Properties

Label 475.2.j.d.49.7
Level $475$
Weight $2$
Character 475.49
Analytic conductor $3.793$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(49,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.7
Character \(\chi\) \(=\) 475.49
Dual form 475.2.j.d.349.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.269427 + 0.155554i) q^{2} +(-0.891863 - 0.514917i) q^{3} +(-0.951606 - 1.64823i) q^{4} +(-0.160195 - 0.277466i) q^{6} +3.28038i q^{7} -1.21432i q^{8} +(-0.969720 - 1.67960i) q^{9} -5.16792 q^{11} +1.95999i q^{12} +(3.06115 - 1.76735i) q^{13} +(-0.510276 + 0.883825i) q^{14} +(-1.71432 + 2.96929i) q^{16} +(-0.874064 - 0.504641i) q^{17} -0.603375i q^{18} +(-2.42346 + 3.62310i) q^{19} +(1.68913 - 2.92565i) q^{21} +(-1.39238 - 0.803890i) q^{22} +(-6.63680 + 3.83176i) q^{23} +(-0.625274 + 1.08301i) q^{24} +1.09968 q^{26} +5.08681i q^{27} +(5.40683 - 3.12163i) q^{28} +(-2.01303 - 3.48667i) q^{29} -4.60077 q^{31} +(-3.02703 + 1.74766i) q^{32} +(4.60908 + 2.66105i) q^{33} +(-0.156998 - 0.271928i) q^{34} +(-1.84558 + 3.19664i) q^{36} +6.48831i q^{37} +(-1.21653 + 0.599183i) q^{38} -3.64017 q^{39} +(3.40277 - 5.89377i) q^{41} +(0.910193 - 0.525500i) q^{42} +(-5.46481 - 3.15511i) q^{43} +(4.91782 + 8.51792i) q^{44} -2.38418 q^{46} +(3.32690 - 1.92079i) q^{47} +(3.05788 - 1.76547i) q^{48} -3.76091 q^{49} +(0.519697 + 0.900141i) q^{51} +(-5.82601 - 3.36365i) q^{52} +(-6.16516 + 3.55946i) q^{53} +(-0.791273 + 1.37052i) q^{54} +3.98343 q^{56} +(4.02699 - 1.98343i) q^{57} -1.25254i q^{58} +(6.73649 - 11.6679i) q^{59} +(-3.06850 - 5.31480i) q^{61} +(-1.23957 - 0.715668i) q^{62} +(5.50975 - 3.18105i) q^{63} +5.76986 q^{64} +(0.827874 + 1.43392i) q^{66} +(9.69770 - 5.59897i) q^{67} +1.92088i q^{68} +7.89215 q^{69} +(0.227702 - 0.394391i) q^{71} +(-2.03958 + 1.17755i) q^{72} +(-3.57999 - 2.06691i) q^{73} +(-1.00928 + 1.74813i) q^{74} +(8.27788 + 0.546653i) q^{76} -16.9528i q^{77} +(-0.980760 - 0.566242i) q^{78} +(1.44414 - 2.50132i) q^{79} +(-0.289876 + 0.502080i) q^{81} +(1.83360 - 1.05863i) q^{82} -5.50061i q^{83} -6.42953 q^{84} +(-0.981579 - 1.70014i) q^{86} +4.14617i q^{87} +6.27551i q^{88} +(-3.56433 - 6.17360i) q^{89} +(5.79760 + 10.0417i) q^{91} +(12.6312 + 7.29264i) q^{92} +(4.10326 + 2.36902i) q^{93} +1.19514 q^{94} +3.59960 q^{96} +(-9.37476 - 5.41252i) q^{97} +(-1.01329 - 0.585025i) q^{98} +(5.01144 + 8.68006i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} + 2 q^{6} + 14 q^{9} - 4 q^{11} - 12 q^{14} + 12 q^{16} + 12 q^{19} - 6 q^{21} + 22 q^{24} + 76 q^{26} + 6 q^{29} - 12 q^{31} - 2 q^{34} - 26 q^{36} - 32 q^{39} - 22 q^{41} + 42 q^{44} - 48 q^{46}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.269427 + 0.155554i 0.190514 + 0.109993i 0.592223 0.805774i \(-0.298250\pi\)
−0.401709 + 0.915767i \(0.631584\pi\)
\(3\) −0.891863 0.514917i −0.514917 0.297288i 0.219935 0.975514i \(-0.429415\pi\)
−0.734853 + 0.678227i \(0.762749\pi\)
\(4\) −0.951606 1.64823i −0.475803 0.824115i
\(5\) 0 0
\(6\) −0.160195 0.277466i −0.0653993 0.113275i
\(7\) 3.28038i 1.23987i 0.784654 + 0.619934i \(0.212841\pi\)
−0.784654 + 0.619934i \(0.787159\pi\)
\(8\) 1.21432i 0.429327i
\(9\) −0.969720 1.67960i −0.323240 0.559868i
\(10\) 0 0
\(11\) −5.16792 −1.55819 −0.779093 0.626908i \(-0.784320\pi\)
−0.779093 + 0.626908i \(0.784320\pi\)
\(12\) 1.95999i 0.565801i
\(13\) 3.06115 1.76735i 0.849010 0.490176i −0.0113069 0.999936i \(-0.503599\pi\)
0.860317 + 0.509760i \(0.170266\pi\)
\(14\) −0.510276 + 0.883825i −0.136377 + 0.236212i
\(15\) 0 0
\(16\) −1.71432 + 2.96929i −0.428580 + 0.742322i
\(17\) −0.874064 0.504641i −0.211992 0.122393i 0.390245 0.920711i \(-0.372390\pi\)
−0.602237 + 0.798318i \(0.705724\pi\)
\(18\) 0.603375i 0.142217i
\(19\) −2.42346 + 3.62310i −0.555979 + 0.831196i
\(20\) 0 0
\(21\) 1.68913 2.92565i 0.368598 0.638430i
\(22\) −1.39238 0.803890i −0.296856 0.171390i
\(23\) −6.63680 + 3.83176i −1.38387 + 0.798976i −0.992615 0.121307i \(-0.961291\pi\)
−0.391253 + 0.920283i \(0.627958\pi\)
\(24\) −0.625274 + 1.08301i −0.127634 + 0.221068i
\(25\) 0 0
\(26\) 1.09968 0.215664
\(27\) 5.08681i 0.978956i
\(28\) 5.40683 3.12163i 1.02179 0.589933i
\(29\) −2.01303 3.48667i −0.373810 0.647458i 0.616338 0.787482i \(-0.288615\pi\)
−0.990148 + 0.140024i \(0.955282\pi\)
\(30\) 0 0
\(31\) −4.60077 −0.826323 −0.413162 0.910658i \(-0.635576\pi\)
−0.413162 + 0.910658i \(0.635576\pi\)
\(32\) −3.02703 + 1.74766i −0.535109 + 0.308945i
\(33\) 4.60908 + 2.66105i 0.802337 + 0.463230i
\(34\) −0.156998 0.271928i −0.0269249 0.0466353i
\(35\) 0 0
\(36\) −1.84558 + 3.19664i −0.307597 + 0.532774i
\(37\) 6.48831i 1.06667i 0.845904 + 0.533336i \(0.179062\pi\)
−0.845904 + 0.533336i \(0.820938\pi\)
\(38\) −1.21653 + 0.599183i −0.197348 + 0.0972004i
\(39\) −3.64017 −0.582893
\(40\) 0 0
\(41\) 3.40277 5.89377i 0.531423 0.920451i −0.467904 0.883779i \(-0.654991\pi\)
0.999327 0.0366724i \(-0.0116758\pi\)
\(42\) 0.910193 0.525500i 0.140446 0.0810865i
\(43\) −5.46481 3.15511i −0.833376 0.481150i 0.0216315 0.999766i \(-0.493114\pi\)
−0.855007 + 0.518616i \(0.826447\pi\)
\(44\) 4.91782 + 8.51792i 0.741390 + 1.28412i
\(45\) 0 0
\(46\) −2.38418 −0.351528
\(47\) 3.32690 1.92079i 0.485278 0.280175i −0.237335 0.971428i \(-0.576274\pi\)
0.722613 + 0.691252i \(0.242941\pi\)
\(48\) 3.05788 1.76547i 0.441366 0.254823i
\(49\) −3.76091 −0.537273
\(50\) 0 0
\(51\) 0.519697 + 0.900141i 0.0727721 + 0.126045i
\(52\) −5.82601 3.36365i −0.807923 0.466454i
\(53\) −6.16516 + 3.55946i −0.846850 + 0.488929i −0.859587 0.510990i \(-0.829279\pi\)
0.0127367 + 0.999919i \(0.495946\pi\)
\(54\) −0.791273 + 1.37052i −0.107679 + 0.186505i
\(55\) 0 0
\(56\) 3.98343 0.532309
\(57\) 4.02699 1.98343i 0.533388 0.262711i
\(58\) 1.25254i 0.164466i
\(59\) 6.73649 11.6679i 0.877016 1.51904i 0.0224174 0.999749i \(-0.492864\pi\)
0.854599 0.519288i \(-0.173803\pi\)
\(60\) 0 0
\(61\) −3.06850 5.31480i −0.392881 0.680491i 0.599947 0.800040i \(-0.295188\pi\)
−0.992828 + 0.119549i \(0.961855\pi\)
\(62\) −1.23957 0.715668i −0.157426 0.0908899i
\(63\) 5.50975 3.18105i 0.694163 0.400775i
\(64\) 5.76986 0.721232
\(65\) 0 0
\(66\) 0.827874 + 1.43392i 0.101904 + 0.176503i
\(67\) 9.69770 5.59897i 1.18476 0.684023i 0.227652 0.973743i \(-0.426895\pi\)
0.957112 + 0.289719i \(0.0935620\pi\)
\(68\) 1.92088i 0.232941i
\(69\) 7.89215 0.950103
\(70\) 0 0
\(71\) 0.227702 0.394391i 0.0270233 0.0468056i −0.852198 0.523220i \(-0.824731\pi\)
0.879221 + 0.476415i \(0.158064\pi\)
\(72\) −2.03958 + 1.17755i −0.240367 + 0.138776i
\(73\) −3.57999 2.06691i −0.419007 0.241914i 0.275646 0.961259i \(-0.411108\pi\)
−0.694652 + 0.719346i \(0.744442\pi\)
\(74\) −1.00928 + 1.74813i −0.117327 + 0.203216i
\(75\) 0 0
\(76\) 8.27788 + 0.546653i 0.949538 + 0.0627054i
\(77\) 16.9528i 1.93195i
\(78\) −0.980760 0.566242i −0.111049 0.0641143i
\(79\) 1.44414 2.50132i 0.162478 0.281421i −0.773278 0.634067i \(-0.781385\pi\)
0.935757 + 0.352646i \(0.114718\pi\)
\(80\) 0 0
\(81\) −0.289876 + 0.502080i −0.0322085 + 0.0557867i
\(82\) 1.83360 1.05863i 0.202487 0.116906i
\(83\) 5.50061i 0.603770i −0.953344 0.301885i \(-0.902384\pi\)
0.953344 0.301885i \(-0.0976159\pi\)
\(84\) −6.42953 −0.701519
\(85\) 0 0
\(86\) −0.981579 1.70014i −0.105846 0.183331i
\(87\) 4.14617i 0.444516i
\(88\) 6.27551i 0.668971i
\(89\) −3.56433 6.17360i −0.377818 0.654400i 0.612926 0.790140i \(-0.289992\pi\)
−0.990745 + 0.135740i \(0.956659\pi\)
\(90\) 0 0
\(91\) 5.79760 + 10.0417i 0.607754 + 1.05266i
\(92\) 12.6312 + 7.29264i 1.31690 + 0.760311i
\(93\) 4.10326 + 2.36902i 0.425488 + 0.245656i
\(94\) 1.19514 0.123270
\(95\) 0 0
\(96\) 3.59960 0.367382
\(97\) −9.37476 5.41252i −0.951862 0.549558i −0.0582034 0.998305i \(-0.518537\pi\)
−0.893659 + 0.448747i \(0.851871\pi\)
\(98\) −1.01329 0.585025i −0.102358 0.0590964i
\(99\) 5.01144 + 8.68006i 0.503668 + 0.872379i
\(100\) 0 0
\(101\) 3.09011 + 5.35223i 0.307478 + 0.532567i 0.977810 0.209494i \(-0.0671818\pi\)
−0.670332 + 0.742061i \(0.733848\pi\)
\(102\) 0.323363i 0.0320177i
\(103\) 18.3217i 1.80529i 0.430387 + 0.902644i \(0.358377\pi\)
−0.430387 + 0.902644i \(0.641623\pi\)
\(104\) −2.14613 3.71721i −0.210446 0.364503i
\(105\) 0 0
\(106\) −2.21475 −0.215116
\(107\) 8.73445i 0.844391i −0.906505 0.422196i \(-0.861260\pi\)
0.906505 0.422196i \(-0.138740\pi\)
\(108\) 8.38423 4.84064i 0.806773 0.465790i
\(109\) −3.04839 + 5.27997i −0.291983 + 0.505730i −0.974279 0.225347i \(-0.927648\pi\)
0.682295 + 0.731077i \(0.260982\pi\)
\(110\) 0 0
\(111\) 3.34094 5.78668i 0.317108 0.549248i
\(112\) −9.74041 5.62363i −0.920382 0.531383i
\(113\) 10.3443i 0.973111i 0.873650 + 0.486556i \(0.161747\pi\)
−0.873650 + 0.486556i \(0.838253\pi\)
\(114\) 1.39351 + 0.0920244i 0.130514 + 0.00861887i
\(115\) 0 0
\(116\) −3.83122 + 6.63587i −0.355720 + 0.616125i
\(117\) −5.93692 3.42768i −0.548868 0.316889i
\(118\) 3.62999 2.09578i 0.334168 0.192932i
\(119\) 1.65542 2.86726i 0.151752 0.262842i
\(120\) 0 0
\(121\) 15.7074 1.42794
\(122\) 1.90927i 0.172857i
\(123\) −6.06960 + 3.50429i −0.547278 + 0.315971i
\(124\) 4.37812 + 7.58313i 0.393167 + 0.680985i
\(125\) 0 0
\(126\) 1.97930 0.176330
\(127\) −2.91602 + 1.68356i −0.258755 + 0.149392i −0.623766 0.781611i \(-0.714398\pi\)
0.365012 + 0.931003i \(0.381065\pi\)
\(128\) 7.60862 + 4.39284i 0.672514 + 0.388276i
\(129\) 3.24924 + 5.62785i 0.286080 + 0.495504i
\(130\) 0 0
\(131\) −1.21089 + 2.09732i −0.105796 + 0.183244i −0.914063 0.405572i \(-0.867072\pi\)
0.808267 + 0.588816i \(0.200406\pi\)
\(132\) 10.1291i 0.881624i
\(133\) −11.8852 7.94987i −1.03057 0.689341i
\(134\) 3.48377 0.300952
\(135\) 0 0
\(136\) −0.612795 + 1.06139i −0.0525468 + 0.0910137i
\(137\) 9.97584 5.75955i 0.852293 0.492072i −0.00913057 0.999958i \(-0.502906\pi\)
0.861424 + 0.507886i \(0.169573\pi\)
\(138\) 2.12636 + 1.22765i 0.181008 + 0.104505i
\(139\) 3.53776 + 6.12759i 0.300069 + 0.519735i 0.976151 0.217091i \(-0.0696569\pi\)
−0.676082 + 0.736826i \(0.736324\pi\)
\(140\) 0 0
\(141\) −3.95618 −0.333171
\(142\) 0.122698 0.0708399i 0.0102966 0.00594475i
\(143\) −15.8198 + 9.13355i −1.32292 + 0.763785i
\(144\) 6.64964 0.554137
\(145\) 0 0
\(146\) −0.643032 1.11376i −0.0532177 0.0921758i
\(147\) 3.35422 + 1.93656i 0.276651 + 0.159725i
\(148\) 10.6942 6.17431i 0.879060 0.507525i
\(149\) 6.37476 11.0414i 0.522240 0.904547i −0.477425 0.878673i \(-0.658430\pi\)
0.999665 0.0258744i \(-0.00823700\pi\)
\(150\) 0 0
\(151\) −19.6361 −1.59797 −0.798983 0.601353i \(-0.794628\pi\)
−0.798983 + 0.601353i \(0.794628\pi\)
\(152\) 4.39960 + 2.94285i 0.356855 + 0.238697i
\(153\) 1.95744i 0.158250i
\(154\) 2.63707 4.56753i 0.212501 0.368062i
\(155\) 0 0
\(156\) 3.46400 + 5.99983i 0.277342 + 0.480371i
\(157\) 2.67159 + 1.54244i 0.213216 + 0.123101i 0.602805 0.797888i \(-0.294050\pi\)
−0.389589 + 0.920989i \(0.627383\pi\)
\(158\) 0.778182 0.449283i 0.0619088 0.0357431i
\(159\) 7.33131 0.581410
\(160\) 0 0
\(161\) −12.5696 21.7712i −0.990625 1.71581i
\(162\) −0.156201 + 0.0901827i −0.0122723 + 0.00708542i
\(163\) 22.4721i 1.76015i −0.474831 0.880077i \(-0.657491\pi\)
0.474831 0.880077i \(-0.342509\pi\)
\(164\) −12.9524 −1.01141
\(165\) 0 0
\(166\) 0.855642 1.48201i 0.0664107 0.115027i
\(167\) −9.12769 + 5.26987i −0.706322 + 0.407795i −0.809698 0.586847i \(-0.800369\pi\)
0.103376 + 0.994642i \(0.467036\pi\)
\(168\) −3.55268 2.05114i −0.274095 0.158249i
\(169\) −0.252915 + 0.438062i −0.0194550 + 0.0336970i
\(170\) 0 0
\(171\) 8.43545 + 0.557059i 0.645075 + 0.0425994i
\(172\) 12.0097i 0.915730i
\(173\) −19.8650 11.4691i −1.51031 0.871977i −0.999928 0.0120281i \(-0.996171\pi\)
−0.510380 0.859949i \(-0.670495\pi\)
\(174\) −0.644953 + 1.11709i −0.0488938 + 0.0846865i
\(175\) 0 0
\(176\) 8.85947 15.3450i 0.667807 1.15668i
\(177\) −12.0161 + 6.93747i −0.903182 + 0.521452i
\(178\) 2.21778i 0.166230i
\(179\) −23.2705 −1.73932 −0.869661 0.493649i \(-0.835663\pi\)
−0.869661 + 0.493649i \(0.835663\pi\)
\(180\) 0 0
\(181\) 7.98346 + 13.8278i 0.593406 + 1.02781i 0.993770 + 0.111453i \(0.0355503\pi\)
−0.400364 + 0.916356i \(0.631116\pi\)
\(182\) 3.60736i 0.267395i
\(183\) 6.32010i 0.467195i
\(184\) 4.65298 + 8.05919i 0.343022 + 0.594132i
\(185\) 0 0
\(186\) 0.737020 + 1.27656i 0.0540409 + 0.0936016i
\(187\) 4.51709 + 2.60794i 0.330322 + 0.190712i
\(188\) −6.33179 3.65566i −0.461793 0.266617i
\(189\) −16.6867 −1.21378
\(190\) 0 0
\(191\) −2.44600 −0.176986 −0.0884930 0.996077i \(-0.528205\pi\)
−0.0884930 + 0.996077i \(0.528205\pi\)
\(192\) −5.14592 2.97100i −0.371375 0.214413i
\(193\) 16.4940 + 9.52280i 1.18726 + 0.685466i 0.957683 0.287824i \(-0.0929317\pi\)
0.229579 + 0.973290i \(0.426265\pi\)
\(194\) −1.68388 2.91656i −0.120895 0.209397i
\(195\) 0 0
\(196\) 3.57891 + 6.19885i 0.255636 + 0.442775i
\(197\) 6.18524i 0.440680i 0.975423 + 0.220340i \(0.0707167\pi\)
−0.975423 + 0.220340i \(0.929283\pi\)
\(198\) 3.11819i 0.221600i
\(199\) 3.60525 + 6.24447i 0.255569 + 0.442659i 0.965050 0.262066i \(-0.0844038\pi\)
−0.709481 + 0.704725i \(0.751070\pi\)
\(200\) 0 0
\(201\) −11.5320 −0.813407
\(202\) 1.92272i 0.135282i
\(203\) 11.4376 6.60350i 0.802763 0.463475i
\(204\) 0.989093 1.71316i 0.0692504 0.119945i
\(205\) 0 0
\(206\) −2.85001 + 4.93636i −0.198570 + 0.343933i
\(207\) 12.8717 + 7.43146i 0.894643 + 0.516522i
\(208\) 12.1192i 0.840318i
\(209\) 12.5242 18.7239i 0.866320 1.29516i
\(210\) 0 0
\(211\) 9.82333 17.0145i 0.676266 1.17133i −0.299831 0.953992i \(-0.596930\pi\)
0.976097 0.217335i \(-0.0697362\pi\)
\(212\) 11.7336 + 6.77440i 0.805868 + 0.465268i
\(213\) −0.406158 + 0.234495i −0.0278295 + 0.0160674i
\(214\) 1.35868 2.35330i 0.0928773 0.160868i
\(215\) 0 0
\(216\) 6.17701 0.420292
\(217\) 15.0923i 1.02453i
\(218\) −1.64264 + 0.948379i −0.111254 + 0.0642323i
\(219\) 2.12858 + 3.68680i 0.143836 + 0.249131i
\(220\) 0 0
\(221\) −3.56752 −0.239977
\(222\) 1.80028 1.03939i 0.120827 0.0697595i
\(223\) 9.81536 + 5.66690i 0.657285 + 0.379484i 0.791242 0.611504i \(-0.209435\pi\)
−0.133957 + 0.990987i \(0.542768\pi\)
\(224\) −5.73299 9.92983i −0.383051 0.663464i
\(225\) 0 0
\(226\) −1.60910 + 2.78704i −0.107036 + 0.185391i
\(227\) 11.1369i 0.739180i 0.929195 + 0.369590i \(0.120502\pi\)
−0.929195 + 0.369590i \(0.879498\pi\)
\(228\) −7.10125 4.74996i −0.470292 0.314574i
\(229\) −3.51221 −0.232093 −0.116047 0.993244i \(-0.537022\pi\)
−0.116047 + 0.993244i \(0.537022\pi\)
\(230\) 0 0
\(231\) −8.72927 + 15.1195i −0.574344 + 0.994792i
\(232\) −4.23393 + 2.44446i −0.277971 + 0.160487i
\(233\) −5.36068 3.09499i −0.351190 0.202759i 0.314020 0.949417i \(-0.398324\pi\)
−0.665209 + 0.746657i \(0.731658\pi\)
\(234\) −1.06638 1.84702i −0.0697113 0.120744i
\(235\) 0 0
\(236\) −25.6419 −1.66915
\(237\) −2.57595 + 1.48723i −0.167326 + 0.0966057i
\(238\) 0.892028 0.515013i 0.0578216 0.0333833i
\(239\) −12.1221 −0.784116 −0.392058 0.919940i \(-0.628237\pi\)
−0.392058 + 0.919940i \(0.628237\pi\)
\(240\) 0 0
\(241\) 2.55102 + 4.41849i 0.164326 + 0.284620i 0.936416 0.350893i \(-0.114122\pi\)
−0.772090 + 0.635513i \(0.780789\pi\)
\(242\) 4.23200 + 2.44335i 0.272043 + 0.157064i
\(243\) 13.7330 7.92873i 0.880971 0.508629i
\(244\) −5.84001 + 10.1152i −0.373868 + 0.647559i
\(245\) 0 0
\(246\) −2.18042 −0.139019
\(247\) −1.01526 + 15.3740i −0.0645996 + 0.978221i
\(248\) 5.58681i 0.354763i
\(249\) −2.83236 + 4.90579i −0.179494 + 0.310892i
\(250\) 0 0
\(251\) −12.7122 22.0181i −0.802385 1.38977i −0.918042 0.396483i \(-0.870231\pi\)
0.115657 0.993289i \(-0.463103\pi\)
\(252\) −10.4862 6.05422i −0.660570 0.381380i
\(253\) 34.2984 19.8022i 2.15632 1.24495i
\(254\) −1.04754 −0.0657285
\(255\) 0 0
\(256\) −4.40321 7.62659i −0.275201 0.476662i
\(257\) −15.9781 + 9.22493i −0.996684 + 0.575436i −0.907265 0.420559i \(-0.861834\pi\)
−0.0894183 + 0.995994i \(0.528501\pi\)
\(258\) 2.02173i 0.125867i
\(259\) −21.2841 −1.32253
\(260\) 0 0
\(261\) −3.90415 + 6.76218i −0.241661 + 0.418569i
\(262\) −0.652493 + 0.376717i −0.0403111 + 0.0232737i
\(263\) −11.2155 6.47530i −0.691580 0.399284i 0.112624 0.993638i \(-0.464075\pi\)
−0.804204 + 0.594354i \(0.797408\pi\)
\(264\) 3.23137 5.59689i 0.198877 0.344465i
\(265\) 0 0
\(266\) −1.96555 3.99069i −0.120516 0.244685i
\(267\) 7.34134i 0.449283i
\(268\) −18.4568 10.6560i −1.12743 0.650921i
\(269\) 0.0782471 0.135528i 0.00477081 0.00826329i −0.863630 0.504126i \(-0.831815\pi\)
0.868401 + 0.495863i \(0.165148\pi\)
\(270\) 0 0
\(271\) −13.9095 + 24.0920i −0.844944 + 1.46349i 0.0407264 + 0.999170i \(0.487033\pi\)
−0.885670 + 0.464315i \(0.846301\pi\)
\(272\) 2.99685 1.73023i 0.181711 0.104911i
\(273\) 11.9411i 0.722711i
\(274\) 3.58368 0.216498
\(275\) 0 0
\(276\) −7.51022 13.0081i −0.452062 0.782994i
\(277\) 0.524062i 0.0314878i 0.999876 + 0.0157439i \(0.00501165\pi\)
−0.999876 + 0.0157439i \(0.994988\pi\)
\(278\) 2.20125i 0.132022i
\(279\) 4.46146 + 7.72748i 0.267101 + 0.462632i
\(280\) 0 0
\(281\) 2.44413 + 4.23336i 0.145804 + 0.252541i 0.929673 0.368386i \(-0.120090\pi\)
−0.783868 + 0.620927i \(0.786756\pi\)
\(282\) −1.06590 0.615400i −0.0634736 0.0366465i
\(283\) 15.4833 + 8.93931i 0.920389 + 0.531387i 0.883759 0.467942i \(-0.155004\pi\)
0.0366299 + 0.999329i \(0.488338\pi\)
\(284\) −0.866730 −0.0514310
\(285\) 0 0
\(286\) −5.68304 −0.336045
\(287\) 19.3338 + 11.1624i 1.14124 + 0.658894i
\(288\) 5.87075 + 3.38948i 0.345937 + 0.199727i
\(289\) −7.99068 13.8403i −0.470040 0.814133i
\(290\) 0 0
\(291\) 5.57400 + 9.65445i 0.326754 + 0.565954i
\(292\) 7.86754i 0.460413i
\(293\) 7.25399i 0.423783i 0.977293 + 0.211891i \(0.0679623\pi\)
−0.977293 + 0.211891i \(0.932038\pi\)
\(294\) 0.602479 + 1.04352i 0.0351373 + 0.0608595i
\(295\) 0 0
\(296\) 7.87888 0.457951
\(297\) 26.2882i 1.52540i
\(298\) 3.43507 1.98324i 0.198988 0.114886i
\(299\) −13.5441 + 23.4591i −0.783278 + 1.35668i
\(300\) 0 0
\(301\) 10.3500 17.9267i 0.596562 1.03328i
\(302\) −5.29051 3.05448i −0.304435 0.175766i
\(303\) 6.36461i 0.365637i
\(304\) −6.60345 13.4071i −0.378734 0.768950i
\(305\) 0 0
\(306\) −0.304488 + 0.527388i −0.0174064 + 0.0301488i
\(307\) 12.4537 + 7.19015i 0.710771 + 0.410364i 0.811346 0.584566i \(-0.198735\pi\)
−0.100576 + 0.994929i \(0.532068\pi\)
\(308\) −27.9420 + 16.1323i −1.59215 + 0.919226i
\(309\) 9.43415 16.3404i 0.536690 0.929574i
\(310\) 0 0
\(311\) 8.52590 0.483459 0.241730 0.970344i \(-0.422285\pi\)
0.241730 + 0.970344i \(0.422285\pi\)
\(312\) 4.42033i 0.250252i
\(313\) −18.4999 + 10.6809i −1.04568 + 0.603722i −0.921436 0.388530i \(-0.872983\pi\)
−0.124241 + 0.992252i \(0.539650\pi\)
\(314\) 0.479867 + 0.831153i 0.0270804 + 0.0469047i
\(315\) 0 0
\(316\) −5.49701 −0.309231
\(317\) −24.3291 + 14.0464i −1.36646 + 0.788924i −0.990474 0.137702i \(-0.956028\pi\)
−0.375983 + 0.926626i \(0.622695\pi\)
\(318\) 1.97525 + 1.14041i 0.110767 + 0.0639512i
\(319\) 10.4032 + 18.0188i 0.582466 + 1.00886i
\(320\) 0 0
\(321\) −4.49752 + 7.78993i −0.251027 + 0.434792i
\(322\) 7.82102i 0.435848i
\(323\) 3.94662 1.94384i 0.219596 0.108158i
\(324\) 1.10339 0.0612995
\(325\) 0 0
\(326\) 3.49563 6.05461i 0.193605 0.335334i
\(327\) 5.43750 3.13934i 0.300694 0.173606i
\(328\) −7.15692 4.13205i −0.395175 0.228154i
\(329\) 6.30091 + 10.9135i 0.347381 + 0.601681i
\(330\) 0 0
\(331\) 15.1725 0.833957 0.416979 0.908916i \(-0.363089\pi\)
0.416979 + 0.908916i \(0.363089\pi\)
\(332\) −9.06627 + 5.23441i −0.497576 + 0.287276i
\(333\) 10.8978 6.29184i 0.597195 0.344791i
\(334\) −3.27900 −0.179419
\(335\) 0 0
\(336\) 5.79140 + 10.0310i 0.315947 + 0.547236i
\(337\) −15.1562 8.75041i −0.825608 0.476665i 0.0267383 0.999642i \(-0.491488\pi\)
−0.852347 + 0.522977i \(0.824821\pi\)
\(338\) −0.136284 + 0.0786838i −0.00741289 + 0.00427984i
\(339\) 5.32647 9.22571i 0.289294 0.501072i
\(340\) 0 0
\(341\) 23.7764 1.28757
\(342\) 2.18609 + 1.46225i 0.118210 + 0.0790697i
\(343\) 10.6254i 0.573720i
\(344\) −3.83131 + 6.63603i −0.206570 + 0.357791i
\(345\) 0 0
\(346\) −3.56812 6.18016i −0.191823 0.332247i
\(347\) 15.0417 + 8.68435i 0.807483 + 0.466201i 0.846081 0.533054i \(-0.178956\pi\)
−0.0385980 + 0.999255i \(0.512289\pi\)
\(348\) 6.83385 3.94552i 0.366333 0.211502i
\(349\) 34.2563 1.83370 0.916850 0.399232i \(-0.130723\pi\)
0.916850 + 0.399232i \(0.130723\pi\)
\(350\) 0 0
\(351\) 8.99019 + 15.5715i 0.479861 + 0.831144i
\(352\) 15.6435 9.03176i 0.833799 0.481394i
\(353\) 34.9287i 1.85907i 0.368736 + 0.929534i \(0.379791\pi\)
−0.368736 + 0.929534i \(0.620209\pi\)
\(354\) −4.31660 −0.229425
\(355\) 0 0
\(356\) −6.78367 + 11.7497i −0.359534 + 0.622731i
\(357\) −2.95281 + 1.70480i −0.156279 + 0.0902278i
\(358\) −6.26972 3.61982i −0.331365 0.191314i
\(359\) −0.488273 + 0.845713i −0.0257701 + 0.0446350i −0.878623 0.477516i \(-0.841537\pi\)
0.852853 + 0.522151i \(0.174870\pi\)
\(360\) 0 0
\(361\) −7.25370 17.5609i −0.381774 0.924256i
\(362\) 4.96743i 0.261082i
\(363\) −14.0088 8.08801i −0.735273 0.424510i
\(364\) 11.0341 19.1116i 0.578342 1.00172i
\(365\) 0 0
\(366\) −0.983116 + 1.70281i −0.0513883 + 0.0890071i
\(367\) −8.54451 + 4.93318i −0.446020 + 0.257510i −0.706148 0.708064i \(-0.749569\pi\)
0.260128 + 0.965574i \(0.416235\pi\)
\(368\) 26.2754i 1.36970i
\(369\) −13.1989 −0.687109
\(370\) 0 0
\(371\) −11.6764 20.2241i −0.606208 1.04998i
\(372\) 9.01748i 0.467535i
\(373\) 12.9521i 0.670634i −0.942105 0.335317i \(-0.891157\pi\)
0.942105 0.335317i \(-0.108843\pi\)
\(374\) 0.811352 + 1.40530i 0.0419540 + 0.0726664i
\(375\) 0 0
\(376\) −2.33245 4.03992i −0.120287 0.208343i
\(377\) −12.3244 7.11547i −0.634737 0.366465i
\(378\) −4.49585 2.59568i −0.231241 0.133507i
\(379\) −5.21597 −0.267926 −0.133963 0.990986i \(-0.542770\pi\)
−0.133963 + 0.990986i \(0.542770\pi\)
\(380\) 0 0
\(381\) 3.46758 0.177650
\(382\) −0.659018 0.380484i −0.0337183 0.0194673i
\(383\) −29.0390 16.7657i −1.48382 0.856686i −0.483993 0.875072i \(-0.660814\pi\)
−0.999831 + 0.0183857i \(0.994147\pi\)
\(384\) −4.52390 7.83562i −0.230859 0.399860i
\(385\) 0 0
\(386\) 2.96262 + 5.13141i 0.150793 + 0.261182i
\(387\) 12.2383i 0.622107i
\(388\) 20.6023i 1.04593i
\(389\) 13.8703 + 24.0241i 0.703253 + 1.21807i 0.967318 + 0.253565i \(0.0816031\pi\)
−0.264066 + 0.964505i \(0.585064\pi\)
\(390\) 0 0
\(391\) 7.73464 0.391158
\(392\) 4.56695i 0.230666i
\(393\) 2.15989 1.24702i 0.108952 0.0629036i
\(394\) −0.962139 + 1.66647i −0.0484718 + 0.0839557i
\(395\) 0 0
\(396\) 9.53783 16.5200i 0.479294 0.830161i
\(397\) −4.76264 2.74971i −0.239030 0.138004i 0.375701 0.926741i \(-0.377402\pi\)
−0.614731 + 0.788737i \(0.710735\pi\)
\(398\) 2.24324i 0.112444i
\(399\) 6.50640 + 13.2101i 0.325728 + 0.661331i
\(400\) 0 0
\(401\) 4.25655 7.37256i 0.212562 0.368168i −0.739954 0.672658i \(-0.765153\pi\)
0.952516 + 0.304490i \(0.0984860\pi\)
\(402\) −3.10704 1.79385i −0.154965 0.0894692i
\(403\) −14.0836 + 8.13120i −0.701556 + 0.405044i
\(404\) 5.88114 10.1864i 0.292597 0.506794i
\(405\) 0 0
\(406\) 4.10880 0.203917
\(407\) 33.5311i 1.66207i
\(408\) 1.09306 0.631078i 0.0541145 0.0312430i
\(409\) −10.7353 18.5941i −0.530826 0.919418i −0.999353 0.0359683i \(-0.988548\pi\)
0.468527 0.883449i \(-0.344785\pi\)
\(410\) 0 0
\(411\) −11.8628 −0.585148
\(412\) 30.1983 17.4350i 1.48777 0.858962i
\(413\) 38.2753 + 22.0983i 1.88341 + 1.08738i
\(414\) 2.31199 + 4.00448i 0.113628 + 0.196809i
\(415\) 0 0
\(416\) −6.17746 + 10.6997i −0.302875 + 0.524595i
\(417\) 7.28662i 0.356827i
\(418\) 6.28694 3.09653i 0.307504 0.151456i
\(419\) 5.09378 0.248848 0.124424 0.992229i \(-0.460292\pi\)
0.124424 + 0.992229i \(0.460292\pi\)
\(420\) 0 0
\(421\) −2.82911 + 4.90017i −0.137883 + 0.238820i −0.926695 0.375815i \(-0.877363\pi\)
0.788812 + 0.614634i \(0.210696\pi\)
\(422\) 5.29335 3.05611i 0.257676 0.148769i
\(423\) −6.45232 3.72525i −0.313723 0.181128i
\(424\) 4.32232 + 7.48648i 0.209910 + 0.363576i
\(425\) 0 0
\(426\) −0.145907 −0.00706920
\(427\) 17.4346 10.0659i 0.843719 0.487121i
\(428\) −14.3964 + 8.31176i −0.695876 + 0.401764i
\(429\) 18.8121 0.908256
\(430\) 0 0
\(431\) 19.1834 + 33.2267i 0.924033 + 1.60047i 0.793109 + 0.609079i \(0.208461\pi\)
0.130923 + 0.991392i \(0.458206\pi\)
\(432\) −15.1042 8.72041i −0.726701 0.419561i
\(433\) 6.02970 3.48125i 0.289769 0.167298i −0.348069 0.937469i \(-0.613162\pi\)
0.637838 + 0.770171i \(0.279829\pi\)
\(434\) 2.34767 4.06628i 0.112692 0.195188i
\(435\) 0 0
\(436\) 11.6035 0.555706
\(437\) 2.20116 33.3319i 0.105296 1.59448i
\(438\) 1.32443i 0.0632839i
\(439\) 4.76346 8.25055i 0.227347 0.393777i −0.729674 0.683796i \(-0.760328\pi\)
0.957021 + 0.290018i \(0.0936613\pi\)
\(440\) 0 0
\(441\) 3.64703 + 6.31685i 0.173668 + 0.300802i
\(442\) −0.961187 0.554941i −0.0457190 0.0263959i
\(443\) 30.0544 17.3519i 1.42793 0.824414i 0.430971 0.902366i \(-0.358171\pi\)
0.996957 + 0.0779516i \(0.0248380\pi\)
\(444\) −12.7170 −0.603524
\(445\) 0 0
\(446\) 1.76302 + 3.05363i 0.0834813 + 0.144594i
\(447\) −11.3708 + 6.56495i −0.537821 + 0.310511i
\(448\) 18.9273i 0.894233i
\(449\) 8.84228 0.417293 0.208646 0.977991i \(-0.433094\pi\)
0.208646 + 0.977991i \(0.433094\pi\)
\(450\) 0 0
\(451\) −17.5852 + 30.4585i −0.828056 + 1.43423i
\(452\) 17.0498 9.84371i 0.801956 0.463009i
\(453\) 17.5127 + 10.1110i 0.822821 + 0.475056i
\(454\) −1.73238 + 3.00058i −0.0813048 + 0.140824i
\(455\) 0 0
\(456\) −2.40852 4.89005i −0.112789 0.228998i
\(457\) 0.664998i 0.0311073i −0.999879 0.0155536i \(-0.995049\pi\)
0.999879 0.0155536i \(-0.00495108\pi\)
\(458\) −0.946285 0.546338i −0.0442170 0.0255287i
\(459\) 2.56701 4.44619i 0.119818 0.207531i
\(460\) 0 0
\(461\) 19.7696 34.2420i 0.920762 1.59481i 0.122524 0.992466i \(-0.460901\pi\)
0.798238 0.602342i \(-0.205766\pi\)
\(462\) −4.70381 + 2.71574i −0.218841 + 0.126348i
\(463\) 15.5782i 0.723981i −0.932182 0.361991i \(-0.882097\pi\)
0.932182 0.361991i \(-0.117903\pi\)
\(464\) 13.8039 0.640830
\(465\) 0 0
\(466\) −0.962875 1.66775i −0.0446043 0.0772569i
\(467\) 41.0358i 1.89891i −0.313901 0.949456i \(-0.601636\pi\)
0.313901 0.949456i \(-0.398364\pi\)
\(468\) 13.0472i 0.603107i
\(469\) 18.3668 + 31.8122i 0.848099 + 1.46895i
\(470\) 0 0
\(471\) −1.58846 2.75130i −0.0731925 0.126773i
\(472\) −14.1686 8.18025i −0.652163 0.376527i
\(473\) 28.2417 + 16.3053i 1.29855 + 0.749721i
\(474\) −0.925375 −0.0425039
\(475\) 0 0
\(476\) −6.30121 −0.288816
\(477\) 11.9570 + 6.90336i 0.547472 + 0.316083i
\(478\) −3.26604 1.88565i −0.149385 0.0862475i
\(479\) −11.7794 20.4024i −0.538213 0.932211i −0.999000 0.0447012i \(-0.985766\pi\)
0.460788 0.887510i \(-0.347567\pi\)
\(480\) 0 0
\(481\) 11.4671 + 19.8617i 0.522857 + 0.905614i
\(482\) 1.58728i 0.0722988i
\(483\) 25.8893i 1.17800i
\(484\) −14.9472 25.8894i −0.679420 1.17679i
\(485\) 0 0
\(486\) 4.93338 0.223783
\(487\) 23.9166i 1.08377i 0.840454 + 0.541883i \(0.182288\pi\)
−0.840454 + 0.541883i \(0.817712\pi\)
\(488\) −6.45387 + 3.72614i −0.292153 + 0.168675i
\(489\) −11.5713 + 20.0421i −0.523272 + 0.906334i
\(490\) 0 0
\(491\) −8.17373 + 14.1573i −0.368875 + 0.638911i −0.989390 0.145284i \(-0.953590\pi\)
0.620515 + 0.784195i \(0.286924\pi\)
\(492\) 11.5517 + 6.66940i 0.520793 + 0.300680i
\(493\) 4.06343i 0.183007i
\(494\) −2.66502 + 3.98423i −0.119905 + 0.179259i
\(495\) 0 0
\(496\) 7.88720 13.6610i 0.354146 0.613398i
\(497\) 1.29375 + 0.746950i 0.0580328 + 0.0335053i
\(498\) −1.52623 + 0.881169i −0.0683920 + 0.0394861i
\(499\) −16.0354 + 27.7742i −0.717844 + 1.24334i 0.244009 + 0.969773i \(0.421537\pi\)
−0.961852 + 0.273569i \(0.911796\pi\)
\(500\) 0 0
\(501\) 10.8542 0.484930
\(502\) 7.90972i 0.353028i
\(503\) 12.7525 7.36269i 0.568608 0.328286i −0.187985 0.982172i \(-0.560196\pi\)
0.756593 + 0.653886i \(0.226862\pi\)
\(504\) −3.86282 6.69060i −0.172064 0.298023i
\(505\) 0 0
\(506\) 12.3212 0.547746
\(507\) 0.451131 0.260461i 0.0200354 0.0115675i
\(508\) 5.54980 + 3.20418i 0.246232 + 0.142162i
\(509\) −11.0332 19.1100i −0.489037 0.847036i 0.510884 0.859650i \(-0.329318\pi\)
−0.999920 + 0.0126136i \(0.995985\pi\)
\(510\) 0 0
\(511\) 6.78026 11.7438i 0.299941 0.519513i
\(512\) 20.3111i 0.897633i
\(513\) −18.4300 12.3277i −0.813705 0.544280i
\(514\) −5.73990 −0.253176
\(515\) 0 0
\(516\) 6.18399 10.7110i 0.272235 0.471525i
\(517\) −17.1931 + 9.92647i −0.756154 + 0.436565i
\(518\) −5.73453 3.31083i −0.251961 0.145470i
\(519\) 11.8112 + 20.4577i 0.518456 + 0.897992i
\(520\) 0 0
\(521\) −14.7781 −0.647442 −0.323721 0.946153i \(-0.604934\pi\)
−0.323721 + 0.946153i \(0.604934\pi\)
\(522\) −2.10377 + 1.21461i −0.0920794 + 0.0531621i
\(523\) −11.0072 + 6.35498i −0.481309 + 0.277884i −0.720962 0.692975i \(-0.756300\pi\)
0.239653 + 0.970859i \(0.422966\pi\)
\(524\) 4.60916 0.201352
\(525\) 0 0
\(526\) −2.01452 3.48924i −0.0878371 0.152138i
\(527\) 4.02137 + 2.32174i 0.175174 + 0.101136i
\(528\) −15.8029 + 9.12378i −0.687731 + 0.397062i
\(529\) 17.8647 30.9426i 0.776726 1.34533i
\(530\) 0 0
\(531\) −26.1301 −1.13395
\(532\) −1.79323 + 27.1546i −0.0777464 + 1.17730i
\(533\) 24.0556i 1.04196i
\(534\) −1.14197 + 1.97796i −0.0494180 + 0.0855946i
\(535\) 0 0
\(536\) −6.79894 11.7761i −0.293670 0.508651i
\(537\) 20.7541 + 11.9824i 0.895607 + 0.517079i
\(538\) 0.0421638 0.0243433i 0.00181781 0.00104951i
\(539\) 19.4361 0.837172
\(540\) 0 0
\(541\) 15.1172 + 26.1838i 0.649941 + 1.12573i 0.983137 + 0.182873i \(0.0585396\pi\)
−0.333196 + 0.942858i \(0.608127\pi\)
\(542\) −7.49521 + 4.32736i −0.321947 + 0.185876i
\(543\) 16.4433i 0.705649i
\(544\) 3.52776 0.151251
\(545\) 0 0
\(546\) 1.85749 3.21727i 0.0794933 0.137686i
\(547\) 6.76144 3.90372i 0.289098 0.166911i −0.348437 0.937332i \(-0.613287\pi\)
0.637535 + 0.770421i \(0.279954\pi\)
\(548\) −18.9861 10.9617i −0.811048 0.468259i
\(549\) −5.95118 + 10.3077i −0.253990 + 0.439924i
\(550\) 0 0
\(551\) 17.5110 + 1.15639i 0.745995 + 0.0492639i
\(552\) 9.58359i 0.407905i
\(553\) 8.20530 + 4.73733i 0.348925 + 0.201452i
\(554\) −0.0815198 + 0.141196i −0.00346345 + 0.00599886i
\(555\) 0 0
\(556\) 6.73311 11.6621i 0.285548 0.494583i
\(557\) −2.09141 + 1.20747i −0.0886157 + 0.0511623i −0.543653 0.839310i \(-0.682959\pi\)
0.455037 + 0.890472i \(0.349626\pi\)
\(558\) 2.77599i 0.117517i
\(559\) −22.3048 −0.943392
\(560\) 0 0
\(561\) −2.68575 4.65186i −0.113392 0.196402i
\(562\) 1.52078i 0.0641500i
\(563\) 25.3392i 1.06792i 0.845510 + 0.533960i \(0.179297\pi\)
−0.845510 + 0.533960i \(0.820703\pi\)
\(564\) 3.76473 + 6.52070i 0.158524 + 0.274571i
\(565\) 0 0
\(566\) 2.78109 + 4.81699i 0.116898 + 0.202473i
\(567\) −1.64702 0.950905i −0.0691681 0.0399342i
\(568\) −0.478917 0.276503i −0.0200949 0.0116018i
\(569\) 45.1046 1.89088 0.945441 0.325793i \(-0.105631\pi\)
0.945441 + 0.325793i \(0.105631\pi\)
\(570\) 0 0
\(571\) −9.73299 −0.407313 −0.203656 0.979042i \(-0.565283\pi\)
−0.203656 + 0.979042i \(0.565283\pi\)
\(572\) 30.1084 + 17.3831i 1.25889 + 0.726823i
\(573\) 2.18149 + 1.25949i 0.0911332 + 0.0526158i
\(574\) 3.47270 + 6.01490i 0.144948 + 0.251057i
\(575\) 0 0
\(576\) −5.59515 9.69108i −0.233131 0.403795i
\(577\) 8.83145i 0.367658i 0.982958 + 0.183829i \(0.0588493\pi\)
−0.982958 + 0.183829i \(0.941151\pi\)
\(578\) 4.97192i 0.206805i
\(579\) −9.80691 16.9861i −0.407561 0.705917i
\(580\) 0 0
\(581\) 18.0441 0.748596
\(582\) 3.46823i 0.143763i
\(583\) 31.8611 18.3950i 1.31955 0.761843i
\(584\) −2.50989 + 4.34726i −0.103860 + 0.179891i
\(585\) 0 0
\(586\) −1.12839 + 1.95442i −0.0466132 + 0.0807365i
\(587\) −23.3768 13.4966i −0.964865 0.557065i −0.0671982 0.997740i \(-0.521406\pi\)
−0.897667 + 0.440674i \(0.854739\pi\)
\(588\) 7.37137i 0.303990i
\(589\) 11.1498 16.6691i 0.459419 0.686837i
\(590\) 0 0
\(591\) 3.18489 5.51639i 0.131009 0.226914i
\(592\) −19.2657 11.1230i −0.791814 0.457154i
\(593\) −18.3891 + 10.6170i −0.755151 + 0.435987i −0.827552 0.561389i \(-0.810267\pi\)
0.0724009 + 0.997376i \(0.476934\pi\)
\(594\) 4.08923 7.08276i 0.167783 0.290609i
\(595\) 0 0
\(596\) −24.2650 −0.993934
\(597\) 7.42562i 0.303910i
\(598\) −7.29832 + 4.21369i −0.298451 + 0.172311i
\(599\) −15.1647 26.2660i −0.619612 1.07320i −0.989556 0.144146i \(-0.953957\pi\)
0.369945 0.929054i \(-0.379377\pi\)
\(600\) 0 0
\(601\) −10.7285 −0.437624 −0.218812 0.975767i \(-0.570218\pi\)
−0.218812 + 0.975767i \(0.570218\pi\)
\(602\) 5.57713 3.21996i 0.227307 0.131236i
\(603\) −18.8081 10.8589i −0.765926 0.442208i
\(604\) 18.6859 + 32.3649i 0.760317 + 1.31691i
\(605\) 0 0
\(606\) 0.990039 1.71480i 0.0402176 0.0696589i
\(607\) 8.81498i 0.357789i −0.983868 0.178894i \(-0.942748\pi\)
0.983868 0.178894i \(-0.0572521\pi\)
\(608\) 1.00395 15.2026i 0.0407154 0.616548i
\(609\) −13.6010 −0.551142
\(610\) 0 0
\(611\) 6.78942 11.7596i 0.274671 0.475743i
\(612\) 3.22631 1.86271i 0.130416 0.0752957i
\(613\) −20.8978 12.0654i −0.844055 0.487315i 0.0145856 0.999894i \(-0.495357\pi\)
−0.858640 + 0.512578i \(0.828690\pi\)
\(614\) 2.23691 + 3.87445i 0.0902744 + 0.156360i
\(615\) 0 0
\(616\) −20.5861 −0.829436
\(617\) 13.3930 7.73248i 0.539183 0.311298i −0.205564 0.978644i \(-0.565903\pi\)
0.744748 + 0.667346i \(0.232570\pi\)
\(618\) 5.08363 2.93504i 0.204494 0.118065i
\(619\) −0.0390990 −0.00157152 −0.000785761 1.00000i \(-0.500250\pi\)
−0.000785761 1.00000i \(0.500250\pi\)
\(620\) 0 0
\(621\) −19.4914 33.7601i −0.782163 1.35475i
\(622\) 2.29711 + 1.32624i 0.0921057 + 0.0531772i
\(623\) 20.2518 11.6924i 0.811370 0.468445i
\(624\) 6.24041 10.8087i 0.249816 0.432694i
\(625\) 0 0
\(626\) −6.64584 −0.265621
\(627\) −20.8112 + 10.2502i −0.831117 + 0.409353i
\(628\) 5.87120i 0.234286i
\(629\) 3.27427 5.67119i 0.130554 0.226125i
\(630\) 0 0
\(631\) −3.36758 5.83282i −0.134061 0.232201i 0.791177 0.611587i \(-0.209469\pi\)
−0.925238 + 0.379386i \(0.876135\pi\)
\(632\) −3.03741 1.75365i −0.120822 0.0697564i
\(633\) −17.5221 + 10.1164i −0.696442 + 0.402091i
\(634\) −8.73989 −0.347105
\(635\) 0 0
\(636\) −6.97651 12.0837i −0.276637 0.479149i
\(637\) −11.5127 + 6.64687i −0.456150 + 0.263358i
\(638\) 6.47301i 0.256269i
\(639\) −0.883229 −0.0349400
\(640\) 0 0
\(641\) −13.7894 + 23.8840i −0.544649 + 0.943360i 0.453980 + 0.891012i \(0.350004\pi\)
−0.998629 + 0.0523477i \(0.983330\pi\)
\(642\) −2.42351 + 1.39921i −0.0956483 + 0.0552226i
\(643\) −10.3128 5.95407i −0.406695 0.234806i 0.282673 0.959216i \(-0.408779\pi\)
−0.689369 + 0.724410i \(0.742112\pi\)
\(644\) −23.9227 + 41.4353i −0.942685 + 1.63278i
\(645\) 0 0
\(646\) 1.36570 + 0.0901878i 0.0537327 + 0.00354839i
\(647\) 11.6648i 0.458590i 0.973357 + 0.229295i \(0.0736421\pi\)
−0.973357 + 0.229295i \(0.926358\pi\)
\(648\) 0.609686 + 0.352002i 0.0239507 + 0.0138280i
\(649\) −34.8136 + 60.2990i −1.36656 + 2.36694i
\(650\) 0 0
\(651\) −7.77128 + 13.4603i −0.304581 + 0.527549i
\(652\) −37.0393 + 21.3846i −1.45057 + 0.837487i
\(653\) 40.7527i 1.59477i −0.603468 0.797387i \(-0.706215\pi\)
0.603468 0.797387i \(-0.293785\pi\)
\(654\) 1.95335 0.0763819
\(655\) 0 0
\(656\) 11.6669 + 20.2076i 0.455514 + 0.788974i
\(657\) 8.01730i 0.312785i
\(658\) 3.92053i 0.152838i
\(659\) −11.5723 20.0438i −0.450793 0.780796i 0.547643 0.836712i \(-0.315525\pi\)
−0.998435 + 0.0559165i \(0.982192\pi\)
\(660\) 0 0
\(661\) −2.44485 4.23460i −0.0950936 0.164707i 0.814554 0.580088i \(-0.196982\pi\)
−0.909648 + 0.415381i \(0.863648\pi\)
\(662\) 4.08789 + 2.36015i 0.158880 + 0.0917297i
\(663\) 3.18174 + 1.83698i 0.123568 + 0.0713423i
\(664\) −6.67950 −0.259215
\(665\) 0 0
\(666\) 3.91488 0.151699
\(667\) 26.7201 + 15.4269i 1.03461 + 0.597331i
\(668\) 17.3719 + 10.0297i 0.672140 + 0.388060i
\(669\) −5.83597 10.1082i −0.225632 0.390805i
\(670\) 0 0
\(671\) 15.8578 + 27.4665i 0.612182 + 1.06033i
\(672\) 11.8081i 0.455506i
\(673\) 29.5149i 1.13771i 0.822436 + 0.568857i \(0.192614\pi\)
−0.822436 + 0.568857i \(0.807386\pi\)
\(674\) −2.72232 4.71520i −0.104860 0.181623i
\(675\) 0 0
\(676\) 0.962701 0.0370270
\(677\) 29.4248i 1.13089i 0.824788 + 0.565443i \(0.191295\pi\)
−0.824788 + 0.565443i \(0.808705\pi\)
\(678\) 2.87019 1.65711i 0.110229 0.0636408i
\(679\) 17.7551 30.7528i 0.681380 1.18018i
\(680\) 0 0
\(681\) 5.73457 9.93256i 0.219749 0.380616i
\(682\) 6.40602 + 3.69852i 0.245299 + 0.141623i
\(683\) 29.9433i 1.14575i 0.819643 + 0.572875i \(0.194172\pi\)
−0.819643 + 0.572875i \(0.805828\pi\)
\(684\) −7.10907 14.4337i −0.271822 0.551885i
\(685\) 0 0
\(686\) −1.65283 + 2.86278i −0.0631053 + 0.109302i
\(687\) 3.13241 + 1.80850i 0.119509 + 0.0689985i
\(688\) 18.7369 10.8177i 0.714336 0.412422i
\(689\) −12.5816 + 21.7921i −0.479323 + 0.830211i
\(690\) 0 0
\(691\) −24.2225 −0.921467 −0.460733 0.887539i \(-0.652414\pi\)
−0.460733 + 0.887539i \(0.652414\pi\)
\(692\) 43.6561i 1.65956i
\(693\) −28.4739 + 16.4394i −1.08164 + 0.624482i
\(694\) 2.70177 + 4.67960i 0.102558 + 0.177635i
\(695\) 0 0
\(696\) 5.03478 0.190843
\(697\) −5.94847 + 3.43435i −0.225314 + 0.130085i
\(698\) 9.22959 + 5.32871i 0.349345 + 0.201695i
\(699\) 3.18733 + 5.52061i 0.120556 + 0.208809i
\(700\) 0 0
\(701\) 7.42695 12.8639i 0.280512 0.485861i −0.690999 0.722856i \(-0.742829\pi\)
0.971511 + 0.236995i \(0.0761624\pi\)
\(702\) 5.59384i 0.211126i
\(703\) −23.5078 15.7241i −0.886613 0.593047i
\(704\) −29.8182 −1.12381
\(705\) 0 0
\(706\) −5.43330 + 9.41075i −0.204485 + 0.354178i
\(707\) −17.5574 + 10.1367i −0.660313 + 0.381232i
\(708\) 22.8691 + 13.2035i 0.859473 + 0.496217i
\(709\) −14.9004 25.8083i −0.559598 0.969252i −0.997530 0.0702441i \(-0.977622\pi\)
0.437932 0.899008i \(-0.355711\pi\)
\(710\) 0 0
\(711\) −5.60165 −0.210078
\(712\) −7.49672 + 4.32823i −0.280952 + 0.162207i
\(713\) 30.5344 17.6290i 1.14352 0.660213i
\(714\) −1.06076 −0.0396978
\(715\) 0 0
\(716\) 22.1444 + 38.3552i 0.827575 + 1.43340i
\(717\) 10.8113 + 6.24190i 0.403755 + 0.233108i
\(718\) −0.263108 + 0.151905i −0.00981910 + 0.00566906i
\(719\) −12.9463 + 22.4236i −0.482814 + 0.836258i −0.999805 0.0197322i \(-0.993719\pi\)
0.516991 + 0.855991i \(0.327052\pi\)
\(720\) 0 0
\(721\) −60.1021 −2.23832
\(722\) 0.777316 5.85972i 0.0289287 0.218076i
\(723\) 5.25426i 0.195408i
\(724\) 15.1942 26.3171i 0.564688 0.978069i
\(725\) 0 0
\(726\) −2.51624 4.35826i −0.0933865 0.161750i
\(727\) 8.09634 + 4.67442i 0.300277 + 0.173365i 0.642567 0.766229i \(-0.277869\pi\)
−0.342291 + 0.939594i \(0.611203\pi\)
\(728\) 12.1939 7.04014i 0.451935 0.260925i
\(729\) −14.5913 −0.540419
\(730\) 0 0
\(731\) 3.18439 + 5.51553i 0.117779 + 0.203999i
\(732\) 10.4170 6.01424i 0.385022 0.222293i
\(733\) 7.20434i 0.266098i 0.991109 + 0.133049i \(0.0424768\pi\)
−0.991109 + 0.133049i \(0.957523\pi\)
\(734\) −3.06950 −0.113297
\(735\) 0 0
\(736\) 13.3932 23.1977i 0.493680 0.855079i
\(737\) −50.1170 + 28.9350i −1.84608 + 1.06584i
\(738\) −3.55615 2.05314i −0.130904 0.0755773i
\(739\) 6.48702 11.2359i 0.238629 0.413318i −0.721692 0.692214i \(-0.756635\pi\)
0.960321 + 0.278897i \(0.0899687\pi\)
\(740\) 0 0
\(741\) 8.82179 13.1887i 0.324077 0.484498i
\(742\) 7.26523i 0.266715i
\(743\) −7.99428 4.61550i −0.293282 0.169326i 0.346139 0.938183i \(-0.387492\pi\)
−0.639421 + 0.768857i \(0.720826\pi\)
\(744\) 2.87674 4.98267i 0.105467 0.182673i
\(745\) 0 0
\(746\) 2.01475 3.48965i 0.0737652 0.127765i
\(747\) −9.23885 + 5.33405i −0.338032 + 0.195163i
\(748\) 9.92694i 0.362965i
\(749\) 28.6523 1.04693
\(750\) 0 0
\(751\) −7.46131 12.9234i −0.272267 0.471580i 0.697175 0.716901i \(-0.254440\pi\)
−0.969442 + 0.245321i \(0.921107\pi\)
\(752\) 13.1714i 0.480310i
\(753\) 26.1829i 0.954157i
\(754\) −2.21368 3.83420i −0.0806174 0.139633i
\(755\) 0 0
\(756\) 15.8791 + 27.5035i 0.577519 + 1.00029i
\(757\) 21.2156 + 12.2488i 0.771093 + 0.445191i 0.833265 0.552874i \(-0.186469\pi\)
−0.0621711 + 0.998066i \(0.519802\pi\)
\(758\) −1.40532 0.811365i −0.0510437 0.0294701i
\(759\) −40.7860 −1.48044
\(760\) 0 0
\(761\) −15.8968 −0.576260 −0.288130 0.957591i \(-0.593034\pi\)
−0.288130 + 0.957591i \(0.593034\pi\)
\(762\) 0.934262 + 0.539396i 0.0338447 + 0.0195403i
\(763\) −17.3203 9.99990i −0.627038 0.362021i
\(764\) 2.32762 + 4.03156i 0.0842105 + 0.145857i
\(765\) 0 0
\(766\) −5.21593 9.03426i −0.188459 0.326421i
\(767\) 47.6231i 1.71957i
\(768\) 9.06916i 0.327255i
\(769\) −14.7925 25.6214i −0.533432 0.923931i −0.999238 0.0390437i \(-0.987569\pi\)
0.465806 0.884887i \(-0.345765\pi\)
\(770\) 0 0
\(771\) 19.0003 0.684280
\(772\) 36.2478i 1.30459i
\(773\) 12.2378 7.06551i 0.440164 0.254129i −0.263503 0.964658i \(-0.584878\pi\)
0.703667 + 0.710530i \(0.251545\pi\)
\(774\) −1.90371 + 3.29733i −0.0684276 + 0.118520i
\(775\) 0 0
\(776\) −6.57253 + 11.3840i −0.235940 + 0.408660i
\(777\) 18.9825 + 10.9596i 0.680995 + 0.393172i
\(778\) 8.63032i 0.309412i
\(779\) 13.1072 + 26.6119i 0.469615 + 0.953469i
\(780\) 0 0
\(781\) −1.17675 + 2.03818i −0.0421073 + 0.0729319i
\(782\) 2.08392 + 1.20315i 0.0745210 + 0.0430247i
\(783\) 17.7360 10.2399i 0.633833 0.365944i
\(784\) 6.44741 11.1672i 0.230265 0.398830i
\(785\) 0 0
\(786\) 0.775912 0.0276759
\(787\) 24.2465i 0.864293i −0.901803 0.432146i \(-0.857756\pi\)
0.901803 0.432146i \(-0.142244\pi\)
\(788\) 10.1947 5.88591i 0.363171 0.209677i
\(789\) 6.66849 + 11.5502i 0.237404 + 0.411196i
\(790\) 0 0
\(791\) −33.9333 −1.20653
\(792\) 10.5404 6.08549i 0.374536 0.216238i
\(793\) −18.7863 10.8463i −0.667120 0.385162i
\(794\) −0.855456 1.48169i −0.0303590 0.0525833i
\(795\) 0 0
\(796\) 6.86155 11.8846i 0.243201 0.421237i
\(797\) 27.9258i 0.989184i 0.869125 + 0.494592i \(0.164682\pi\)
−0.869125 + 0.494592i \(0.835318\pi\)
\(798\) −0.301875 + 4.57125i −0.0106863 + 0.161820i
\(799\) −3.87723 −0.137166
\(800\) 0 0
\(801\) −6.91280 + 11.9733i −0.244252 + 0.423057i
\(802\) 2.29366 1.32425i 0.0809919 0.0467607i
\(803\) 18.5011 + 10.6816i 0.652890 + 0.376946i
\(804\) 10.9739 + 19.0074i 0.387021 + 0.670341i
\(805\) 0 0
\(806\) −5.05936 −0.178208
\(807\) −0.139571 + 0.0805816i −0.00491315 + 0.00283661i
\(808\) 6.49932 3.75238i 0.228645 0.132008i
\(809\) −8.78914 −0.309010 −0.154505 0.987992i \(-0.549378\pi\)
−0.154505 + 0.987992i \(0.549378\pi\)
\(810\) 0 0
\(811\) 7.04963 + 12.2103i 0.247546 + 0.428762i 0.962844 0.270057i \(-0.0870425\pi\)
−0.715298 + 0.698819i \(0.753709\pi\)
\(812\) −21.7682 12.5679i −0.763914 0.441046i
\(813\) 24.8108 14.3245i 0.870152 0.502383i
\(814\) 5.21589 9.03418i 0.182817 0.316648i
\(815\) 0 0
\(816\) −3.56370 −0.124755
\(817\) 24.6750 12.1533i 0.863269 0.425189i
\(818\) 6.67967i 0.233549i
\(819\) 11.2441 19.4754i 0.392901 0.680524i
\(820\) 0 0
\(821\) 15.2663 + 26.4420i 0.532797 + 0.922832i 0.999267 + 0.0382943i \(0.0121924\pi\)
−0.466469 + 0.884537i \(0.654474\pi\)
\(822\) −3.19616 1.84530i −0.111479 0.0643623i
\(823\) −12.4346 + 7.17914i −0.433444 + 0.250249i −0.700813 0.713345i \(-0.747179\pi\)
0.267369 + 0.963594i \(0.413846\pi\)
\(824\) 22.2484 0.775059
\(825\) 0 0
\(826\) 6.87495 + 11.9078i 0.239210 + 0.414324i
\(827\) 7.16518 4.13682i 0.249158 0.143851i −0.370221 0.928944i \(-0.620718\pi\)
0.619379 + 0.785092i \(0.287385\pi\)
\(828\) 28.2873i 0.983052i
\(829\) −13.1498 −0.456710 −0.228355 0.973578i \(-0.573335\pi\)
−0.228355 + 0.973578i \(0.573335\pi\)
\(830\) 0 0
\(831\) 0.269848 0.467391i 0.00936094 0.0162136i
\(832\) 17.6624 10.1974i 0.612333 0.353531i
\(833\) 3.28728 + 1.89791i 0.113897 + 0.0657587i
\(834\) 1.13346 1.96322i 0.0392486 0.0679806i
\(835\) 0 0
\(836\) −42.7794 2.82506i −1.47956 0.0977067i
\(837\) 23.4032i 0.808934i
\(838\) 1.37240 + 0.792358i 0.0474089 + 0.0273715i
\(839\) −4.20767 + 7.28790i −0.145265 + 0.251606i −0.929472 0.368893i \(-0.879737\pi\)
0.784207 + 0.620500i \(0.213070\pi\)
\(840\) 0 0
\(841\) 6.39543 11.0772i 0.220532 0.381973i
\(842\) −1.52448 + 0.880159i −0.0525371 + 0.0303323i
\(843\) 5.03410i 0.173384i
\(844\) −37.3918 −1.28708
\(845\) 0 0
\(846\) −1.15895 2.00737i −0.0398457 0.0690147i
\(847\) 51.5262i 1.77046i
\(848\) 24.4082i 0.838181i
\(849\) −9.20601 15.9453i −0.315950 0.547241i
\(850\) 0 0
\(851\) −24.8616 43.0616i −0.852245 1.47613i
\(852\) 0.773005 + 0.446294i 0.0264827 + 0.0152898i
\(853\) −45.0648 26.0182i −1.54299 0.890845i −0.998648 0.0519802i \(-0.983447\pi\)
−0.544340 0.838865i \(-0.683220\pi\)
\(854\) 6.26314 0.214320
\(855\) 0 0
\(856\) −10.6064 −0.362520
\(857\) −18.5845 10.7298i −0.634834 0.366522i 0.147788 0.989019i \(-0.452785\pi\)
−0.782622 + 0.622497i \(0.786118\pi\)
\(858\) 5.06849 + 2.92629i 0.173035 + 0.0999020i
\(859\) 9.07396 + 15.7166i 0.309599 + 0.536242i 0.978275 0.207313i \(-0.0664717\pi\)
−0.668675 + 0.743554i \(0.733138\pi\)
\(860\) 0 0
\(861\) −11.4954 19.9106i −0.391762 0.678552i
\(862\) 11.9362i 0.406549i
\(863\) 13.7867i 0.469303i −0.972080 0.234652i \(-0.924605\pi\)
0.972080 0.234652i \(-0.0753949\pi\)
\(864\) −8.89000 15.3979i −0.302444 0.523848i
\(865\) 0 0
\(866\) 2.16609 0.0736066
\(867\) 16.4581i 0.558948i
\(868\) −24.8756 + 14.3619i −0.844332 + 0.487475i
\(869\) −7.46320 + 12.9266i −0.253172 + 0.438506i
\(870\) 0 0
\(871\) 19.7907 34.2786i 0.670584 1.16148i
\(872\) 6.41158 + 3.70173i 0.217123 + 0.125356i
\(873\) 20.9945i 0.710557i
\(874\) 5.77796 8.63812i 0.195442 0.292189i
\(875\) 0 0
\(876\) 4.05113 7.01676i 0.136875 0.237075i
\(877\) −18.3543 10.5968i −0.619780 0.357830i 0.157003 0.987598i \(-0.449817\pi\)
−0.776783 + 0.629768i \(0.783150\pi\)
\(878\) 2.56681 1.48195i 0.0866257 0.0500134i
\(879\) 3.73521 6.46957i 0.125985 0.218213i
\(880\) 0 0
\(881\) 44.5944 1.50242 0.751212 0.660061i \(-0.229469\pi\)
0.751212 + 0.660061i \(0.229469\pi\)
\(882\) 2.26924i 0.0764093i
\(883\) 1.46665 0.846773i 0.0493568 0.0284962i −0.475119 0.879922i \(-0.657595\pi\)
0.524475 + 0.851426i \(0.324261\pi\)
\(884\) 3.39487 + 5.88009i 0.114182 + 0.197769i
\(885\) 0 0
\(886\) 10.7966 0.362720
\(887\) −41.9463 + 24.2177i −1.40842 + 0.813151i −0.995236 0.0974969i \(-0.968916\pi\)
−0.413183 + 0.910648i \(0.635583\pi\)
\(888\) −7.02688 4.05697i −0.235807 0.136143i
\(889\) −5.52273 9.56565i −0.185227 0.320822i
\(890\) 0 0
\(891\) 1.49806 2.59471i 0.0501868 0.0869260i
\(892\) 21.5706i 0.722238i
\(893\) −1.10340 + 16.7086i −0.0369239 + 0.559133i
\(894\) −4.08481 −0.136617
\(895\) 0 0
\(896\) −14.4102 + 24.9592i −0.481411 + 0.833828i
\(897\) 24.1590 13.9482i 0.806647 0.465718i
\(898\) 2.38235 + 1.37545i 0.0795001 + 0.0458994i
\(899\) 9.26149 + 16.0414i 0.308888 + 0.535009i
\(900\) 0 0
\(901\) 7.18499 0.239367
\(902\) −9.47588 + 5.47090i −0.315512 + 0.182161i
\(903\) −18.4615 + 10.6588i −0.614360 + 0.354701i
\(904\) 12.5613 0.417783
\(905\) 0 0
\(906\) 3.14561 + 5.44835i 0.104506 + 0.181009i
\(907\) 24.1957 + 13.9694i 0.803404 + 0.463846i 0.844660 0.535303i \(-0.179803\pi\)
−0.0412557 + 0.999149i \(0.513136\pi\)
\(908\) 18.3561 10.5979i 0.609169 0.351704i
\(909\) 5.99309 10.3803i 0.198778 0.344294i
\(910\) 0 0
\(911\) 45.0862 1.49377 0.746887 0.664951i \(-0.231548\pi\)
0.746887 + 0.664951i \(0.231548\pi\)
\(912\) −1.01418 + 15.3575i −0.0335828 + 0.508538i
\(913\) 28.4267i 0.940787i
\(914\) 0.103443 0.179169i 0.00342159 0.00592637i
\(915\) 0 0
\(916\) 3.34224 + 5.78893i 0.110431 + 0.191272i
\(917\) −6.88002 3.97218i −0.227198 0.131173i
\(918\) 1.38325 0.798617i 0.0456539 0.0263583i
\(919\) 5.86849 0.193584 0.0967918 0.995305i \(-0.469142\pi\)
0.0967918 + 0.995305i \(0.469142\pi\)
\(920\) 0 0
\(921\) −7.40467 12.8253i −0.243992 0.422607i
\(922\) 10.6529 6.15048i 0.350836 0.202555i
\(923\) 1.60972i 0.0529846i
\(924\) 33.2273 1.09310
\(925\) 0 0
\(926\) 2.42325 4.19720i 0.0796330 0.137928i
\(927\) 30.7732 17.7669i 1.01072 0.583542i
\(928\) 12.1870 + 7.03617i 0.400058 + 0.230974i
\(929\) 23.3157 40.3839i 0.764963 1.32495i −0.175304 0.984514i \(-0.556091\pi\)
0.940266 0.340440i \(-0.110576\pi\)
\(930\) 0 0
\(931\) 9.11442 13.6262i 0.298713 0.446579i
\(932\) 11.7808i 0.385894i
\(933\) −7.60393 4.39013i −0.248942 0.143726i
\(934\) 6.38328 11.0562i 0.208867 0.361769i
\(935\) 0 0
\(936\) −4.16230 + 7.20931i −0.136049 + 0.235644i
\(937\) 44.4219 25.6470i 1.45120 0.837850i 0.452649 0.891689i \(-0.350479\pi\)
0.998550 + 0.0538383i \(0.0171456\pi\)
\(938\) 11.4281i 0.373140i
\(939\) 21.9992 0.717916
\(940\) 0 0
\(941\) 5.67430 + 9.82817i 0.184977 + 0.320389i 0.943569 0.331177i \(-0.107446\pi\)
−0.758592 + 0.651566i \(0.774112\pi\)
\(942\) 0.988367i 0.0322027i
\(943\) 52.1543i 1.69838i
\(944\) 23.0970 + 40.0052i 0.751743 + 1.30206i
\(945\) 0 0
\(946\) 5.07272 + 8.78621i 0.164928 + 0.285664i
\(947\) −6.24348 3.60467i −0.202886 0.117136i 0.395115 0.918632i \(-0.370705\pi\)
−0.598001 + 0.801495i \(0.704038\pi\)
\(948\) 4.90258 + 2.83051i 0.159228 + 0.0919305i
\(949\) −14.6119 −0.474321
\(950\) 0 0
\(951\) 28.9309 0.938150
\(952\) −3.48177 2.01020i −0.112845 0.0651511i
\(953\) −17.7877 10.2697i −0.576199 0.332669i 0.183422 0.983034i \(-0.441282\pi\)
−0.759622 + 0.650365i \(0.774616\pi\)
\(954\) 2.14769 + 3.71991i 0.0695340 + 0.120436i
\(955\) 0 0
\(956\) 11.5355 + 19.9801i 0.373085 + 0.646202i
\(957\) 21.4271i 0.692639i
\(958\) 7.32930i 0.236799i
\(959\) 18.8935 + 32.7246i 0.610104 + 1.05673i
\(960\) 0 0
\(961\) −9.83289 −0.317190
\(962\) 7.13504i 0.230043i
\(963\) −14.6704 + 8.46998i −0.472748 + 0.272941i
\(964\) 4.85513 8.40933i 0.156373 0.270846i
\(965\) 0 0
\(966\) −4.02718 + 6.97528i −0.129572 + 0.224426i
\(967\) −14.7804 8.53345i −0.475305 0.274417i 0.243153 0.969988i \(-0.421818\pi\)
−0.718458 + 0.695571i \(0.755152\pi\)
\(968\) 19.0738i 0.613055i
\(969\) −4.52076 0.298541i −0.145228 0.00959053i
\(970\) 0 0
\(971\) 1.74085 3.01525i 0.0558667 0.0967639i −0.836740 0.547601i \(-0.815541\pi\)
0.892606 + 0.450837i \(0.148874\pi\)
\(972\) −26.1368 15.0901i −0.838337 0.484014i
\(973\) −20.1008 + 11.6052i −0.644403 + 0.372046i
\(974\) −3.72032 + 6.44379i −0.119207 + 0.206472i
\(975\) 0 0
\(976\) 21.0416 0.673524
\(977\) 21.9600i 0.702562i −0.936270 0.351281i \(-0.885746\pi\)
0.936270 0.351281i \(-0.114254\pi\)
\(978\) −6.23524 + 3.59992i −0.199381 + 0.115113i
\(979\) 18.4202 + 31.9047i 0.588711 + 1.01968i
\(980\) 0 0
\(981\) 11.8244 0.377523
\(982\) −4.40445 + 2.54291i −0.140552 + 0.0811476i
\(983\) 4.76057 + 2.74852i 0.151839 + 0.0876641i 0.573994 0.818859i \(-0.305393\pi\)
−0.422156 + 0.906523i \(0.638726\pi\)
\(984\) 4.25533 + 7.37044i 0.135655 + 0.234961i
\(985\) 0 0
\(986\) −0.632082 + 1.09480i −0.0201296 + 0.0348655i
\(987\) 12.9778i 0.413088i
\(988\) 26.3059 12.9566i 0.836903 0.412203i
\(989\) 48.3584 1.53771
\(990\) 0 0
\(991\) 14.7485 25.5452i 0.468502 0.811469i −0.530850 0.847466i \(-0.678127\pi\)
0.999352 + 0.0359970i \(0.0114607\pi\)
\(992\) 13.9267 8.04058i 0.442173 0.255289i
\(993\) −13.5318 7.81259i −0.429419 0.247925i
\(994\) 0.232382 + 0.402497i 0.00737071 + 0.0127664i
\(995\) 0 0
\(996\) 10.7812 0.341614
\(997\) 6.29123 3.63224i 0.199245 0.115034i −0.397058 0.917793i \(-0.629969\pi\)
0.596303 + 0.802759i \(0.296636\pi\)
\(998\) −8.64076 + 4.98874i −0.273518 + 0.157916i
\(999\) −33.0048 −1.04422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.j.d.49.7 24
5.2 odd 4 475.2.e.f.201.3 yes 12
5.3 odd 4 475.2.e.h.201.4 yes 12
5.4 even 2 inner 475.2.j.d.49.6 24
19.7 even 3 inner 475.2.j.d.349.6 24
95.7 odd 12 475.2.e.f.26.3 12
95.8 even 12 9025.2.a.by.1.4 6
95.27 even 12 9025.2.a.bs.1.3 6
95.64 even 6 inner 475.2.j.d.349.7 24
95.68 odd 12 9025.2.a.br.1.3 6
95.83 odd 12 475.2.e.h.26.4 yes 12
95.87 odd 12 9025.2.a.bz.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.e.f.26.3 12 95.7 odd 12
475.2.e.f.201.3 yes 12 5.2 odd 4
475.2.e.h.26.4 yes 12 95.83 odd 12
475.2.e.h.201.4 yes 12 5.3 odd 4
475.2.j.d.49.6 24 5.4 even 2 inner
475.2.j.d.49.7 24 1.1 even 1 trivial
475.2.j.d.349.6 24 19.7 even 3 inner
475.2.j.d.349.7 24 95.64 even 6 inner
9025.2.a.br.1.3 6 95.68 odd 12
9025.2.a.bs.1.3 6 95.27 even 12
9025.2.a.by.1.4 6 95.8 even 12
9025.2.a.bz.1.4 6 95.87 odd 12