Defining parameters
| Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 475.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 15 \) | ||
| Sturm bound: | \(200\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(475))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 156 | 86 | 70 |
| Cusp forms | 144 | 86 | 58 |
| Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(5\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(42\) | \(21\) | \(21\) | \(39\) | \(21\) | \(18\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(36\) | \(19\) | \(17\) | \(33\) | \(19\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(38\) | \(21\) | \(17\) | \(35\) | \(21\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(40\) | \(25\) | \(15\) | \(37\) | \(25\) | \(12\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(82\) | \(46\) | \(36\) | \(76\) | \(46\) | \(30\) | \(6\) | \(0\) | \(6\) | ||||
| Minus space | \(-\) | \(74\) | \(40\) | \(34\) | \(68\) | \(40\) | \(28\) | \(6\) | \(0\) | \(6\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(475))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(475))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(475)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 2}\)