# Properties

 Label 475.2.l.a.251.1 Level $475$ Weight $2$ Character 475.251 Analytic conductor $3.793$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$475 = 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 475.l (of order $$9$$, degree $$6$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.79289409601$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: $$\Q(\zeta_{18})$$ Defining polynomial: $$x^{6} - x^{3} + 1$$ x^6 - x^3 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 19) Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

## Embedding invariants

 Embedding label 251.1 Root $$-0.173648 - 0.984808i$$ of defining polynomial Character $$\chi$$ $$=$$ 475.251 Dual form 475.2.l.a.176.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.826352 + 0.300767i) q^{2} +(-0.0923963 - 0.524005i) q^{3} +(-0.939693 - 0.788496i) q^{4} +(0.0812519 - 0.460802i) q^{6} +(-0.939693 + 1.62760i) q^{7} +(-1.41875 - 2.45734i) q^{8} +(2.55303 - 0.929228i) q^{9} +O(q^{10})$$ $$q+(0.826352 + 0.300767i) q^{2} +(-0.0923963 - 0.524005i) q^{3} +(-0.939693 - 0.788496i) q^{4} +(0.0812519 - 0.460802i) q^{6} +(-0.939693 + 1.62760i) q^{7} +(-1.41875 - 2.45734i) q^{8} +(2.55303 - 0.929228i) q^{9} +(-1.70574 - 2.95442i) q^{11} +(-0.326352 + 0.565258i) q^{12} +(0.918748 - 5.21048i) q^{13} +(-1.26604 + 1.06234i) q^{14} +(-0.00727396 - 0.0412527i) q^{16} +(1.55303 + 0.565258i) q^{17} +2.38919 q^{18} +(-2.52094 - 3.55596i) q^{19} +(0.939693 + 0.342020i) q^{21} +(-0.520945 - 2.95442i) q^{22} +(-1.34730 - 1.13052i) q^{23} +(-1.15657 + 0.970481i) q^{24} +(2.32635 - 4.02936i) q^{26} +(-1.52094 - 2.63435i) q^{27} +(2.16637 - 0.788496i) q^{28} +(3.25877 - 1.18610i) q^{29} +(-0.971782 + 1.68317i) q^{31} +(-0.979055 + 5.55250i) q^{32} +(-1.39053 + 1.16679i) q^{33} +(1.11334 + 0.934204i) q^{34} +(-3.13176 - 1.13987i) q^{36} +0.837496 q^{37} +(-1.01367 - 3.69669i) q^{38} -2.81521 q^{39} +(-0.779715 - 4.42198i) q^{41} +(0.673648 + 0.565258i) q^{42} +(-3.67752 + 3.08580i) q^{43} +(-0.726682 + 4.12122i) q^{44} +(-0.773318 - 1.33943i) q^{46} +(0.673648 - 0.245188i) q^{47} +(-0.0209445 + 0.00762319i) q^{48} +(1.73396 + 3.00330i) q^{49} +(0.152704 - 0.866025i) q^{51} +(-4.97178 + 4.17182i) q^{52} +(4.67752 + 3.92490i) q^{53} +(-0.464508 - 2.63435i) q^{54} +5.33275 q^{56} +(-1.63041 + 1.64955i) q^{57} +3.04963 q^{58} +(10.1099 + 3.67972i) q^{59} +(3.36231 + 2.82131i) q^{61} +(-1.30928 + 1.09861i) q^{62} +(-0.886659 + 5.02849i) q^{63} +(-2.52094 + 4.36640i) q^{64} +(-1.50000 + 0.545955i) q^{66} +(13.3550 - 4.86084i) q^{67} +(-1.01367 - 1.75573i) q^{68} +(-0.467911 + 0.810446i) q^{69} +(-10.5398 + 8.84397i) q^{71} +(-5.90554 - 4.95534i) q^{72} +(1.30541 + 7.40333i) q^{73} +(0.692066 + 0.251892i) q^{74} +(-0.434945 + 5.32926i) q^{76} +6.41147 q^{77} +(-2.32635 - 0.846723i) q^{78} +(-1.20914 - 6.85738i) q^{79} +(5.00387 - 4.19875i) q^{81} +(0.685670 - 3.88863i) q^{82} +(1.25624 - 2.17588i) q^{83} +(-0.613341 - 1.06234i) q^{84} +(-3.96703 + 1.44388i) q^{86} +(-0.922618 - 1.59802i) q^{87} +(-4.84002 + 8.38316i) q^{88} +(-0.396459 + 2.24843i) q^{89} +(7.61721 + 6.39160i) q^{91} +(0.374638 + 2.12467i) q^{92} +(0.971782 + 0.353700i) q^{93} +0.630415 q^{94} +3.00000 q^{96} +(-1.71301 - 0.623485i) q^{97} +(0.529563 + 3.00330i) q^{98} +(-7.10014 - 5.95772i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q + 6 q^{2} + 3 q^{3} + 3 q^{6} - 6 q^{8} + 3 q^{9}+O(q^{10})$$ 6 * q + 6 * q^2 + 3 * q^3 + 3 * q^6 - 6 * q^8 + 3 * q^9 $$6 q + 6 q^{2} + 3 q^{3} + 3 q^{6} - 6 q^{8} + 3 q^{9} - 3 q^{12} + 3 q^{13} - 3 q^{14} - 18 q^{16} - 3 q^{17} + 6 q^{18} - 12 q^{19} - 6 q^{23} + 15 q^{24} + 15 q^{26} - 6 q^{27} - 6 q^{28} - 3 q^{29} + 9 q^{31} - 9 q^{32} + 9 q^{33} - 24 q^{36} + 15 q^{38} - 24 q^{39} + 21 q^{41} + 3 q^{42} + 3 q^{43} + 9 q^{44} - 18 q^{46} + 3 q^{47} + 3 q^{48} + 15 q^{49} + 3 q^{51} - 15 q^{52} + 3 q^{53} + 30 q^{54} - 6 q^{56} - 24 q^{57} - 36 q^{58} + 12 q^{59} - 12 q^{61} + 12 q^{62} - 12 q^{63} - 12 q^{64} - 9 q^{66} + 30 q^{67} + 15 q^{68} - 12 q^{69} - 6 q^{71} + 12 q^{72} + 12 q^{73} + 15 q^{74} + 36 q^{76} + 18 q^{77} - 15 q^{78} - 39 q^{79} + 6 q^{81} + 54 q^{82} + 3 q^{84} + 24 q^{86} + 21 q^{87} - 9 q^{88} - 12 q^{89} + 15 q^{91} - 42 q^{92} - 9 q^{93} + 18 q^{94} + 18 q^{96} - 18 q^{97} + 9 q^{98} + 9 q^{99}+O(q^{100})$$ 6 * q + 6 * q^2 + 3 * q^3 + 3 * q^6 - 6 * q^8 + 3 * q^9 - 3 * q^12 + 3 * q^13 - 3 * q^14 - 18 * q^16 - 3 * q^17 + 6 * q^18 - 12 * q^19 - 6 * q^23 + 15 * q^24 + 15 * q^26 - 6 * q^27 - 6 * q^28 - 3 * q^29 + 9 * q^31 - 9 * q^32 + 9 * q^33 - 24 * q^36 + 15 * q^38 - 24 * q^39 + 21 * q^41 + 3 * q^42 + 3 * q^43 + 9 * q^44 - 18 * q^46 + 3 * q^47 + 3 * q^48 + 15 * q^49 + 3 * q^51 - 15 * q^52 + 3 * q^53 + 30 * q^54 - 6 * q^56 - 24 * q^57 - 36 * q^58 + 12 * q^59 - 12 * q^61 + 12 * q^62 - 12 * q^63 - 12 * q^64 - 9 * q^66 + 30 * q^67 + 15 * q^68 - 12 * q^69 - 6 * q^71 + 12 * q^72 + 12 * q^73 + 15 * q^74 + 36 * q^76 + 18 * q^77 - 15 * q^78 - 39 * q^79 + 6 * q^81 + 54 * q^82 + 3 * q^84 + 24 * q^86 + 21 * q^87 - 9 * q^88 - 12 * q^89 + 15 * q^91 - 42 * q^92 - 9 * q^93 + 18 * q^94 + 18 * q^96 - 18 * q^97 + 9 * q^98 + 9 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/475\mathbb{Z}\right)^\times$$.

 $$n$$ $$77$$ $$401$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{9}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.826352 + 0.300767i 0.584319 + 0.212675i 0.617229 0.786784i $$-0.288255\pi$$
−0.0329100 + 0.999458i $$0.510477\pi$$
$$3$$ −0.0923963 0.524005i −0.0533450 0.302535i 0.946449 0.322855i $$-0.104643\pi$$
−0.999794 + 0.0203202i $$0.993531\pi$$
$$4$$ −0.939693 0.788496i −0.469846 0.394248i
$$5$$ 0 0
$$6$$ 0.0812519 0.460802i 0.0331710 0.188122i
$$7$$ −0.939693 + 1.62760i −0.355170 + 0.615173i −0.987147 0.159814i $$-0.948910\pi$$
0.631977 + 0.774987i $$0.282244\pi$$
$$8$$ −1.41875 2.45734i −0.501603 0.868802i
$$9$$ 2.55303 0.929228i 0.851011 0.309743i
$$10$$ 0 0
$$11$$ −1.70574 2.95442i −0.514299 0.890792i −0.999862 0.0165906i $$-0.994719\pi$$
0.485563 0.874202i $$-0.338615\pi$$
$$12$$ −0.326352 + 0.565258i −0.0942097 + 0.163176i
$$13$$ 0.918748 5.21048i 0.254815 1.44513i −0.541733 0.840551i $$-0.682231\pi$$
0.796547 0.604576i $$-0.206657\pi$$
$$14$$ −1.26604 + 1.06234i −0.338365 + 0.283922i
$$15$$ 0 0
$$16$$ −0.00727396 0.0412527i −0.00181849 0.0103132i
$$17$$ 1.55303 + 0.565258i 0.376666 + 0.137095i 0.523414 0.852079i $$-0.324658\pi$$
−0.146748 + 0.989174i $$0.546881\pi$$
$$18$$ 2.38919 0.563136
$$19$$ −2.52094 3.55596i −0.578344 0.815793i
$$20$$ 0 0
$$21$$ 0.939693 + 0.342020i 0.205058 + 0.0746349i
$$22$$ −0.520945 2.95442i −0.111066 0.629885i
$$23$$ −1.34730 1.13052i −0.280931 0.235729i 0.491424 0.870921i $$-0.336477\pi$$
−0.772354 + 0.635192i $$0.780921\pi$$
$$24$$ −1.15657 + 0.970481i −0.236085 + 0.198099i
$$25$$ 0 0
$$26$$ 2.32635 4.02936i 0.456235 0.790222i
$$27$$ −1.52094 2.63435i −0.292706 0.506982i
$$28$$ 2.16637 0.788496i 0.409406 0.149012i
$$29$$ 3.25877 1.18610i 0.605138 0.220252i −0.0212363 0.999774i $$-0.506760\pi$$
0.626375 + 0.779522i $$0.284538\pi$$
$$30$$ 0 0
$$31$$ −0.971782 + 1.68317i −0.174537 + 0.302307i −0.940001 0.341172i $$-0.889176\pi$$
0.765464 + 0.643479i $$0.222510\pi$$
$$32$$ −0.979055 + 5.55250i −0.173074 + 0.981553i
$$33$$ −1.39053 + 1.16679i −0.242060 + 0.203113i
$$34$$ 1.11334 + 0.934204i 0.190936 + 0.160215i
$$35$$ 0 0
$$36$$ −3.13176 1.13987i −0.521960 0.189978i
$$37$$ 0.837496 0.137684 0.0688418 0.997628i $$-0.478070\pi$$
0.0688418 + 0.997628i $$0.478070\pi$$
$$38$$ −1.01367 3.69669i −0.164439 0.599682i
$$39$$ −2.81521 −0.450794
$$40$$ 0 0
$$41$$ −0.779715 4.42198i −0.121771 0.690598i −0.983173 0.182675i $$-0.941524\pi$$
0.861402 0.507923i $$-0.169587\pi$$
$$42$$ 0.673648 + 0.565258i 0.103946 + 0.0872212i
$$43$$ −3.67752 + 3.08580i −0.560816 + 0.470581i −0.878584 0.477588i $$-0.841511\pi$$
0.317768 + 0.948169i $$0.397067\pi$$
$$44$$ −0.726682 + 4.12122i −0.109551 + 0.621297i
$$45$$ 0 0
$$46$$ −0.773318 1.33943i −0.114020 0.197488i
$$47$$ 0.673648 0.245188i 0.0982617 0.0357643i −0.292422 0.956290i $$-0.594461\pi$$
0.390683 + 0.920525i $$0.372239\pi$$
$$48$$ −0.0209445 + 0.00762319i −0.00302308 + 0.00110031i
$$49$$ 1.73396 + 3.00330i 0.247708 + 0.429043i
$$50$$ 0 0
$$51$$ 0.152704 0.866025i 0.0213828 0.121268i
$$52$$ −4.97178 + 4.17182i −0.689462 + 0.578527i
$$53$$ 4.67752 + 3.92490i 0.642507 + 0.539127i 0.904787 0.425865i $$-0.140030\pi$$
−0.262280 + 0.964992i $$0.584474\pi$$
$$54$$ −0.464508 2.63435i −0.0632115 0.358490i
$$55$$ 0 0
$$56$$ 5.33275 0.712618
$$57$$ −1.63041 + 1.64955i −0.215954 + 0.218488i
$$58$$ 3.04963 0.400436
$$59$$ 10.1099 + 3.67972i 1.31620 + 0.479058i 0.902239 0.431236i $$-0.141922\pi$$
0.413962 + 0.910294i $$0.364144\pi$$
$$60$$ 0 0
$$61$$ 3.36231 + 2.82131i 0.430500 + 0.361232i 0.832140 0.554565i $$-0.187115\pi$$
−0.401640 + 0.915797i $$0.631560\pi$$
$$62$$ −1.30928 + 1.09861i −0.166278 + 0.139524i
$$63$$ −0.886659 + 5.02849i −0.111709 + 0.633531i
$$64$$ −2.52094 + 4.36640i −0.315118 + 0.545801i
$$65$$ 0 0
$$66$$ −1.50000 + 0.545955i −0.184637 + 0.0672025i
$$67$$ 13.3550 4.86084i 1.63158 0.593846i 0.646040 0.763304i $$-0.276424\pi$$
0.985537 + 0.169458i $$0.0542017\pi$$
$$68$$ −1.01367 1.75573i −0.122926 0.212913i
$$69$$ −0.467911 + 0.810446i −0.0563299 + 0.0975662i
$$70$$ 0 0
$$71$$ −10.5398 + 8.84397i −1.25085 + 1.04959i −0.254252 + 0.967138i $$0.581829\pi$$
−0.996595 + 0.0824479i $$0.973726\pi$$
$$72$$ −5.90554 4.95534i −0.695975 0.583992i
$$73$$ 1.30541 + 7.40333i 0.152786 + 0.866495i 0.960782 + 0.277306i $$0.0894415\pi$$
−0.807995 + 0.589189i $$0.799447\pi$$
$$74$$ 0.692066 + 0.251892i 0.0804511 + 0.0292818i
$$75$$ 0 0
$$76$$ −0.434945 + 5.32926i −0.0498916 + 0.611308i
$$77$$ 6.41147 0.730655
$$78$$ −2.32635 0.846723i −0.263407 0.0958725i
$$79$$ −1.20914 6.85738i −0.136039 0.771515i −0.974131 0.225986i $$-0.927440\pi$$
0.838092 0.545529i $$-0.183671\pi$$
$$80$$ 0 0
$$81$$ 5.00387 4.19875i 0.555986 0.466527i
$$82$$ 0.685670 3.88863i 0.0757196 0.429427i
$$83$$ 1.25624 2.17588i 0.137891 0.238834i −0.788807 0.614641i $$-0.789301\pi$$
0.926698 + 0.375807i $$0.122634\pi$$
$$84$$ −0.613341 1.06234i −0.0669210 0.115911i
$$85$$ 0 0
$$86$$ −3.96703 + 1.44388i −0.427776 + 0.155698i
$$87$$ −0.922618 1.59802i −0.0989151 0.171326i
$$88$$ −4.84002 + 8.38316i −0.515948 + 0.893648i
$$89$$ −0.396459 + 2.24843i −0.0420246 + 0.238333i −0.998584 0.0532055i $$-0.983056\pi$$
0.956559 + 0.291539i $$0.0941673\pi$$
$$90$$ 0 0
$$91$$ 7.61721 + 6.39160i 0.798501 + 0.670022i
$$92$$ 0.374638 + 2.12467i 0.0390587 + 0.221513i
$$93$$ 0.971782 + 0.353700i 0.100769 + 0.0366769i
$$94$$ 0.630415 0.0650223
$$95$$ 0 0
$$96$$ 3.00000 0.306186
$$97$$ −1.71301 0.623485i −0.173930 0.0633053i 0.253587 0.967312i $$-0.418389\pi$$
−0.427517 + 0.904007i $$0.640612\pi$$
$$98$$ 0.529563 + 3.00330i 0.0534939 + 0.303379i
$$99$$ −7.10014 5.95772i −0.713591 0.598774i
$$100$$ 0 0
$$101$$ −1.37551 + 7.80093i −0.136869 + 0.776222i 0.836671 + 0.547705i $$0.184499\pi$$
−0.973540 + 0.228516i $$0.926613\pi$$
$$102$$ 0.386659 0.669713i 0.0382850 0.0663115i
$$103$$ −0.00727396 0.0125989i −0.000716725 0.00124140i 0.865667 0.500621i $$-0.166895\pi$$
−0.866384 + 0.499379i $$0.833561\pi$$
$$104$$ −14.1074 + 5.13468i −1.38335 + 0.503497i
$$105$$ 0 0
$$106$$ 2.68479 + 4.65020i 0.260770 + 0.451667i
$$107$$ −1.77719 + 3.07818i −0.171807 + 0.297579i −0.939052 0.343776i $$-0.888294\pi$$
0.767244 + 0.641355i $$0.221627\pi$$
$$108$$ −0.647956 + 3.67474i −0.0623496 + 0.353602i
$$109$$ 5.64543 4.73708i 0.540734 0.453730i −0.331055 0.943612i $$-0.607404\pi$$
0.871789 + 0.489882i $$0.162960\pi$$
$$110$$ 0 0
$$111$$ −0.0773815 0.438852i −0.00734473 0.0416540i
$$112$$ 0.0739780 + 0.0269258i 0.00699026 + 0.00254425i
$$113$$ −7.37733 −0.694000 −0.347000 0.937865i $$-0.612800\pi$$
−0.347000 + 0.937865i $$0.612800\pi$$
$$114$$ −1.84343 + 0.872729i −0.172653 + 0.0817386i
$$115$$ 0 0
$$116$$ −3.99747 1.45496i −0.371156 0.135090i
$$117$$ −2.49613 14.1563i −0.230767 1.30875i
$$118$$ 7.24763 + 6.08148i 0.667198 + 0.559846i
$$119$$ −2.37939 + 1.99654i −0.218118 + 0.183023i
$$120$$ 0 0
$$121$$ −0.319078 + 0.552659i −0.0290071 + 0.0502417i
$$122$$ 1.92989 + 3.34267i 0.174724 + 0.302631i
$$123$$ −2.24510 + 0.817150i −0.202434 + 0.0736799i
$$124$$ 2.24035 0.815422i 0.201190 0.0732270i
$$125$$ 0 0
$$126$$ −2.24510 + 3.88863i −0.200009 + 0.346426i
$$127$$ 0.0175410 0.0994798i 0.00155651 0.00882740i −0.984020 0.178060i $$-0.943018\pi$$
0.985576 + 0.169233i $$0.0541290\pi$$
$$128$$ 5.24170 4.39831i 0.463305 0.388759i
$$129$$ 1.95677 + 1.64192i 0.172284 + 0.144563i
$$130$$ 0 0
$$131$$ 2.85369 + 1.03866i 0.249328 + 0.0907481i 0.463661 0.886013i $$-0.346536\pi$$
−0.214333 + 0.976761i $$0.568758\pi$$
$$132$$ 2.22668 0.193808
$$133$$ 8.15657 0.761570i 0.707265 0.0660365i
$$134$$ 12.4979 1.07966
$$135$$ 0 0
$$136$$ −0.814330 4.61830i −0.0698282 0.396016i
$$137$$ −14.9684 12.5600i −1.27883 1.07307i −0.993404 0.114671i $$-0.963419\pi$$
−0.285431 0.958399i $$-0.592137\pi$$
$$138$$ −0.630415 + 0.528981i −0.0536645 + 0.0450298i
$$139$$ 2.67365 15.1630i 0.226776 1.28611i −0.632485 0.774573i $$-0.717965\pi$$
0.859261 0.511537i $$-0.170924\pi$$
$$140$$ 0 0
$$141$$ −0.190722 0.330341i −0.0160617 0.0278197i
$$142$$ −11.3696 + 4.13819i −0.954114 + 0.347269i
$$143$$ −16.9611 + 6.17334i −1.41836 + 0.516240i
$$144$$ −0.0569038 0.0985603i −0.00474198 0.00821336i
$$145$$ 0 0
$$146$$ −1.14796 + 6.51038i −0.0950055 + 0.538803i
$$147$$ 1.41353 1.18610i 0.116586 0.0978275i
$$148$$ −0.786989 0.660362i −0.0646901 0.0542814i
$$149$$ −0.654048 3.70929i −0.0535817 0.303877i 0.946226 0.323507i $$-0.104862\pi$$
−0.999807 + 0.0196306i $$0.993751\pi$$
$$150$$ 0 0
$$151$$ −14.5963 −1.18783 −0.593914 0.804529i $$-0.702418\pi$$
−0.593914 + 0.804529i $$0.702418\pi$$
$$152$$ −5.16163 + 11.2398i −0.418663 + 0.911671i
$$153$$ 4.49020 0.363011
$$154$$ 5.29813 + 1.92836i 0.426936 + 0.155392i
$$155$$ 0 0
$$156$$ 2.64543 + 2.21978i 0.211804 + 0.177725i
$$157$$ 7.94743 6.66869i 0.634274 0.532219i −0.267980 0.963425i $$-0.586356\pi$$
0.902254 + 0.431205i $$0.141912\pi$$
$$158$$ 1.06330 6.03028i 0.0845916 0.479743i
$$159$$ 1.62449 2.81369i 0.128830 0.223140i
$$160$$ 0 0
$$161$$ 3.10607 1.13052i 0.244792 0.0890971i
$$162$$ 5.39780 1.96464i 0.424091 0.154357i
$$163$$ −1.01114 1.75135i −0.0791989 0.137177i 0.823706 0.567018i $$-0.191903\pi$$
−0.902905 + 0.429841i $$0.858570\pi$$
$$164$$ −2.75402 + 4.77011i −0.215053 + 0.372483i
$$165$$ 0 0
$$166$$ 1.69253 1.42020i 0.131366 0.110229i
$$167$$ 17.8157 + 14.9491i 1.37862 + 1.15680i 0.969720 + 0.244218i $$0.0785312\pi$$
0.408898 + 0.912580i $$0.365913\pi$$
$$168$$ −0.492726 2.79439i −0.0380146 0.215592i
$$169$$ −14.0890 5.12797i −1.08377 0.394460i
$$170$$ 0 0
$$171$$ −9.74035 6.73595i −0.744863 0.515111i
$$172$$ 5.88888 0.449023
$$173$$ 0.842549 + 0.306663i 0.0640578 + 0.0233151i 0.373850 0.927489i $$-0.378037\pi$$
−0.309793 + 0.950804i $$0.600260\pi$$
$$174$$ −0.281774 1.59802i −0.0213613 0.121146i
$$175$$ 0 0
$$176$$ −0.109470 + 0.0918566i −0.00825164 + 0.00692395i
$$177$$ 0.994070 5.63765i 0.0747189 0.423752i
$$178$$ −1.00387 + 1.73875i −0.0752433 + 0.130325i
$$179$$ 10.6591 + 18.4621i 0.796699 + 1.37992i 0.921755 + 0.387773i $$0.126755\pi$$
−0.125056 + 0.992150i $$0.539911\pi$$
$$180$$ 0 0
$$181$$ 15.1284 5.50627i 1.12448 0.409278i 0.288196 0.957571i $$-0.406945\pi$$
0.836286 + 0.548294i $$0.184722\pi$$
$$182$$ 4.37211 + 7.57272i 0.324082 + 0.561327i
$$183$$ 1.16772 2.02255i 0.0863202 0.149511i
$$184$$ −0.866592 + 4.91469i −0.0638860 + 0.362316i
$$185$$ 0 0
$$186$$ 0.696652 + 0.584561i 0.0510810 + 0.0428621i
$$187$$ −0.979055 5.55250i −0.0715956 0.406039i
$$188$$ −0.826352 0.300767i −0.0602679 0.0219357i
$$189$$ 5.71688 0.415842
$$190$$ 0 0
$$191$$ 18.9486 1.37107 0.685537 0.728038i $$-0.259568\pi$$
0.685537 + 0.728038i $$0.259568\pi$$
$$192$$ 2.52094 + 0.917549i 0.181934 + 0.0662184i
$$193$$ −2.24035 12.7057i −0.161264 0.914574i −0.952833 0.303494i $$-0.901847\pi$$
0.791569 0.611080i $$-0.209264\pi$$
$$194$$ −1.22803 1.03044i −0.0881671 0.0739810i
$$195$$ 0 0
$$196$$ 0.738703 4.18939i 0.0527645 0.299242i
$$197$$ −11.6001 + 20.0920i −0.826476 + 1.43150i 0.0743108 + 0.997235i $$0.476324\pi$$
−0.900786 + 0.434263i $$0.857009\pi$$
$$198$$ −4.07532 7.05866i −0.289621 0.501637i
$$199$$ −8.66550 + 3.15398i −0.614281 + 0.223580i −0.630375 0.776291i $$-0.717099\pi$$
0.0160945 + 0.999870i $$0.494877\pi$$
$$200$$ 0 0
$$201$$ −3.78106 6.54899i −0.266695 0.461930i
$$202$$ −3.48293 + 6.03260i −0.245058 + 0.424453i
$$203$$ −1.13176 + 6.41852i −0.0794339 + 0.450492i
$$204$$ −0.826352 + 0.693392i −0.0578562 + 0.0485471i
$$205$$ 0 0
$$206$$ −0.00222152 0.0125989i −0.000154781 0.000877805i
$$207$$ −4.49020 1.63430i −0.312090 0.113592i
$$208$$ −0.221629 −0.0153672
$$209$$ −6.20574 + 13.5135i −0.429260 + 0.934746i
$$210$$ 0 0
$$211$$ −13.7417 5.00157i −0.946017 0.344322i −0.177478 0.984125i $$-0.556794\pi$$
−0.768539 + 0.639803i $$0.779016\pi$$
$$212$$ −1.30066 7.37641i −0.0893297 0.506614i
$$213$$ 5.60813 + 4.70578i 0.384262 + 0.322435i
$$214$$ −2.39440 + 2.00914i −0.163678 + 0.137342i
$$215$$ 0 0
$$216$$ −4.31567 + 7.47497i −0.293644 + 0.508607i
$$217$$ −1.82635 3.16333i −0.123981 0.214741i
$$218$$ 6.08987 2.21653i 0.412458 0.150122i
$$219$$ 3.75877 1.36808i 0.253994 0.0924463i
$$220$$ 0 0
$$221$$ 4.37211 7.57272i 0.294100 0.509396i
$$222$$ 0.0680482 0.385920i 0.00456709 0.0259013i
$$223$$ 2.30928 1.93771i 0.154641 0.129759i −0.562185 0.827012i $$-0.690039\pi$$
0.716825 + 0.697253i $$0.245595\pi$$
$$224$$ −8.11721 6.81115i −0.542354 0.455089i
$$225$$ 0 0
$$226$$ −6.09627 2.21886i −0.405518 0.147596i
$$227$$ 13.7219 0.910757 0.455378 0.890298i $$-0.349504\pi$$
0.455378 + 0.890298i $$0.349504\pi$$
$$228$$ 2.83275 0.264490i 0.187603 0.0175163i
$$229$$ 9.41416 0.622105 0.311053 0.950393i $$-0.399318\pi$$
0.311053 + 0.950393i $$0.399318\pi$$
$$230$$ 0 0
$$231$$ −0.592396 3.35965i −0.0389768 0.221048i
$$232$$ −7.53802 6.32515i −0.494895 0.415266i
$$233$$ 18.5273 15.5463i 1.21377 1.01847i 0.214640 0.976693i $$-0.431142\pi$$
0.999127 0.0417777i $$-0.0133021\pi$$
$$234$$ 2.19506 12.4488i 0.143496 0.813804i
$$235$$ 0 0
$$236$$ −6.59879 11.4294i −0.429545 0.743993i
$$237$$ −3.48158 + 1.26719i −0.226153 + 0.0823130i
$$238$$ −2.56670 + 0.934204i −0.166375 + 0.0605554i
$$239$$ 11.6630 + 20.2009i 0.754415 + 1.30668i 0.945665 + 0.325143i $$0.105413\pi$$
−0.191250 + 0.981541i $$0.561254\pi$$
$$240$$ 0 0
$$241$$ 0.0516892 0.293144i 0.00332960 0.0188831i −0.983098 0.183082i $$-0.941393\pi$$
0.986427 + 0.164199i $$0.0525038\pi$$
$$242$$ −0.429892 + 0.360723i −0.0276345 + 0.0231881i
$$243$$ −9.65317 8.09997i −0.619251 0.519613i
$$244$$ −0.934945 5.30234i −0.0598537 0.339447i
$$245$$ 0 0
$$246$$ −2.10101 −0.133956
$$247$$ −20.8444 + 9.86830i −1.32629 + 0.627905i
$$248$$ 5.51485 0.350193
$$249$$ −1.25624 0.457236i −0.0796112 0.0289761i
$$250$$ 0 0
$$251$$ −12.4081 10.4116i −0.783190 0.657175i 0.160859 0.986977i $$-0.448573\pi$$
−0.944050 + 0.329802i $$0.893018\pi$$
$$252$$ 4.79813 4.02611i 0.302254 0.253621i
$$253$$ −1.04189 + 5.90885i −0.0655030 + 0.371486i
$$254$$ 0.0444153 0.0769295i 0.00278686 0.00482699i
$$255$$ 0 0
$$256$$ 15.1300 5.50687i 0.945625 0.344179i
$$257$$ 14.4290 5.25173i 0.900057 0.327594i 0.149782 0.988719i $$-0.452143\pi$$
0.750276 + 0.661125i $$0.229921\pi$$
$$258$$ 1.12314 + 1.94534i 0.0699237 + 0.121111i
$$259$$ −0.786989 + 1.36310i −0.0489011 + 0.0846992i
$$260$$ 0 0
$$261$$ 7.21760 6.05628i 0.446758 0.374874i
$$262$$ 2.04576 + 1.71660i 0.126387 + 0.106052i
$$263$$ −1.67453 9.49671i −0.103256 0.585592i −0.991903 0.127000i $$-0.959465\pi$$
0.888647 0.458592i $$-0.151646\pi$$
$$264$$ 4.84002 + 1.76162i 0.297883 + 0.108420i
$$265$$ 0 0
$$266$$ 6.96926 + 1.82391i 0.427312 + 0.111831i
$$267$$ 1.21482 0.0743459
$$268$$ −16.3824 5.96270i −1.00071 0.364230i
$$269$$ −3.17412 18.0013i −0.193529 1.09756i −0.914498 0.404591i $$-0.867414\pi$$
0.720969 0.692968i $$-0.243697\pi$$
$$270$$ 0 0
$$271$$ 14.5273 12.1899i 0.882473 0.740483i −0.0842129 0.996448i $$-0.526838\pi$$
0.966686 + 0.255965i $$0.0823932\pi$$
$$272$$ 0.0120217 0.0681784i 0.000728923 0.00413393i
$$273$$ 2.64543 4.58202i 0.160109 0.277316i
$$274$$ −8.59152 14.8809i −0.519033 0.898991i
$$275$$ 0 0
$$276$$ 1.07873 0.392624i 0.0649317 0.0236332i
$$277$$ 6.88191 + 11.9198i 0.413494 + 0.716193i 0.995269 0.0971571i $$-0.0309749\pi$$
−0.581775 + 0.813350i $$0.697642\pi$$
$$278$$ 6.76991 11.7258i 0.406033 0.703269i
$$279$$ −0.916937 + 5.20021i −0.0548956 + 0.311328i
$$280$$ 0 0
$$281$$ 10.0437 + 8.42767i 0.599157 + 0.502752i 0.891175 0.453661i $$-0.149882\pi$$
−0.292018 + 0.956413i $$0.594327\pi$$
$$282$$ −0.0582480 0.330341i −0.00346862 0.0196715i
$$283$$ −16.3293 5.94340i −0.970679 0.353298i −0.192469 0.981303i $$-0.561650\pi$$
−0.778209 + 0.628005i $$0.783872\pi$$
$$284$$ 16.8776 1.00150
$$285$$ 0 0
$$286$$ −15.8726 −0.938565
$$287$$ 7.92989 + 2.88624i 0.468087 + 0.170370i
$$288$$ 2.65998 + 15.0855i 0.156741 + 0.888921i
$$289$$ −10.9304 9.17166i −0.642962 0.539509i
$$290$$ 0 0
$$291$$ −0.168434 + 0.955234i −0.00987375 + 0.0559968i
$$292$$ 4.61081 7.98617i 0.269828 0.467355i
$$293$$ 7.80200 + 13.5135i 0.455798 + 0.789465i 0.998734 0.0503091i $$-0.0160206\pi$$
−0.542936 + 0.839774i $$0.682687\pi$$
$$294$$ 1.52481 0.554987i 0.0889290 0.0323675i
$$295$$ 0 0
$$296$$ −1.18820 2.05802i −0.0690625 0.119620i
$$297$$ −5.18866 + 8.98703i −0.301077 + 0.521480i
$$298$$ 0.575160 3.26189i 0.0333181 0.188956i
$$299$$ −7.12836 + 5.98140i −0.412243 + 0.345913i
$$300$$ 0 0
$$301$$ −1.56670 8.88522i −0.0903033 0.512136i
$$302$$ −12.0617 4.39008i −0.694070 0.252621i
$$303$$ 4.21482 0.242135
$$304$$ −0.128356 + 0.129862i −0.00736170 + 0.00744807i
$$305$$ 0 0
$$306$$ 3.71048 + 1.35051i 0.212114 + 0.0772033i
$$307$$ −3.73695 21.1933i −0.213279 1.20956i −0.883868 0.467736i $$-0.845070\pi$$
0.670589 0.741829i $$-0.266041\pi$$
$$308$$ −6.02481 5.05542i −0.343296 0.288059i
$$309$$ −0.00592979 + 0.00497568i −0.000337334 + 0.000283057i
$$310$$ 0 0
$$311$$ −7.24763 + 12.5533i −0.410975 + 0.711830i −0.994997 0.0999083i $$-0.968145\pi$$
0.584021 + 0.811738i $$0.301478\pi$$
$$312$$ 3.99407 + 6.91793i 0.226120 + 0.391651i
$$313$$ 18.3414 6.67571i 1.03672 0.377334i 0.233081 0.972457i $$-0.425119\pi$$
0.803634 + 0.595124i $$0.202897\pi$$
$$314$$ 8.57310 3.12035i 0.483808 0.176092i
$$315$$ 0 0
$$316$$ −4.27079 + 7.39723i −0.240251 + 0.416127i
$$317$$ −4.92246 + 27.9166i −0.276473 + 1.56795i 0.457772 + 0.889070i $$0.348648\pi$$
−0.734245 + 0.678885i $$0.762464\pi$$
$$318$$ 2.18866 1.83651i 0.122734 0.102986i
$$319$$ −9.06283 7.60462i −0.507421 0.425777i
$$320$$ 0 0
$$321$$ 1.77719 + 0.646844i 0.0991930 + 0.0361033i
$$322$$ 2.90673 0.161986
$$323$$ −1.90508 6.94751i −0.106001 0.386570i
$$324$$ −8.01279 −0.445155
$$325$$ 0 0
$$326$$ −0.308811 1.75135i −0.0171035 0.0969985i
$$327$$ −3.00387 2.52055i −0.166114 0.139387i
$$328$$ −9.76011 + 8.18971i −0.538912 + 0.452201i
$$329$$ −0.233956 + 1.32683i −0.0128984 + 0.0731504i
$$330$$ 0 0
$$331$$ 0.855037 + 1.48097i 0.0469971 + 0.0814014i 0.888567 0.458747i $$-0.151702\pi$$
−0.841570 + 0.540148i $$0.818368\pi$$
$$332$$ −2.89615 + 1.05411i −0.158947 + 0.0578520i
$$333$$ 2.13816 0.778225i 0.117170 0.0426465i
$$334$$ 10.2258 + 17.7116i 0.559531 + 0.969136i
$$335$$ 0 0
$$336$$ 0.00727396 0.0412527i 0.000396827 0.00225052i
$$337$$ −19.4873 + 16.3518i −1.06154 + 0.890737i −0.994259 0.106997i $$-0.965876\pi$$
−0.0672796 + 0.997734i $$0.521432\pi$$
$$338$$ −10.1001 8.47502i −0.549375 0.460980i
$$339$$ 0.681637 + 3.86576i 0.0370215 + 0.209959i
$$340$$ 0 0
$$341$$ 6.63041 0.359057
$$342$$ −6.02300 8.49584i −0.325687 0.459403i
$$343$$ −19.6732 −1.06225
$$344$$ 12.8004 + 4.65895i 0.690149 + 0.251194i
$$345$$ 0 0
$$346$$ 0.604007 + 0.506822i 0.0324716 + 0.0272469i
$$347$$ −5.90033 + 4.95096i −0.316746 + 0.265782i −0.787274 0.616604i $$-0.788508\pi$$
0.470527 + 0.882385i $$0.344064\pi$$
$$348$$ −0.393056 + 2.22913i −0.0210700 + 0.119494i
$$349$$ −11.3785 + 19.7082i −0.609078 + 1.05495i 0.382315 + 0.924032i $$0.375127\pi$$
−0.991393 + 0.130921i $$0.958206\pi$$
$$350$$ 0 0
$$351$$ −15.1236 + 5.50454i −0.807238 + 0.293811i
$$352$$ 18.0744 6.57856i 0.963371 0.350638i
$$353$$ −5.72281 9.91220i −0.304595 0.527573i 0.672576 0.740028i $$-0.265188\pi$$
−0.977171 + 0.212454i $$0.931854\pi$$
$$354$$ 2.51707 4.35970i 0.133781 0.231715i
$$355$$ 0 0
$$356$$ 2.14543 1.80023i 0.113708 0.0954120i
$$357$$ 1.26604 + 1.06234i 0.0670062 + 0.0562249i
$$358$$ 3.25537 + 18.4621i 0.172051 + 0.975752i
$$359$$ −9.75789 3.55158i −0.515002 0.187445i 0.0714274 0.997446i $$-0.477245\pi$$
−0.586429 + 0.810000i $$0.699467\pi$$
$$360$$ 0 0
$$361$$ −6.28968 + 17.9287i −0.331036 + 0.943618i
$$362$$ 14.1575 0.744099
$$363$$ 0.319078 + 0.116135i 0.0167472 + 0.00609550i
$$364$$ −2.11809 12.0123i −0.111018 0.629614i
$$365$$ 0 0
$$366$$ 1.57326 1.32012i 0.0822358 0.0690040i
$$367$$ 5.64930 32.0388i 0.294891 1.67241i −0.372754 0.927930i $$-0.621586\pi$$
0.667645 0.744480i $$-0.267303\pi$$
$$368$$ −0.0368366 + 0.0638029i −0.00192024 + 0.00332596i
$$369$$ −6.09967 10.5649i −0.317536 0.549989i
$$370$$ 0 0
$$371$$ −10.7836 + 3.92490i −0.559856 + 0.203771i
$$372$$ −0.634285 1.09861i −0.0328862 0.0569605i
$$373$$ 15.2429 26.4014i 0.789246 1.36701i −0.137183 0.990546i $$-0.543805\pi$$
0.926429 0.376469i $$-0.122862\pi$$
$$374$$ 0.860967 4.88279i 0.0445195 0.252483i
$$375$$ 0 0
$$376$$ −1.55825 1.30753i −0.0803605 0.0674305i
$$377$$ −3.18614 18.0695i −0.164094 0.930626i
$$378$$ 4.72416 + 1.71945i 0.242984 + 0.0884391i
$$379$$ 17.8598 0.917396 0.458698 0.888592i $$-0.348316\pi$$
0.458698 + 0.888592i $$0.348316\pi$$
$$380$$ 0 0
$$381$$ −0.0537486 −0.00275363
$$382$$ 15.6582 + 5.69913i 0.801144 + 0.291593i
$$383$$ 4.07310 + 23.0997i 0.208126 + 1.18034i 0.892445 + 0.451157i $$0.148988\pi$$
−0.684319 + 0.729183i $$0.739900\pi$$
$$384$$ −2.78905 2.34029i −0.142328 0.119427i
$$385$$ 0 0
$$386$$ 1.97013 11.1732i 0.100277 0.568700i
$$387$$ −6.52141 + 11.2954i −0.331502 + 0.574178i
$$388$$ 1.11809 + 1.93659i 0.0567623 + 0.0983153i
$$389$$ −3.67365 + 1.33710i −0.186261 + 0.0677936i −0.433467 0.901169i $$-0.642710\pi$$
0.247206 + 0.968963i $$0.420488\pi$$
$$390$$ 0 0
$$391$$ −1.45336 2.51730i −0.0734997 0.127305i
$$392$$ 4.92009 8.52185i 0.248502 0.430418i
$$393$$ 0.280592 1.59132i 0.0141540 0.0802714i
$$394$$ −15.6288 + 13.1141i −0.787369 + 0.660681i
$$395$$ 0 0
$$396$$ 1.97431 + 11.1969i 0.0992127 + 0.562663i
$$397$$ 8.41875 + 3.06417i 0.422525 + 0.153786i 0.544527 0.838743i $$-0.316709\pi$$
−0.122002 + 0.992530i $$0.538931\pi$$
$$398$$ −8.10936 −0.406486
$$399$$ −1.15270 4.20372i −0.0577074 0.210449i
$$400$$ 0 0
$$401$$ 1.90508 + 0.693392i 0.0951350 + 0.0346263i 0.389149 0.921175i $$-0.372769\pi$$
−0.294014 + 0.955801i $$0.594991\pi$$
$$402$$ −1.15476 6.54899i −0.0575943 0.326634i
$$403$$ 7.87733 + 6.60986i 0.392398 + 0.329261i
$$404$$ 7.44356 6.24589i 0.370331 0.310745i
$$405$$ 0 0
$$406$$ −2.86571 + 4.96356i −0.142223 + 0.246338i
$$407$$ −1.42855 2.47432i −0.0708105 0.122647i
$$408$$ −2.34477 + 0.853427i −0.116083 + 0.0422509i
$$409$$ 30.2656 11.0158i 1.49654 0.544696i 0.541377 0.840780i $$-0.317903\pi$$
0.955162 + 0.296084i $$0.0956808\pi$$
$$410$$ 0 0
$$411$$ −5.19846 + 9.00400i −0.256421 + 0.444135i
$$412$$ −0.00309887 + 0.0175745i −0.000152670 + 0.000865836i
$$413$$ −15.4893 + 12.9971i −0.762180 + 0.639545i
$$414$$ −3.21894 2.70101i −0.158202 0.132747i
$$415$$ 0 0
$$416$$ 28.0317 + 10.2027i 1.37437 + 0.500228i
$$417$$ −8.19253 −0.401190
$$418$$ −9.19253 + 9.30039i −0.449622 + 0.454897i
$$419$$ −23.2499 −1.13583 −0.567916 0.823086i $$-0.692250\pi$$
−0.567916 + 0.823086i $$0.692250\pi$$
$$420$$ 0 0
$$421$$ 1.12061 + 6.35532i 0.0546154 + 0.309739i 0.999862 0.0166178i $$-0.00528986\pi$$
−0.945246 + 0.326357i $$0.894179\pi$$
$$422$$ −9.85117 8.26611i −0.479547 0.402388i
$$423$$ 1.49201 1.25195i 0.0725440 0.0608717i
$$424$$ 3.00862 17.0627i 0.146111 0.828639i
$$425$$ 0 0
$$426$$ 3.21894 + 5.57537i 0.155958 + 0.270128i
$$427$$ −7.75150 + 2.82131i −0.375121 + 0.136533i
$$428$$ 4.09714 1.49124i 0.198043 0.0720817i
$$429$$ 4.80200 + 8.31731i 0.231843 + 0.401564i
$$430$$ 0 0
$$431$$ −2.43061 + 13.7847i −0.117078 + 0.663984i 0.868622 + 0.495475i $$0.165006\pi$$
−0.985700 + 0.168508i $$0.946105\pi$$
$$432$$ −0.0976108 + 0.0819052i −0.00469630 + 0.00394067i
$$433$$ 21.9800 + 18.4434i 1.05629 + 0.886333i 0.993741 0.111709i $$-0.0356323\pi$$
0.0625499 + 0.998042i $$0.480077\pi$$
$$434$$ −0.557781 3.16333i −0.0267744 0.151845i
$$435$$ 0 0
$$436$$ −9.04013 −0.432944
$$437$$ −0.623608 + 7.64090i −0.0298312 + 0.365514i
$$438$$ 3.51754 0.168075
$$439$$ 12.5376 + 4.56332i 0.598387 + 0.217795i 0.623414 0.781892i $$-0.285745\pi$$
−0.0250271 + 0.999687i $$0.507967\pi$$
$$440$$ 0 0
$$441$$ 7.21760 + 6.05628i 0.343695 + 0.288394i
$$442$$ 5.89053 4.94274i 0.280184 0.235102i
$$443$$ −5.88372 + 33.3682i −0.279544 + 1.58537i 0.444603 + 0.895728i $$0.353345\pi$$
−0.724147 + 0.689646i $$0.757766\pi$$
$$444$$ −0.273318 + 0.473401i −0.0129711 + 0.0224666i
$$445$$ 0 0
$$446$$ 2.49108 0.906678i 0.117956 0.0429324i
$$447$$ −1.88326 + 0.685449i −0.0890749 + 0.0324206i
$$448$$ −4.73783 8.20616i −0.223841 0.387704i
$$449$$ −9.42009 + 16.3161i −0.444562 + 0.770003i −0.998022 0.0628725i $$-0.979974\pi$$
0.553460 + 0.832876i $$0.313307\pi$$
$$450$$ 0 0
$$451$$ −11.7344 + 9.84635i −0.552552 + 0.463646i
$$452$$ 6.93242 + 5.81699i 0.326074 + 0.273608i
$$453$$ 1.34864 + 7.64852i 0.0633647 + 0.359359i
$$454$$ 11.3391 + 4.12711i 0.532172 + 0.193695i
$$455$$ 0 0
$$456$$ 6.36665 + 1.66620i 0.298146 + 0.0780270i
$$457$$ −14.2790 −0.667943 −0.333972 0.942583i $$-0.608389\pi$$
−0.333972 + 0.942583i $$0.608389\pi$$
$$458$$ 7.77941 + 2.83147i 0.363508 + 0.132306i
$$459$$ −0.872989 4.95096i −0.0407476 0.231091i
$$460$$ 0 0
$$461$$ −10.6695 + 8.95280i −0.496930 + 0.416973i −0.856502 0.516144i $$-0.827367\pi$$
0.359572 + 0.933117i $$0.382923\pi$$
$$462$$ 0.520945 2.95442i 0.0242365 0.137452i
$$463$$ −0.881445 + 1.52671i −0.0409642 + 0.0709521i −0.885781 0.464104i $$-0.846376\pi$$
0.844816 + 0.535056i $$0.179710\pi$$
$$464$$ −0.0726338 0.125805i −0.00337194 0.00584037i
$$465$$ 0 0
$$466$$ 19.9859 7.27428i 0.925830 0.336974i
$$467$$ 11.0209 + 19.0888i 0.509988 + 0.883326i 0.999933 + 0.0115724i $$0.00368368\pi$$
−0.489945 + 0.871754i $$0.662983\pi$$
$$468$$ −8.81655 + 15.2707i −0.407545 + 0.705889i
$$469$$ −4.63816 + 26.3043i −0.214170 + 1.21462i
$$470$$ 0 0
$$471$$ −4.22874 3.54834i −0.194850 0.163499i
$$472$$ −5.30113 30.0642i −0.244004 1.38382i
$$473$$ 15.3897 + 5.60138i 0.707617 + 0.257552i
$$474$$ −3.25814 −0.149651
$$475$$ 0 0
$$476$$ 3.81016 0.174638
$$477$$ 15.5890 + 5.67393i 0.713771 + 0.259791i
$$478$$ 3.56196 + 20.2009i 0.162920 + 0.923966i
$$479$$ −19.5012 16.3634i −0.891032 0.747664i 0.0773851 0.997001i $$-0.475343\pi$$
−0.968417 + 0.249337i $$0.919787\pi$$
$$480$$ 0 0
$$481$$ 0.769448 4.36376i 0.0350838 0.198970i
$$482$$ 0.130882 0.226694i 0.00596150 0.0103256i
$$483$$ −0.879385 1.52314i −0.0400134 0.0693053i
$$484$$ 0.735604 0.267738i 0.0334366 0.0121699i
$$485$$ 0 0
$$486$$ −5.54071 9.59679i −0.251332 0.435319i
$$487$$ −11.2554 + 19.4949i −0.510029 + 0.883397i 0.489903 + 0.871777i $$0.337032\pi$$
−0.999932 + 0.0116199i $$0.996301\pi$$
$$488$$ 2.16267 12.2651i 0.0978993 0.555214i
$$489$$ −0.824292 + 0.691663i −0.0372758 + 0.0312781i
$$490$$ 0 0
$$491$$ 2.71482 + 15.3965i 0.122518 + 0.694835i 0.982751 + 0.184934i $$0.0592071\pi$$
−0.860233 + 0.509902i $$0.829682\pi$$
$$492$$ 2.75402 + 1.00238i 0.124161 + 0.0451909i
$$493$$ 5.73143 0.258131
$$494$$ −20.1928 + 1.88538i −0.908519 + 0.0848274i
$$495$$ 0 0
$$496$$ 0.0765042 + 0.0278452i 0.00343514 + 0.00125029i
$$497$$ −4.49020 25.4652i −0.201413 1.14227i
$$498$$ −0.900578 0.755675i −0.0403559 0.0338626i
$$499$$ −21.9217 + 18.3945i −0.981352 + 0.823452i −0.984293 0.176544i $$-0.943508\pi$$
0.00294090 + 0.999996i $$0.499064\pi$$
$$500$$ 0 0
$$501$$ 6.18732 10.7168i 0.276429 0.478789i
$$502$$ −7.12196 12.3356i −0.317869 0.550565i
$$503$$ −23.5351 + 8.56607i −1.04938 + 0.381942i −0.808428 0.588595i $$-0.799681\pi$$
−0.240950 + 0.970538i $$0.577459\pi$$
$$504$$ 13.6147 4.95534i 0.606446 0.220728i
$$505$$ 0 0
$$506$$ −2.63816 + 4.56942i −0.117280 + 0.203135i
$$507$$ −1.38532 + 7.85651i −0.0615240 + 0.348920i
$$508$$ −0.0949225 + 0.0796494i −0.00421150 + 0.00353387i
$$509$$ 25.6787 + 21.5470i 1.13819 + 0.955053i 0.999378 0.0352655i $$-0.0112277\pi$$
0.138810 + 0.990319i $$0.455672\pi$$
$$510$$ 0 0
$$511$$ −13.2763 4.83218i −0.587309 0.213763i
$$512$$ 0.473897 0.0209435
$$513$$ −5.53343 + 12.0495i −0.244307 + 0.531997i
$$514$$ 13.5030 0.595591
$$515$$ 0 0
$$516$$ −0.544111 3.08580i −0.0239531 0.135845i
$$517$$ −1.87346 1.57202i −0.0823945 0.0691372i
$$518$$ −1.06031 + 0.889704i −0.0465872 + 0.0390913i
$$519$$ 0.0828445 0.469834i 0.00363647 0.0206234i
$$520$$ 0 0
$$521$$ 13.7392 + 23.7969i 0.601924 + 1.04256i 0.992530 + 0.122005i $$0.0389323\pi$$
−0.390606 + 0.920558i $$0.627734\pi$$
$$522$$ 7.78581 2.83380i 0.340776 0.124032i
$$523$$ −9.73277 + 3.54244i −0.425584 + 0.154900i −0.545928 0.837832i $$-0.683823\pi$$
0.120343 + 0.992732i $$0.461600\pi$$
$$524$$ −1.86262 3.22615i −0.0813687 0.140935i
$$525$$ 0 0
$$526$$ 1.47255 8.35126i 0.0642064 0.364132i
$$527$$ −2.46064 + 2.06472i −0.107187 + 0.0899406i
$$528$$ 0.0582480 + 0.0488759i 0.00253492 + 0.00212705i
$$529$$ −3.45677 19.6043i −0.150294 0.852361i
$$530$$ 0 0
$$531$$ 29.2303 1.26849
$$532$$ −8.26517 5.71578i −0.358340 0.247811i
$$533$$ −23.7570 −1.02903
$$534$$ 1.00387 + 0.365379i 0.0434417 + 0.0158115i
$$535$$ 0 0
$$536$$ −30.8922 25.9216i −1.33434 1.11964i
$$537$$ 8.68938 7.29125i 0.374974 0.314641i
$$538$$ 2.79127 15.8301i 0.120340 0.682483i
$$539$$ 5.91534 10.2457i 0.254792 0.441313i
$$540$$ 0 0
$$541$$ −2.37211 + 0.863378i −0.101985 + 0.0371195i −0.392509 0.919748i $$-0.628393\pi$$
0.290524 + 0.956868i $$0.406170\pi$$
$$542$$ 15.6710 5.70378i 0.673128 0.244998i
$$543$$ −4.28312 7.41858i −0.183806 0.318362i
$$544$$ −4.65910 + 8.06980i −0.199757 + 0.345990i
$$545$$ 0 0
$$546$$ 3.56418 2.99070i 0.152533 0.127990i
$$547$$ −5.87939 4.93339i −0.251384 0.210937i 0.508384 0.861131i $$-0.330243\pi$$
−0.759768 + 0.650194i $$0.774688\pi$$
$$548$$ 4.16220 + 23.6050i 0.177800 + 1.00836i
$$549$$ 11.2057 + 4.07855i 0.478249 + 0.174068i
$$550$$ 0 0
$$551$$ −12.4329 8.59797i −0.529659 0.366286i
$$552$$ 2.65539 0.113021
$$553$$ 12.2973 + 4.47584i 0.522933 + 0.190332i
$$554$$ 2.10179 + 11.9198i 0.0892963 + 0.506425i
$$555$$ 0 0
$$556$$ −14.4684 + 12.1404i −0.613596 + 0.514868i
$$557$$ −0.565360 + 3.20631i −0.0239551 + 0.135856i −0.994440 0.105307i $$-0.966418\pi$$
0.970485 + 0.241163i $$0.0775287\pi$$
$$558$$ −2.32177 + 4.02142i −0.0982882 + 0.170240i
$$559$$ 12.6998 + 21.9967i 0.537145 + 0.930362i
$$560$$ 0 0
$$561$$ −2.81908 + 1.02606i −0.119022 + 0.0433203i
$$562$$ 5.76486 + 9.98503i 0.243176 + 0.421193i
$$563$$ 2.62954 4.55449i 0.110822 0.191949i −0.805280 0.592895i $$-0.797985\pi$$
0.916102 + 0.400946i $$0.131318\pi$$
$$564$$ −0.0812519 + 0.460802i −0.00342132 + 0.0194033i
$$565$$ 0 0
$$566$$ −11.7062 9.82267i −0.492048 0.412878i
$$567$$ 2.13176 + 12.0898i 0.0895255 + 0.507724i
$$568$$ 36.6860 + 13.3526i 1.53931 + 0.560264i
$$569$$ −29.9564 −1.25584 −0.627918 0.778280i $$-0.716093\pi$$
−0.627918 + 0.778280i $$0.716093\pi$$
$$570$$ 0 0
$$571$$ −16.7101 −0.699295 −0.349647 0.936881i $$-0.613699\pi$$
−0.349647 + 0.936881i $$0.613699\pi$$
$$572$$ 20.8059 + 7.57272i 0.869937 + 0.316631i
$$573$$ −1.75078 9.92917i −0.0731399 0.414797i
$$574$$ 5.68479 + 4.77011i 0.237279 + 0.199100i
$$575$$ 0 0
$$576$$ −2.37867 + 13.4901i −0.0991113 + 0.562088i
$$577$$ −6.84002 + 11.8473i −0.284754 + 0.493208i −0.972549 0.232696i $$-0.925245\pi$$
0.687796 + 0.725904i $$0.258579\pi$$
$$578$$ −6.27379 10.8665i −0.260955 0.451987i
$$579$$ −6.45084 + 2.34791i −0.268088 + 0.0975759i
$$580$$ 0 0
$$581$$ 2.36097 + 4.08931i 0.0979494 + 0.169653i
$$582$$ −0.426489 + 0.738700i −0.0176785 + 0.0306201i
$$583$$ 3.61721 20.5142i 0.149810 0.849612i
$$584$$ 16.3405 13.7113i 0.676174 0.567378i
$$585$$ 0 0
$$586$$ 2.38279 + 13.5135i 0.0984321 + 0.558236i
$$587$$ −22.5872 8.22108i −0.932275 0.339320i −0.169164 0.985588i $$-0.554107\pi$$
−0.763111 + 0.646268i $$0.776329\pi$$
$$588$$ −2.26352 −0.0933459
$$589$$ 8.43511 0.787576i 0.347563 0.0324515i
$$590$$ 0 0
$$591$$ 11.6001 + 4.22210i 0.477166 + 0.173674i
$$592$$ −0.00609191 0.0345490i −0.000250376 0.00141995i
$$593$$ 3.24897 + 2.72621i 0.133419 + 0.111952i 0.707055 0.707158i $$-0.250023\pi$$
−0.573636 + 0.819110i $$0.694468\pi$$
$$594$$ −6.99067 + 5.86587i −0.286831 + 0.240679i
$$595$$ 0 0
$$596$$ −2.31016 + 4.00131i −0.0946276 + 0.163900i
$$597$$ 2.45336 + 4.24935i 0.100409 + 0.173914i
$$598$$ −7.68954 + 2.79876i −0.314449 + 0.114450i
$$599$$ 24.6894 8.98622i 1.00878 0.367167i 0.215818 0.976434i $$-0.430758\pi$$
0.792965 + 0.609267i $$0.208536\pi$$
$$600$$ 0 0
$$601$$ 21.1197 36.5805i 0.861492 1.49215i −0.00899659 0.999960i $$-0.502864\pi$$
0.870489 0.492188i $$-0.163803\pi$$
$$602$$ 1.37774 7.81353i 0.0561523 0.318456i
$$603$$ 29.5790 24.8198i 1.20455 1.01074i
$$604$$ 13.7160 + 11.5091i 0.558096 + 0.468298i
$$605$$ 0 0
$$606$$ 3.48293 + 1.26768i 0.141484 + 0.0514960i
$$607$$ 22.0969 0.896885 0.448443 0.893812i $$-0.351979\pi$$
0.448443 + 0.893812i $$0.351979\pi$$
$$608$$ 22.2126 10.5161i 0.900840 0.426483i
$$609$$ 3.46791 0.140527
$$610$$ 0 0
$$611$$ −0.658633 3.73530i −0.0266455 0.151114i
$$612$$ −4.21941 3.54050i −0.170559 0.143116i
$$613$$ −5.49794 + 4.61332i −0.222060 + 0.186330i −0.747030 0.664790i $$-0.768521\pi$$
0.524970 + 0.851121i $$0.324076\pi$$
$$614$$ 3.28622 18.6371i 0.132621 0.752131i
$$615$$ 0 0
$$616$$ −9.09627 15.7552i −0.366499 0.634795i
$$617$$ −46.3953 + 16.8865i −1.86781 + 0.679826i −0.895995 + 0.444065i $$0.853536\pi$$
−0.971811 + 0.235761i $$0.924242\pi$$
$$618$$ −0.00639661 + 0.00232818i −0.000257310 + 9.36530e-5i
$$619$$ −13.2490 22.9479i −0.532521 0.922354i −0.999279 0.0379684i $$-0.987911\pi$$
0.466758 0.884385i $$-0.345422\pi$$
$$620$$ 0 0
$$621$$ −0.929015 + 5.26871i −0.0372801 + 0.211426i
$$622$$ −9.76470 + 8.19356i −0.391529 + 0.328532i
$$623$$ −3.28699 2.75811i −0.131690 0.110501i
$$624$$ 0.0204777 + 0.116135i 0.000819764 + 0.00464911i
$$625$$ 0 0
$$626$$ 17.1643 0.686022
$$627$$ 7.65451 + 2.00324i 0.305692 + 0.0800019i
$$628$$ −12.7264 −0.507838
$$629$$ 1.30066 + 0.473401i 0.0518607 + 0.0188757i
$$630$$ 0 0
$$631$$ 25.5253 + 21.4183i 1.01615 + 0.852647i 0.989138 0.146988i $$-0.0469579\pi$$
0.0270071 + 0.999635i $$0.491402\pi$$
$$632$$ −15.1355 + 12.7002i −0.602057 + 0.505185i
$$633$$ −1.35117 + 7.66285i −0.0537041 + 0.304571i
$$634$$ −12.4641 + 21.5884i −0.495013 + 0.857387i
$$635$$ 0 0
$$636$$ −3.74510 + 1.36310i −0.148503 + 0.0540506i
$$637$$ 17.2417 6.27546i 0.683141 0.248643i
$$638$$ −5.20187 9.00990i −0.205944 0.356705i
$$639$$ −18.6905 + 32.3729i −0.739384 + 1.28065i
$$640$$ 0 0
$$641$$ −0.104256 + 0.0874810i −0.00411786 + 0.00345529i −0.644844 0.764314i $$-0.723078\pi$$
0.640726 + 0.767769i $$0.278633\pi$$
$$642$$ 1.27403 + 1.06904i 0.0502821 + 0.0421917i
$$643$$ −8.36602 47.4461i −0.329924 1.87109i −0.472536 0.881311i $$-0.656661\pi$$
0.142613 0.989779i $$-0.454450\pi$$
$$644$$ −3.81016 1.38678i −0.150141 0.0546469i
$$645$$ 0 0
$$646$$ 0.515319 6.31407i 0.0202750 0.248424i
$$647$$ 36.9718 1.45351 0.726756 0.686895i $$-0.241027\pi$$
0.726756 + 0.686895i $$0.241027\pi$$
$$648$$ −17.4170 6.33927i −0.684204 0.249030i
$$649$$ −6.37346 36.1457i −0.250180 1.41884i
$$650$$ 0 0
$$651$$ −1.48886 + 1.24930i −0.0583529 + 0.0489639i
$$652$$ −0.430770 + 2.44302i −0.0168702 + 0.0956759i
$$653$$ 13.5000 23.3827i 0.528296 0.915035i −0.471160 0.882048i $$-0.656165\pi$$
0.999456 0.0329874i $$-0.0105021\pi$$
$$654$$ −1.72416 2.98632i −0.0674198 0.116775i
$$655$$ 0 0
$$656$$ −0.176747 + 0.0643307i −0.00690081 + 0.00251169i
$$657$$ 10.2121 + 17.6879i 0.398413 + 0.690072i
$$658$$ −0.592396 + 1.02606i −0.0230940 + 0.0400000i
$$659$$ 3.27760 18.5882i 0.127677 0.724093i −0.852005 0.523534i $$-0.824613\pi$$
0.979682 0.200559i $$-0.0642757\pi$$
$$660$$ 0 0
$$661$$ −23.4500 19.6769i −0.912098 0.765341i 0.0604192 0.998173i $$-0.480756\pi$$
−0.972517 + 0.232832i $$0.925201\pi$$
$$662$$ 0.261135 + 1.48097i 0.0101493 + 0.0575594i
$$663$$ −4.37211 1.59132i −0.169799 0.0618017i
$$664$$ −7.12918 −0.276666
$$665$$ 0 0
$$666$$ 2.00093 0.0775346
$$667$$ −5.73143 2.08607i −0.221922 0.0807729i
$$668$$ −4.95394 28.0952i −0.191674 1.08703i
$$669$$ −1.22874 1.03104i −0.0475059 0.0398622i
$$670$$ 0 0
$$671$$ 2.60014 14.7461i 0.100377 0.569267i
$$672$$ −2.81908 + 4.88279i −0.108748 + 0.188358i
$$673$$ 5.95471 + 10.3139i 0.229537 + 0.397570i 0.957671 0.287865i $$-0.0929454\pi$$
−0.728134 + 0.685435i $$0.759612\pi$$
$$674$$ −21.0214 + 7.65117i −0.809715 + 0.294712i
$$675$$ 0 0
$$676$$ 9.19594 + 15.9278i 0.353690 + 0.612609i
$$677$$ 2.89053 5.00654i 0.111092 0.192417i −0.805119 0.593114i $$-0.797898\pi$$
0.916211 + 0.400696i $$0.131232\pi$$
$$678$$ −0.599422 + 3.39949i −0.0230207 + 0.130557i
$$679$$ 2.62449 2.20220i 0.100718 0.0845129i
$$680$$ 0 0
$$681$$ −1.26786 7.19037i −0.0485843 0.275535i
$$682$$ 5.47906 + 1.99421i 0.209804 + 0.0763624i
$$683$$ −21.0496 −0.805442 −0.402721 0.915323i $$-0.631935\pi$$
−0.402721 + 0.915323i $$0.631935\pi$$
$$684$$ 3.84167 + 14.0099i 0.146890 + 0.535684i
$$685$$ 0 0
$$686$$ −16.2570 5.91707i −0.620696 0.225915i
$$687$$ −0.869833 4.93307i −0.0331862 0.188208i
$$688$$ 0.154048 + 0.129261i 0.00587302 + 0.00492805i
$$689$$ 24.7481 20.7661i 0.942827 0.791126i
$$690$$ 0 0
$$691$$ 16.4688 28.5249i 0.626504 1.08514i −0.361744 0.932278i $$-0.617818\pi$$
0.988248 0.152860i $$-0.0488483\pi$$
$$692$$ −0.549935 0.952515i −0.0209054 0.0362092i
$$693$$ 16.3687 5.95772i 0.621796 0.226315i
$$694$$ −6.36484 + 2.31661i −0.241606 + 0.0879374i
$$695$$ 0 0
$$696$$ −2.61793 + 4.53438i −0.0992322 + 0.171875i
$$697$$ 1.28864 7.30823i 0.0488106 0.276819i
$$698$$ −15.3302 + 12.8636i −0.580257 + 0.486894i
$$699$$ −9.85819 8.27201i −0.372871 0.312876i
$$700$$ 0 0
$$701$$ −20.0694 7.30466i −0.758010 0.275893i −0.0660380 0.997817i $$-0.521036\pi$$
−0.691973 + 0.721924i $$0.743258\pi$$
$$702$$ −14.1530 −0.534171
$$703$$ −2.11128 2.97810i −0.0796285 0.112321i
$$704$$ 17.2003 0.648260
$$705$$ 0 0
$$706$$ −1.74779 9.91220i −0.0657789 0.373051i
$$707$$ −11.4042 9.56926i −0.428899 0.359889i
$$708$$ −5.37939 + 4.51384i −0.202170 + 0.169641i
$$709$$ −2.73854 + 15.5310i −0.102848 + 0.583280i 0.889210 + 0.457499i $$0.151255\pi$$
−0.992058 + 0.125781i $$0.959856\pi$$
$$710$$ 0 0
$$711$$ −9.45904 16.3835i −0.354742 0.614431i
$$712$$ 6.08765 2.21572i 0.228144 0.0830377i
$$713$$ 3.21213 1.16912i 0.120295 0.0437839i
$$714$$ 0.726682 + 1.25865i 0.0271954 + 0.0471038i
$$715$$ 0 0
$$716$$ 4.54101 25.7534i 0.169706 0.962448i
$$717$$ 9.50774 7.97794i 0.355073 0.297942i
$$718$$ −6.99525 5.86971i −0.261060 0.219056i
$$719$$ −6.13470 34.7916i −0.228786 1.29751i −0.855314 0.518109i $$-0.826636\pi$$
0.626529 0.779398i $$-0.284475\pi$$
$$720$$ 0 0
$$721$$ 0.0273411 0.00101824
$$722$$ −10.5899 + 12.9237i −0.394114 + 0.480971i
$$723$$ −0.158385 −0.00589040
$$724$$ −18.5577 6.75444i −0.689691 0.251027i
$$725$$ 0 0
$$726$$ 0.228741 + 0.191936i 0.00848937 + 0.00712343i
$$727$$ −30.9647 + 25.9825i −1.14842 + 0.963637i −0.999681 0.0252396i $$-0.991965\pi$$
−0.148737 + 0.988877i $$0.547521\pi$$
$$728$$ 4.89945 27.7862i 0.181586 1.02982i
$$729$$ 6.44562 11.1641i 0.238727 0.413487i
$$730$$ 0 0
$$731$$ −7.45558 + 2.71361i −0.275755 + 0.100367i
$$732$$ −2.69207 + 0.979832i −0.0995016 + 0.0362156i
$$733$$ −18.1382 31.4162i −0.669948 1.16038i −0.977918 0.208988i $$-0.932983\pi$$
0.307970 0.951396i $$-0.400350\pi$$
$$734$$ 14.3045 24.7762i 0.527990 0.914505i
$$735$$ 0 0
$$736$$ 7.59627 6.37402i 0.280002 0.234950i
$$737$$ −37.1411 31.1651i −1.36811 1.14798i
$$738$$ −1.86288 10.5649i −0.0685737 0.388901i
$$739$$ 19.4290 + 7.07158i 0.714708 + 0.260132i 0.673677 0.739026i $$-0.264714\pi$$
0.0410304 + 0.999158i $$0.486936\pi$$
$$740$$ 0 0
$$741$$ 7.09698 + 10.0108i 0.260714 + 0.367754i
$$742$$ −10.0915 −0.370471
$$743$$ 6.29978 + 2.29293i 0.231117 + 0.0841196i 0.454982 0.890500i $$-0.349646\pi$$
−0.223866 + 0.974620i $$0.571868\pi$$
$$744$$ −0.509552 2.88981i −0.0186811 0.105946i
$$745$$ 0 0
$$746$$ 20.5367 17.2323i 0.751901 0.630920i
$$747$$ 1.18535 6.72243i 0.0433695 0.245961i
$$748$$ −3.45811 + 5.98962i −0.126441 + 0.219002i
$$749$$ −3.34002 5.78509i −0.122042 0.211383i
$$750$$ 0 0
$$751$$ −10.0617 + 3.66214i −0.367155 + 0.133633i −0.519007 0.854770i $$-0.673698\pi$$
0.151853 + 0.988403i $$0.451476\pi$$
$$752$$ −0.0150147 0.0260063i −0.000547531 0.000948352i
$$753$$ −4.30928 + 7.46389i −0.157039 + 0.271999i
$$754$$ 2.80184 15.8900i 0.102037 0.578681i
$$755$$ 0 0
$$756$$ −5.37211 4.50774i −0.195382 0.163945i
$$757$$ 0.705432 + 4.00071i 0.0256394 + 0.145408i 0.994940 0.100470i $$-0.0320347\pi$$
−0.969301 + 0.245878i $$0.920924\pi$$
$$758$$ 14.7585 + 5.37164i 0.536052 + 0.195107i
$$759$$ 3.19253 0.115882
$$760$$ 0 0
$$761$$ −11.0077 −0.399030 −0.199515 0.979895i $$-0.563937\pi$$
−0.199515 + 0.979895i $$0.563937\pi$$
$$762$$ −0.0444153 0.0161658i −0.00160900 0.000585627i
$$763$$ 2.40508 + 13.6399i 0.0870697 + 0.493797i
$$764$$ −17.8059 14.9409i −0.644194 0.540543i
$$765$$ 0 0
$$766$$ −3.58182 + 20.3135i −0.129417 + 0.733958i
$$767$$ 28.4616 49.2969i 1.02769 1.78001i
$$768$$ −4.28359 7.41939i −0.154571 0.267724i
$$769$$ −20.0599 + 7.30121i −0.723378 + 0.263288i −0.677359 0.735652i $$-0.736876\pi$$
−0.0460191 + 0.998941i $$0.514654\pi$$
$$770$$ 0 0
$$771$$ −4.08512 7.07564i −0.147122 0.254823i
$$772$$ −7.91312 + 13.7059i −0.284800 + 0.493287i
$$773$$ −3.11128 + 17.6450i −0.111905 + 0.634645i 0.876331 + 0.481709i $$0.159984\pi$$
−0.988236 + 0.152936i $$0.951127\pi$$
$$774$$ −8.78627 + 7.37256i −0.315816 + 0.265001i
$$775$$ 0 0
$$776$$ 0.898214 + 5.09403i 0.0322440 + 0.182865i
$$777$$ 0.786989 + 0.286441i 0.0282331 + 0.0102760i
$$778$$ −3.43788 −0.123254