Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [475,2,Mod(39,475)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([3, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("475.39");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.n (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
39.1 | −1.60597 | − | 2.21043i | −1.56040 | − | 0.507006i | −1.68883 | + | 5.19768i | 0.411675 | − | 2.19785i | 1.38526 | + | 4.26341i | − | 3.04333i | 9.00431 | − | 2.92568i | −0.249248 | − | 0.181089i | −5.51933 | + | 2.61970i | |
39.2 | −1.39149 | − | 1.91522i | 2.70917 | + | 0.880261i | −1.11379 | + | 3.42788i | 2.14567 | + | 0.629357i | −2.08388 | − | 6.41351i | − | 1.72629i | 3.61202 | − | 1.17362i | 4.13767 | + | 3.00619i | −1.78032 | − | 4.98517i | |
39.3 | −1.21720 | − | 1.67534i | −0.191192 | − | 0.0621221i | −0.707134 | + | 2.17633i | −2.22482 | − | 0.223992i | 0.128644 | + | 0.395926i | 3.63478i | 0.567865 | − | 0.184511i | −2.39436 | − | 1.73960i | 2.33280 | + | 3.99997i | ||
39.4 | −1.12280 | − | 1.54541i | 1.41655 | + | 0.460266i | −0.509559 | + | 1.56826i | −0.295058 | − | 2.21652i | −0.879213 | − | 2.70594i | − | 3.52405i | −0.637733 | + | 0.207212i | −0.632270 | − | 0.459371i | −3.09413 | + | 2.94469i | |
39.5 | −1.02546 | − | 1.41142i | −2.62954 | − | 0.854391i | −0.322513 | + | 0.992591i | 1.35649 | + | 1.77762i | 1.49058 | + | 4.58753i | 0.182993i | −1.58676 | + | 0.515570i | 3.75747 | + | 2.72996i | 1.11795 | − | 3.73745i | ||
39.6 | −0.819032 | − | 1.12730i | 0.641372 | + | 0.208394i | 0.0180399 | − | 0.0555211i | −0.501037 | + | 2.17921i | −0.290381 | − | 0.893701i | 0.0684183i | −2.72781 | + | 0.886319i | −2.05912 | − | 1.49604i | 2.86699 | − | 1.22002i | ||
39.7 | −0.708585 | − | 0.975283i | −1.48229 | − | 0.481625i | 0.168949 | − | 0.519971i | −1.59939 | + | 1.56267i | 0.580606 | + | 1.78692i | − | 2.31635i | −2.91986 | + | 0.948721i | −0.461836 | − | 0.335543i | 2.65735 | + | 0.452578i | |
39.8 | −0.396268 | − | 0.545416i | 2.29043 | + | 0.744207i | 0.477583 | − | 1.46985i | −1.89679 | − | 1.18414i | −0.501723 | − | 1.54414i | − | 2.02861i | −2.27328 | + | 0.738634i | 2.26518 | + | 1.64575i | 0.105787 | + | 1.50378i | |
39.9 | −0.325781 | − | 0.448399i | −0.381722 | − | 0.124029i | 0.523105 | − | 1.60995i | −0.781184 | − | 2.09517i | 0.0687433 | + | 0.211570i | 3.07504i | −1.94657 | + | 0.632479i | −2.29672 | − | 1.66867i | −0.684979 | + | 1.03285i | ||
39.10 | 0.0162182 | + | 0.0223225i | 2.53599 | + | 0.823993i | 0.617799 | − | 1.90139i | 2.18453 | − | 0.477335i | 0.0227357 | + | 0.0699732i | 0.768841i | 0.104947 | − | 0.0340992i | 3.32522 | + | 2.41592i | 0.0460844 | + | 0.0410225i | ||
39.11 | 0.203802 | + | 0.280510i | −1.02562 | − | 0.333243i | 0.580884 | − | 1.78778i | 1.88943 | + | 1.19586i | −0.115545 | − | 0.355611i | − | 4.66677i | 1.27939 | − | 0.415700i | −1.48621 | − | 1.07980i | 0.0496198 | + | 0.773721i | |
39.12 | 0.302513 | + | 0.416374i | 2.54210 | + | 0.825977i | 0.536181 | − | 1.65020i | −1.61099 | + | 1.55071i | 0.425102 | + | 1.30833i | 4.22504i | 1.82825 | − | 0.594036i | 3.35296 | + | 2.43607i | −1.13302 | − | 0.201663i | ||
39.13 | 0.470002 | + | 0.646902i | −1.99652 | − | 0.648707i | 0.420454 | − | 1.29402i | −0.877494 | − | 2.05670i | −0.518716 | − | 1.59644i | − | 0.826548i | 2.55568 | − | 0.830390i | 1.13820 | + | 0.826953i | 0.918057 | − | 1.53430i | |
39.14 | 0.494729 | + | 0.680936i | −1.00441 | − | 0.326353i | 0.399117 | − | 1.22836i | 2.12122 | − | 0.707408i | −0.274686 | − | 0.845396i | 5.02465i | 2.63486 | − | 0.856119i | −1.52472 | − | 1.10777i | 1.53113 | + | 1.09444i | ||
39.15 | 0.636441 | + | 0.875986i | 0.575766 | + | 0.187078i | 0.255740 | − | 0.787086i | −2.22529 | − | 0.219241i | 0.202564 | + | 0.623427i | − | 2.44664i | 2.91181 | − | 0.946103i | −2.13054 | − | 1.54793i | −1.22422 | − | 2.08886i | |
39.16 | 1.06731 | + | 1.46902i | 1.88156 | + | 0.611355i | −0.400851 | + | 1.23369i | −0.796184 | + | 2.08952i | 1.11011 | + | 3.41656i | − | 1.51173i | 1.21373 | − | 0.394364i | 0.739455 | + | 0.537245i | −3.91933 | + | 1.06055i | |
39.17 | 1.10380 | + | 1.51924i | −1.16023 | − | 0.376980i | −0.471705 | + | 1.45176i | 2.05956 | − | 0.870765i | −0.707927 | − | 2.17878i | − | 1.60835i | 0.845716 | − | 0.274790i | −1.22304 | − | 0.888592i | 3.59623 | + | 2.16782i | |
39.18 | 1.30771 | + | 1.79991i | 1.66715 | + | 0.541690i | −0.911532 | + | 2.80541i | 0.941634 | − | 2.02813i | 1.20516 | + | 3.70909i | 2.10218i | −2.00966 | + | 0.652977i | 0.0589103 | + | 0.0428008i | 4.88184 | − | 0.957357i | ||
39.19 | 1.49224 | + | 2.05389i | −0.805296 | − | 0.261657i | −1.37366 | + | 4.22769i | 0.616846 | + | 2.14930i | −0.664281 | − | 2.04445i | 1.89983i | −5.90407 | + | 1.91835i | −1.84701 | − | 1.34193i | −3.49395 | + | 4.47421i | ||
39.20 | 1.51783 | + | 2.08911i | −2.90483 | − | 0.943838i | −1.44255 | + | 4.43972i | −2.22781 | + | 0.191942i | −2.43726 | − | 7.50111i | − | 3.43848i | −6.55283 | + | 2.12914i | 5.12018 | + | 3.72003i | −3.78243 | − | 4.36282i | |
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.n.a | ✓ | 80 |
25.e | even | 10 | 1 | inner | 475.2.n.a | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
475.2.n.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
475.2.n.a | ✓ | 80 | 25.e | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{80} - 28 T_{2}^{78} + 461 T_{2}^{76} - 5856 T_{2}^{74} + 40 T_{2}^{73} + 63429 T_{2}^{72} + \cdots + 625 \)
acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).