Properties

Label 475.4.a
Level $475$
Weight $4$
Character orbit 475.a
Rep. character $\chi_{475}(1,\cdot)$
Character field $\Q$
Dimension $86$
Newform subspaces $15$
Sturm bound $200$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 475.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 15 \)
Sturm bound: \(200\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(475))\).

Total New Old
Modular forms 156 86 70
Cusp forms 144 86 58
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(42\)\(21\)\(21\)\(39\)\(21\)\(18\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(36\)\(19\)\(17\)\(33\)\(19\)\(14\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(38\)\(21\)\(17\)\(35\)\(21\)\(14\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(40\)\(25\)\(15\)\(37\)\(25\)\(12\)\(3\)\(0\)\(3\)
Plus space\(+\)\(82\)\(46\)\(36\)\(76\)\(46\)\(30\)\(6\)\(0\)\(6\)
Minus space\(-\)\(74\)\(40\)\(34\)\(68\)\(40\)\(28\)\(6\)\(0\)\(6\)

Trace form

\( 86 q - 4 q^{2} + 4 q^{3} + 358 q^{4} - 10 q^{6} - 4 q^{7} + 764 q^{9} + 38 q^{11} + 56 q^{12} - 92 q^{13} + 36 q^{14} + 1338 q^{16} - 40 q^{17} - 36 q^{18} + 38 q^{19} - 240 q^{21} - 488 q^{22} - 94 q^{23}+ \cdots - 2158 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(475))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 19
475.4.a.a 475.a 1.a $1$ $28.026$ \(\Q\) None 95.4.a.d \(-5\) \(-4\) \(0\) \(32\) $+$ $-$ $\mathrm{SU}(2)$ \(q-5q^{2}-4q^{3}+17q^{4}+20q^{6}+2^{5}q^{7}+\cdots\)
475.4.a.b 475.a 1.a $1$ $28.026$ \(\Q\) None 95.4.a.c \(-3\) \(-7\) \(0\) \(-11\) $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}-7q^{3}+q^{4}+21q^{6}-11q^{7}+\cdots\)
475.4.a.c 475.a 1.a $1$ $28.026$ \(\Q\) None 95.4.a.b \(-3\) \(5\) \(0\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}+5q^{3}+q^{4}-15q^{6}+q^{7}+\cdots\)
475.4.a.d 475.a 1.a $1$ $28.026$ \(\Q\) None 95.4.a.a \(0\) \(-4\) \(0\) \(22\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{3}-8q^{4}+22q^{7}-11q^{9}-12q^{11}+\cdots\)
475.4.a.e 475.a 1.a $1$ $28.026$ \(\Q\) None 19.4.a.a \(3\) \(5\) \(0\) \(-11\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{2}+5q^{3}+q^{4}+15q^{6}-11q^{7}+\cdots\)
475.4.a.f 475.a 1.a $3$ $28.026$ 3.3.3144.1 None 19.4.a.b \(-3\) \(-1\) \(0\) \(35\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1}+\beta _{2})q^{2}+(\beta _{1}-2\beta _{2})q^{3}+\cdots\)
475.4.a.g 475.a 1.a $3$ $28.026$ 3.3.1304.1 None 95.4.a.e \(3\) \(11\) \(0\) \(5\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}+(4+\beta _{1}+\beta _{2})q^{3}+(1+\cdots)q^{4}+\cdots\)
475.4.a.h 475.a 1.a $5$ $28.026$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 95.4.a.f \(3\) \(4\) \(0\) \(-72\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(\beta _{1}+\beta _{3})q^{3}+(4-\beta _{1}+\cdots)q^{4}+\cdots\)
475.4.a.i 475.a 1.a $6$ $28.026$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 95.4.a.g \(1\) \(-5\) \(0\) \(-5\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1+\beta _{1}+\beta _{5})q^{3}+(4+\beta _{2}+\cdots)q^{4}+\cdots\)
475.4.a.j 475.a 1.a $9$ $28.026$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 475.4.a.j \(-7\) \(-6\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{4})q^{3}+(5+\cdots)q^{4}+\cdots\)
475.4.a.k 475.a 1.a $9$ $28.026$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 475.4.a.k \(-5\) \(-6\) \(0\) \(-28\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-\beta _{1}+\beta _{4})q^{3}+(5+\cdots)q^{4}+\cdots\)
475.4.a.l 475.a 1.a $9$ $28.026$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 475.4.a.k \(5\) \(6\) \(0\) \(28\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(\beta _{1}-\beta _{4})q^{3}+(5-\beta _{1}+\cdots)q^{4}+\cdots\)
475.4.a.m 475.a 1.a $9$ $28.026$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 475.4.a.j \(7\) \(6\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1+\beta _{4})q^{3}+(5-2\beta _{1}+\cdots)q^{4}+\cdots\)
475.4.a.n 475.a 1.a $12$ $28.026$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 95.4.b.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{5}q^{3}+(3+\beta _{2})q^{4}+(-5+\cdots)q^{6}+\cdots\)
475.4.a.o 475.a 1.a $16$ $28.026$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 95.4.b.b \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{11}q^{3}+(5+\beta _{2})q^{4}+(5+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(475))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(475)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 2}\)