0.579404\pi\)
−0.246875 + 0.969047i \(0.579404\pi\)
\(510\) 0 0
\(511\) −308.000 −0.0266636
\(512\) 0 0
\(513\) 2888.00 0.248554
\(514\) 0 0
\(515\) 0 0
\(516\) −5824.00 −0.496875
\(517\) 7128.00 0.606362
\(518\) 0 0
\(519\) −2256.00 −0.190804
\(520\) 0 0
\(521\) −20670.0 −1.73814 −0.869068 0.494692i \(-0.835281\pi\)
−0.869068 + 0.494692i \(0.835281\pi\)
\(522\) 0 0
\(523\) 16816.0 1.40595 0.702975 0.711214i \(-0.251854\pi\)
0.702975 + 0.711214i \(0.251854\pi\)
\(524\) −20160.0 −1.68071
\(525\) 0 0
\(526\) 0 0
\(527\) −4224.00 −0.349147
\(528\) 3072.00 0.253204
\(529\) −11267.0 −0.926029
\(530\) 0 0
\(531\) 6204.00 0.507026
\(532\) −3344.00 −0.272520
\(533\) −432.000 −0.0351069
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 7248.00 0.582447
\(538\) 0 0
\(539\) −1692.00 −0.135213
\(540\) 0 0
\(541\) 9530.00 0.757351 0.378675 0.925530i \(-0.376380\pi\)
0.378675 + 0.925530i \(0.376380\pi\)
\(542\) 0 0
\(543\) 17992.0 1.42193
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −5264.00 −0.411467 −0.205733 0.978608i \(-0.565958\pi\)
−0.205733 + 0.978608i \(0.565958\pi\)
\(548\) 5232.00 0.407847
\(549\) 7766.00 0.603725
\(550\) 0 0
\(551\) −114.000 −0.00881409
\(552\) 0 0
\(553\) −7216.00 −0.554892
\(554\) 0 0
\(555\) 0 0
\(556\) 19136.0 1.45962
\(557\) −16542.0 −1.25836 −0.629180 0.777259i \(-0.716609\pi\)
−0.629180 + 0.777259i \(0.716609\pi\)
\(558\) 0 0
\(559\) 1456.00 0.110165
\(560\) 0 0
\(561\) 3168.00 0.238419
\(562\) 0 0
\(563\) 5232.00 0.391656 0.195828 0.980638i \(-0.437261\pi\)
0.195828 + 0.980638i \(0.437261\pi\)
\(564\) −19008.0 −1.41912
\(565\) 0 0
\(566\) 0 0
\(567\) −6842.00 −0.506767
\(568\) 0 0
\(569\) 15114.0 1.11355 0.556777 0.830662i \(-0.312038\pi\)
0.556777 + 0.830662i \(0.312038\pi\)
\(570\) 0 0
\(571\) −11764.0 −0.862186 −0.431093 0.902308i \(-0.641872\pi\)
−0.431093 + 0.902308i \(0.641872\pi\)
\(572\) −768.000 −0.0561393
\(573\) −14352.0 −1.04636
\(574\) 0 0
\(575\) 0 0
\(576\) 5632.00 0.407407
\(577\) 25198.0 1.81804 0.909018 0.416757i \(-0.136834\pi\)
0.909018 + 0.416757i \(0.136834\pi\)
\(578\) 0 0
\(579\) −17968.0 −1.28968
\(580\) 0 0
\(581\) 6468.00 0.461855
\(582\) 0 0
\(583\) 4752.00 0.337578
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20190.0 −1.41964 −0.709822 0.704382i \(-0.751224\pi\)
−0.709822 + 0.704382i \(0.751224\pi\)
\(588\) 4512.00 0.316449
\(589\) −1216.00 −0.0850669
\(590\) 0 0
\(591\) 9864.00 0.686549
\(592\) 1024.00 0.0710915
\(593\) 2886.00 0.199855 0.0999273 0.994995i \(-0.468139\pi\)
0.0999273 + 0.994995i \(0.468139\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10128.0 0.696072
\(597\) −3296.00 −0.225957
\(598\) 0 0
\(599\) −4464.00 −0.304498 −0.152249 0.988342i \(-0.548652\pi\)
−0.152249 + 0.988342i \(0.548652\pi\)
\(600\) 0 0
\(601\) −15874.0 −1.07739 −0.538697 0.842499i \(-0.681083\pi\)
−0.538697 + 0.842499i \(0.681083\pi\)
\(602\) 0 0
\(603\) −6908.00 −0.466527
\(604\) −24640.0 −1.65991
\(605\) 0 0
\(606\) 0 0
\(607\) 18916.0 1.26487 0.632436 0.774613i \(-0.282055\pi\)
0.632436 + 0.774613i \(0.282055\pi\)
\(608\) 0 0
\(609\) 528.000 0.0351324
\(610\) 0 0
\(611\) 4752.00 0.314640
\(612\) 5808.00 0.383618
\(613\) 3058.00 0.201487 0.100743 0.994912i \(-0.467878\pi\)
0.100743 + 0.994912i \(0.467878\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4158.00 −0.271304 −0.135652 0.990757i \(-0.543313\pi\)
−0.135652 + 0.990757i \(0.543313\pi\)
\(618\) 0 0
\(619\) −22864.0 −1.48462 −0.742312 0.670055i \(-0.766271\pi\)
−0.742312 + 0.670055i \(0.766271\pi\)
\(620\) 0 0
\(621\) 4560.00 0.294664
\(622\) 0 0
\(623\) 20196.0 1.29877
\(624\) 2048.00 0.131387
\(625\) 0 0
\(626\) 0 0
\(627\) 912.000 0.0580890
\(628\) 14704.0 0.934321
\(629\) 1056.00 0.0669403
\(630\) 0 0
\(631\) 18536.0 1.16942 0.584712 0.811241i \(-0.301208\pi\)
0.584712 + 0.811241i \(0.301208\pi\)
\(632\) 0 0
\(633\) −16976.0 −1.06593
\(634\) 0 0
\(635\) 0 0
\(636\) −12672.0 −0.790059
\(637\) −1128.00 −0.0701617
\(638\) 0 0
\(639\) 10824.0 0.670095
\(640\) 0 0
\(641\) 15630.0 0.963101 0.481551 0.876418i \(-0.340074\pi\)
0.481551 + 0.876418i \(0.340074\pi\)
\(642\) 0 0
\(643\) 27574.0 1.69115 0.845577 0.533853i \(-0.179256\pi\)
0.845577 + 0.533853i \(0.179256\pi\)
\(644\) −5280.00 −0.323076
\(645\) 0 0
\(646\) 0 0
\(647\) 8826.00 0.536300 0.268150 0.963377i \(-0.413588\pi\)
0.268150 + 0.963377i \(0.413588\pi\)
\(648\) 0 0
\(649\) 6768.00 0.409349
\(650\) 0 0
\(651\) 5632.00 0.339071
\(652\) −6800.00 −0.408449
\(653\) −18678.0 −1.11934 −0.559668 0.828717i \(-0.689071\pi\)
−0.559668 + 0.828717i \(0.689071\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3456.00 0.205692
\(657\) 154.000 0.00914477
\(658\) 0 0
\(659\) 16980.0 1.00371 0.501857 0.864951i \(-0.332651\pi\)
0.501857 + 0.864951i \(0.332651\pi\)
\(660\) 0 0
\(661\) −9358.00 −0.550657 −0.275328 0.961350i \(-0.588787\pi\)
−0.275328 + 0.961350i \(0.588787\pi\)
\(662\) 0 0
\(663\) 2112.00 0.123715
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −180.000 −0.0104492
\(668\) 30432.0 1.76265
\(669\) 21920.0 1.26678
\(670\) 0 0
\(671\) 8472.00 0.487419
\(672\) 0 0
\(673\) 16120.0 0.923299 0.461650 0.887062i \(-0.347258\pi\)
0.461650 + 0.887062i \(0.347258\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 17064.0 0.970869
\(677\) −27876.0 −1.58251 −0.791257 0.611484i \(-0.790573\pi\)
−0.791257 + 0.611484i \(0.790573\pi\)
\(678\) 0 0
\(679\) 34408.0 1.94471
\(680\) 0 0
\(681\) 22176.0 1.24785
\(682\) 0 0
\(683\) 4872.00 0.272946 0.136473 0.990644i \(-0.456423\pi\)
0.136473 + 0.990644i \(0.456423\pi\)
\(684\) 1672.00 0.0934657
\(685\) 0 0
\(686\) 0 0
\(687\) −11720.0 −0.650867
\(688\) −11648.0 −0.645459
\(689\) 3168.00 0.175169
\(690\) 0 0
\(691\) 13412.0 0.738374 0.369187 0.929355i \(-0.379636\pi\)
0.369187 + 0.929355i \(0.379636\pi\)
\(692\) −4512.00 −0.247862
\(693\) 2904.00 0.159183
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 3564.00 0.193682
\(698\) 0 0
\(699\) −17592.0 −0.951918
\(700\) 0 0
\(701\) 1926.00 0.103772 0.0518859 0.998653i \(-0.483477\pi\)
0.0518859 + 0.998653i \(0.483477\pi\)
\(702\) 0 0
\(703\) 304.000 0.0163095
\(704\) 6144.00 0.328921
\(705\) 0 0
\(706\) 0 0
\(707\) −6468.00 −0.344065
\(708\) −18048.0 −0.958030
\(709\) 17534.0 0.928777 0.464389 0.885631i \(-0.346274\pi\)
0.464389 + 0.885631i \(0.346274\pi\)
\(710\) 0 0
\(711\) 3608.00 0.190310
\(712\) 0 0
\(713\) −1920.00 −0.100848
\(714\) 0 0
\(715\) 0 0
\(716\) 14496.0 0.756621
\(717\) 25920.0 1.35007
\(718\) 0 0
\(719\) −11220.0 −0.581969 −0.290984 0.956728i \(-0.593983\pi\)
−0.290984 + 0.956728i \(0.593983\pi\)
\(720\) 0 0
\(721\) −16544.0 −0.854550
\(722\) 0 0
\(723\) 23080.0 1.18721
\(724\) 35984.0 1.84715
\(725\) 0 0
\(726\) 0 0
\(727\) 25078.0 1.27936 0.639678 0.768643i \(-0.279068\pi\)
0.639678 + 0.768643i \(0.279068\pi\)
\(728\) 0 0
\(729\) 19837.0 1.00782
\(730\) 0 0
\(731\) −12012.0 −0.607770
\(732\) −22592.0 −1.14074
\(733\) −434.000 −0.0218692 −0.0109346 0.999940i \(-0.503481\pi\)
−0.0109346 + 0.999940i \(0.503481\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7536.00 −0.376651
\(738\) 0 0
\(739\) 2564.00 0.127630 0.0638148 0.997962i \(-0.479673\pi\)
0.0638148 + 0.997962i \(0.479673\pi\)
\(740\) 0 0
\(741\) 608.000 0.0301423
\(742\) 0 0
\(743\) −21948.0 −1.08371 −0.541853 0.840473i \(-0.682277\pi\)
−0.541853 + 0.840473i \(0.682277\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3234.00 −0.158401
\(748\) 6336.00 0.309715
\(749\) 4752.00 0.231821
\(750\) 0 0
\(751\) −7648.00 −0.371610 −0.185805 0.982587i \(-0.559489\pi\)
−0.185805 + 0.982587i \(0.559489\pi\)
\(752\) −38016.0 −1.84349
\(753\) 2496.00 0.120796
\(754\) 0 0
\(755\) 0 0
\(756\) −26752.0 −1.28699
\(757\) 30190.0 1.44950 0.724752 0.689010i \(-0.241954\pi\)
0.724752 + 0.689010i \(0.241954\pi\)
\(758\) 0 0
\(759\) 1440.00 0.0688652
\(760\) 0 0
\(761\) −1242.00 −0.0591622 −0.0295811 0.999562i \(-0.509417\pi\)
−0.0295811 + 0.999562i \(0.509417\pi\)
\(762\) 0 0
\(763\) −16588.0 −0.787059
\(764\) −28704.0 −1.35926
\(765\) 0 0
\(766\) 0 0
\(767\) 4512.00 0.212411
\(768\) −16384.0 −0.769800
\(769\) −28738.0 −1.34762 −0.673809 0.738905i \(-0.735343\pi\)
−0.673809 + 0.738905i \(0.735343\pi\)
\(770\) 0 0
\(771\) 480.000 0.0224212
\(772\) −35936.0 −1.67534
\(773\) 40128.0 1.86715 0.933573 0.358387i \(-0.116673\pi\)
0.933573 + 0.358387i \(0.116673\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1408.00 −0.0650086
\(778\) 0 0
\(779\) 1026.00 0.0471890
\(780\) 0 0
\(781\) 11808.0 0.541003
\(782\) 0 0
\(783\) −912.000 −0.0416248
\(784\) 9024.00 0.411079
\(785\) 0 0
\(786\) 0 0
\(787\) 15448.0 0.699697 0.349849 0.936806i \(-0.386233\pi\)
0.349849 + 0.936806i \(0.386233\pi\)
\(788\) 19728.0 0.891854
\(789\) 7368.00 0.332456
\(790\) 0 0
\(791\) 264.000 0.0118670
\(792\) 0 0
\(793\) 5648.00 0.252921
\(794\) 0 0
\(795\) 0 0
\(796\) −6592.00 −0.293527
\(797\) 27324.0 1.21439 0.607193 0.794554i \(-0.292295\pi\)
0.607193 + 0.794554i \(0.292295\pi\)
\(798\) 0 0
\(799\) −39204.0 −1.73584
\(800\) 0 0
\(801\) −10098.0 −0.445437
\(802\) 0 0
\(803\) 168.000 0.00738305
\(804\) 20096.0 0.881507
\(805\) 0 0
\(806\) 0 0
\(807\) 12936.0 0.564274
\(808\) 0 0
\(809\) −17766.0 −0.772088 −0.386044 0.922480i \(-0.626159\pi\)
−0.386044 + 0.922480i \(0.626159\pi\)
\(810\) 0 0
\(811\) −7396.00 −0.320233 −0.160116 0.987098i \(-0.551187\pi\)
−0.160116 + 0.987098i \(0.551187\pi\)
\(812\) 1056.00 0.0456383
\(813\) −18656.0 −0.804790
\(814\) 0 0
\(815\) 0 0
\(816\) −16896.0 −0.724851
\(817\) −3458.00 −0.148078
\(818\) 0 0
\(819\) 1936.00 0.0825999
\(820\) 0 0
\(821\) 26898.0 1.14342 0.571709 0.820456i \(-0.306281\pi\)
0.571709 + 0.820456i \(0.306281\pi\)
\(822\) 0 0
\(823\) 24442.0 1.03523 0.517615 0.855614i \(-0.326820\pi\)
0.517615 + 0.855614i \(0.326820\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13524.0 −0.568652 −0.284326 0.958728i \(-0.591770\pi\)
−0.284326 + 0.958728i \(0.591770\pi\)
\(828\) 2640.00 0.110805
\(829\) −7714.00 −0.323183 −0.161591 0.986858i \(-0.551663\pi\)
−0.161591 + 0.986858i \(0.551663\pi\)
\(830\) 0 0
\(831\) 20888.0 0.871958
\(832\) 4096.00 0.170677
\(833\) 9306.00 0.387075
\(834\) 0 0
\(835\) 0 0
\(836\) 1824.00 0.0754598
\(837\) −9728.00 −0.401731
\(838\) 0 0
\(839\) −16248.0 −0.668586 −0.334293 0.942469i \(-0.608497\pi\)
−0.334293 + 0.942469i \(0.608497\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) 0 0
\(843\) −30264.0 −1.23647
\(844\) −33952.0 −1.38469
\(845\) 0 0
\(846\) 0 0
\(847\) −26114.0 −1.05937
\(848\) −25344.0 −1.02632
\(849\) −22456.0 −0.907760
\(850\) 0 0
\(851\) 480.000 0.0193351
\(852\) −31488.0 −1.26615
\(853\) −35498.0 −1.42489 −0.712443 0.701730i \(-0.752411\pi\)
−0.712443 + 0.701730i \(0.752411\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40344.0 1.60808 0.804040 0.594575i \(-0.202680\pi\)
0.804040 + 0.594575i \(0.202680\pi\)
\(858\) 0 0
\(859\) 31484.0 1.25055 0.625274 0.780406i \(-0.284987\pi\)
0.625274 + 0.780406i \(0.284987\pi\)
\(860\) 0 0
\(861\) −4752.00 −0.188093
\(862\) 0 0
\(863\) 28836.0 1.13741 0.568707 0.822540i \(-0.307444\pi\)
0.568707 + 0.822540i \(0.307444\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 2228.00 0.0872743
\(868\) 11264.0 0.440467
\(869\) 3936.00 0.153647
\(870\) 0 0
\(871\) −5024.00 −0.195444
\(872\) 0 0
\(873\) −17204.0 −0.666973
\(874\) 0 0
\(875\) 0 0
\(876\) −448.000 −0.0172791
\(877\) −22796.0 −0.877727 −0.438863 0.898554i \(-0.644619\pi\)
−0.438863 + 0.898554i \(0.644619\pi\)
\(878\) 0 0
\(879\) 3696.00 0.141824
\(880\) 0 0
\(881\) −18822.0 −0.719784 −0.359892 0.932994i \(-0.617186\pi\)
−0.359892 + 0.932994i \(0.617186\pi\)
\(882\) 0 0
\(883\) −7526.00 −0.286829 −0.143415 0.989663i \(-0.545808\pi\)
−0.143415 + 0.989663i \(0.545808\pi\)
\(884\) 4224.00 0.160711
\(885\) 0 0
\(886\) 0 0
\(887\) −33816.0 −1.28008 −0.640040 0.768342i \(-0.721082\pi\)
−0.640040 + 0.768342i \(0.721082\pi\)
\(888\) 0 0
\(889\) −7568.00 −0.285515
\(890\) 0 0
\(891\) 3732.00 0.140322
\(892\) 43840.0 1.64560
\(893\) −11286.0 −0.422925
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 960.000 0.0357341
\(898\) 0 0
\(899\) 384.000 0.0142460
\(900\) 0 0
\(901\) −26136.0 −0.966389
\(902\) 0 0
\(903\) 16016.0 0.590232
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 33784.0 1.23680 0.618401 0.785863i \(-0.287781\pi\)
0.618401 + 0.785863i \(0.287781\pi\)
\(908\) 44352.0 1.62101
\(909\) 3234.00 0.118003
\(910\) 0 0
\(911\) −15216.0 −0.553379 −0.276690 0.960959i \(-0.589237\pi\)
−0.276690 + 0.960959i \(0.589237\pi\)
\(912\) −4864.00 −0.176604
\(913\) −3528.00 −0.127886
\(914\) 0 0
\(915\) 0 0
\(916\) −23440.0 −0.845502
\(917\) 55440.0 1.99650
\(918\) 0 0
\(919\) 19760.0 0.709273 0.354637 0.935004i \(-0.384605\pi\)
0.354637 + 0.935004i \(0.384605\pi\)
\(920\) 0 0
\(921\) −17920.0 −0.641134
\(922\) 0 0
\(923\) 7872.00 0.280726
\(924\) −8448.00 −0.300778
\(925\) 0 0
\(926\) 0 0
\(927\) 8272.00 0.293083
\(928\) 0 0
\(929\) 16278.0 0.574880 0.287440 0.957799i \(-0.407196\pi\)
0.287440 + 0.957799i \(0.407196\pi\)
\(930\) 0 0
\(931\) 2679.00 0.0943079
\(932\) −35184.0 −1.23658
\(933\) −5088.00 −0.178536
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 6994.00 0.243846 0.121923 0.992540i \(-0.461094\pi\)
0.121923 + 0.992540i \(0.461094\pi\)
\(938\) 0 0
\(939\) 5480.00 0.190451
\(940\) 0 0
\(941\) 32502.0 1.12597 0.562983 0.826468i \(-0.309653\pi\)
0.562983 + 0.826468i \(0.309653\pi\)
\(942\) 0 0
\(943\) 1620.00 0.0559432
\(944\) −36096.0 −1.24452
\(945\) 0 0
\(946\) 0 0
\(947\) −50358.0 −1.72800 −0.864000 0.503493i \(-0.832048\pi\)
−0.864000 + 0.503493i \(0.832048\pi\)
\(948\) −10496.0 −0.359593
\(949\) 112.000 0.00383106
\(950\) 0 0
\(951\) 14208.0 0.484465
\(952\) 0 0
\(953\) −39816.0 −1.35338 −0.676688 0.736270i \(-0.736585\pi\)
−0.676688 + 0.736270i \(0.736585\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 51840.0 1.75379
\(957\) −288.000 −0.00972802
\(958\) 0 0
\(959\) −14388.0 −0.484476
\(960\) 0 0
\(961\) −25695.0 −0.862509
\(962\) 0 0
\(963\) −2376.00 −0.0795073
\(964\) 46160.0 1.54223
\(965\) 0 0
\(966\) 0 0
\(967\) −590.000 −0.0196206 −0.00981030 0.999952i \(-0.503123\pi\)
−0.00981030 + 0.999952i \(0.503123\pi\)
\(968\) 0 0
\(969\) −5016.00 −0.166292
\(970\) 0 0
\(971\) 26820.0 0.886400 0.443200 0.896423i \(-0.353843\pi\)
0.443200 + 0.896423i \(0.353843\pi\)
\(972\) 22880.0 0.755017
\(973\) −52624.0 −1.73386
\(974\) 0 0
\(975\) 0 0
\(976\) −45184.0 −1.48187
\(977\) 33312.0 1.09083 0.545417 0.838165i \(-0.316371\pi\)
0.545417 + 0.838165i \(0.316371\pi\)
\(978\) 0 0
\(979\) −11016.0 −0.359625
\(980\) 0 0
\(981\) 8294.00 0.269936
\(982\) 0 0
\(983\) −612.000 −0.0198573 −0.00992867 0.999951i \(-0.503160\pi\)
−0.00992867 + 0.999951i \(0.503160\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 52272.0 1.68575
\(988\) 1216.00 0.0391560
\(989\) −5460.00 −0.175549
\(990\) 0 0
\(991\) 39416.0 1.26346 0.631731 0.775188i \(-0.282345\pi\)
0.631731 + 0.775188i \(0.282345\pi\)
\(992\) 0 0
\(993\) −18128.0 −0.579330
\(994\) 0 0
\(995\) 0 0
\(996\) 9408.00 0.299301
\(997\) −36614.0 −1.16307 −0.581533 0.813523i \(-0.697547\pi\)
−0.581533 + 0.813523i \(0.697547\pi\)
\(998\) 0 0
\(999\) 2432.00 0.0770221
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.4.a.d.1.1 1
5.2 odd 4 475.4.b.e.324.2 2
5.3 odd 4 475.4.b.e.324.1 2
5.4 even 2 95.4.a.a.1.1 1
15.14 odd 2 855.4.a.e.1.1 1
20.19 odd 2 1520.4.a.b.1.1 1
95.94 odd 2 1805.4.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.4.a.a.1.1 1 5.4 even 2
475.4.a.d.1.1 1 1.1 even 1 trivial
475.4.b.e.324.1 2 5.3 odd 4
475.4.b.e.324.2 2 5.2 odd 4
855.4.a.e.1.1 1 15.14 odd 2
1520.4.a.b.1.1 1 20.19 odd 2
1805.4.a.f.1.1 1 95.94 odd 2