Properties

Label 475.2.j.d.49.6
Level $475$
Weight $2$
Character 475.49
Analytic conductor $3.793$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(49,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.6
Character \(\chi\) \(=\) 475.49
Dual form 475.2.j.d.349.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.269427 - 0.155554i) q^{2} +(0.891863 + 0.514917i) q^{3} +(-0.951606 - 1.64823i) q^{4} +(-0.160195 - 0.277466i) q^{6} -3.28038i q^{7} +1.21432i q^{8} +(-0.969720 - 1.67960i) q^{9} -5.16792 q^{11} -1.95999i q^{12} +(-3.06115 + 1.76735i) q^{13} +(-0.510276 + 0.883825i) q^{14} +(-1.71432 + 2.96929i) q^{16} +(0.874064 + 0.504641i) q^{17} +0.603375i q^{18} +(-2.42346 + 3.62310i) q^{19} +(1.68913 - 2.92565i) q^{21} +(1.39238 + 0.803890i) q^{22} +(6.63680 - 3.83176i) q^{23} +(-0.625274 + 1.08301i) q^{24} +1.09968 q^{26} -5.08681i q^{27} +(-5.40683 + 3.12163i) q^{28} +(-2.01303 - 3.48667i) q^{29} -4.60077 q^{31} +(3.02703 - 1.74766i) q^{32} +(-4.60908 - 2.66105i) q^{33} +(-0.156998 - 0.271928i) q^{34} +(-1.84558 + 3.19664i) q^{36} -6.48831i q^{37} +(1.21653 - 0.599183i) q^{38} -3.64017 q^{39} +(3.40277 - 5.89377i) q^{41} +(-0.910193 + 0.525500i) q^{42} +(5.46481 + 3.15511i) q^{43} +(4.91782 + 8.51792i) q^{44} -2.38418 q^{46} +(-3.32690 + 1.92079i) q^{47} +(-3.05788 + 1.76547i) q^{48} -3.76091 q^{49} +(0.519697 + 0.900141i) q^{51} +(5.82601 + 3.36365i) q^{52} +(6.16516 - 3.55946i) q^{53} +(-0.791273 + 1.37052i) q^{54} +3.98343 q^{56} +(-4.02699 + 1.98343i) q^{57} +1.25254i q^{58} +(6.73649 - 11.6679i) q^{59} +(-3.06850 - 5.31480i) q^{61} +(1.23957 + 0.715668i) q^{62} +(-5.50975 + 3.18105i) q^{63} +5.76986 q^{64} +(0.827874 + 1.43392i) q^{66} +(-9.69770 + 5.59897i) q^{67} -1.92088i q^{68} +7.89215 q^{69} +(0.227702 - 0.394391i) q^{71} +(2.03958 - 1.17755i) q^{72} +(3.57999 + 2.06691i) q^{73} +(-1.00928 + 1.74813i) q^{74} +(8.27788 + 0.546653i) q^{76} +16.9528i q^{77} +(0.980760 + 0.566242i) q^{78} +(1.44414 - 2.50132i) q^{79} +(-0.289876 + 0.502080i) q^{81} +(-1.83360 + 1.05863i) q^{82} +5.50061i q^{83} -6.42953 q^{84} +(-0.981579 - 1.70014i) q^{86} -4.14617i q^{87} -6.27551i q^{88} +(-3.56433 - 6.17360i) q^{89} +(5.79760 + 10.0417i) q^{91} +(-12.6312 - 7.29264i) q^{92} +(-4.10326 - 2.36902i) q^{93} +1.19514 q^{94} +3.59960 q^{96} +(9.37476 + 5.41252i) q^{97} +(1.01329 + 0.585025i) q^{98} +(5.01144 + 8.68006i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} + 2 q^{6} + 14 q^{9} - 4 q^{11} - 12 q^{14} + 12 q^{16} + 12 q^{19} - 6 q^{21} + 22 q^{24} + 76 q^{26} + 6 q^{29} - 12 q^{31} - 2 q^{34} - 26 q^{36} - 32 q^{39} - 22 q^{41} + 42 q^{44} - 48 q^{46}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.269427 0.155554i −0.190514 0.109993i 0.401709 0.915767i \(-0.368416\pi\)
−0.592223 + 0.805774i \(0.701750\pi\)
\(3\) 0.891863 + 0.514917i 0.514917 + 0.297288i 0.734853 0.678227i \(-0.237251\pi\)
−0.219935 + 0.975514i \(0.570585\pi\)
\(4\) −0.951606 1.64823i −0.475803 0.824115i
\(5\) 0 0
\(6\) −0.160195 0.277466i −0.0653993 0.113275i
\(7\) 3.28038i 1.23987i −0.784654 0.619934i \(-0.787159\pi\)
0.784654 0.619934i \(-0.212841\pi\)
\(8\) 1.21432i 0.429327i
\(9\) −0.969720 1.67960i −0.323240 0.559868i
\(10\) 0 0
\(11\) −5.16792 −1.55819 −0.779093 0.626908i \(-0.784320\pi\)
−0.779093 + 0.626908i \(0.784320\pi\)
\(12\) 1.95999i 0.565801i
\(13\) −3.06115 + 1.76735i −0.849010 + 0.490176i −0.860317 0.509760i \(-0.829734\pi\)
0.0113069 + 0.999936i \(0.496401\pi\)
\(14\) −0.510276 + 0.883825i −0.136377 + 0.236212i
\(15\) 0 0
\(16\) −1.71432 + 2.96929i −0.428580 + 0.742322i
\(17\) 0.874064 + 0.504641i 0.211992 + 0.122393i 0.602237 0.798318i \(-0.294276\pi\)
−0.390245 + 0.920711i \(0.627610\pi\)
\(18\) 0.603375i 0.142217i
\(19\) −2.42346 + 3.62310i −0.555979 + 0.831196i
\(20\) 0 0
\(21\) 1.68913 2.92565i 0.368598 0.638430i
\(22\) 1.39238 + 0.803890i 0.296856 + 0.171390i
\(23\) 6.63680 3.83176i 1.38387 0.798976i 0.391253 0.920283i \(-0.372042\pi\)
0.992615 + 0.121307i \(0.0387085\pi\)
\(24\) −0.625274 + 1.08301i −0.127634 + 0.221068i
\(25\) 0 0
\(26\) 1.09968 0.215664
\(27\) 5.08681i 0.978956i
\(28\) −5.40683 + 3.12163i −1.02179 + 0.589933i
\(29\) −2.01303 3.48667i −0.373810 0.647458i 0.616338 0.787482i \(-0.288615\pi\)
−0.990148 + 0.140024i \(0.955282\pi\)
\(30\) 0 0
\(31\) −4.60077 −0.826323 −0.413162 0.910658i \(-0.635576\pi\)
−0.413162 + 0.910658i \(0.635576\pi\)
\(32\) 3.02703 1.74766i 0.535109 0.308945i
\(33\) −4.60908 2.66105i −0.802337 0.463230i
\(34\) −0.156998 0.271928i −0.0269249 0.0466353i
\(35\) 0 0
\(36\) −1.84558 + 3.19664i −0.307597 + 0.532774i
\(37\) 6.48831i 1.06667i −0.845904 0.533336i \(-0.820938\pi\)
0.845904 0.533336i \(-0.179062\pi\)
\(38\) 1.21653 0.599183i 0.197348 0.0972004i
\(39\) −3.64017 −0.582893
\(40\) 0 0
\(41\) 3.40277 5.89377i 0.531423 0.920451i −0.467904 0.883779i \(-0.654991\pi\)
0.999327 0.0366724i \(-0.0116758\pi\)
\(42\) −0.910193 + 0.525500i −0.140446 + 0.0810865i
\(43\) 5.46481 + 3.15511i 0.833376 + 0.481150i 0.855007 0.518616i \(-0.173553\pi\)
−0.0216315 + 0.999766i \(0.506886\pi\)
\(44\) 4.91782 + 8.51792i 0.741390 + 1.28412i
\(45\) 0 0
\(46\) −2.38418 −0.351528
\(47\) −3.32690 + 1.92079i −0.485278 + 0.280175i −0.722613 0.691252i \(-0.757059\pi\)
0.237335 + 0.971428i \(0.423726\pi\)
\(48\) −3.05788 + 1.76547i −0.441366 + 0.254823i
\(49\) −3.76091 −0.537273
\(50\) 0 0
\(51\) 0.519697 + 0.900141i 0.0727721 + 0.126045i
\(52\) 5.82601 + 3.36365i 0.807923 + 0.466454i
\(53\) 6.16516 3.55946i 0.846850 0.488929i −0.0127367 0.999919i \(-0.504054\pi\)
0.859587 + 0.510990i \(0.170721\pi\)
\(54\) −0.791273 + 1.37052i −0.107679 + 0.186505i
\(55\) 0 0
\(56\) 3.98343 0.532309
\(57\) −4.02699 + 1.98343i −0.533388 + 0.262711i
\(58\) 1.25254i 0.164466i
\(59\) 6.73649 11.6679i 0.877016 1.51904i 0.0224174 0.999749i \(-0.492864\pi\)
0.854599 0.519288i \(-0.173803\pi\)
\(60\) 0 0
\(61\) −3.06850 5.31480i −0.392881 0.680491i 0.599947 0.800040i \(-0.295188\pi\)
−0.992828 + 0.119549i \(0.961855\pi\)
\(62\) 1.23957 + 0.715668i 0.157426 + 0.0908899i
\(63\) −5.50975 + 3.18105i −0.694163 + 0.400775i
\(64\) 5.76986 0.721232
\(65\) 0 0
\(66\) 0.827874 + 1.43392i 0.101904 + 0.176503i
\(67\) −9.69770 + 5.59897i −1.18476 + 0.684023i −0.957112 0.289719i \(-0.906438\pi\)
−0.227652 + 0.973743i \(0.573105\pi\)
\(68\) 1.92088i 0.232941i
\(69\) 7.89215 0.950103
\(70\) 0 0
\(71\) 0.227702 0.394391i 0.0270233 0.0468056i −0.852198 0.523220i \(-0.824731\pi\)
0.879221 + 0.476415i \(0.158064\pi\)
\(72\) 2.03958 1.17755i 0.240367 0.138776i
\(73\) 3.57999 + 2.06691i 0.419007 + 0.241914i 0.694652 0.719346i \(-0.255558\pi\)
−0.275646 + 0.961259i \(0.588892\pi\)
\(74\) −1.00928 + 1.74813i −0.117327 + 0.203216i
\(75\) 0 0
\(76\) 8.27788 + 0.546653i 0.949538 + 0.0627054i
\(77\) 16.9528i 1.93195i
\(78\) 0.980760 + 0.566242i 0.111049 + 0.0641143i
\(79\) 1.44414 2.50132i 0.162478 0.281421i −0.773278 0.634067i \(-0.781385\pi\)
0.935757 + 0.352646i \(0.114718\pi\)
\(80\) 0 0
\(81\) −0.289876 + 0.502080i −0.0322085 + 0.0557867i
\(82\) −1.83360 + 1.05863i −0.202487 + 0.116906i
\(83\) 5.50061i 0.603770i 0.953344 + 0.301885i \(0.0976159\pi\)
−0.953344 + 0.301885i \(0.902384\pi\)
\(84\) −6.42953 −0.701519
\(85\) 0 0
\(86\) −0.981579 1.70014i −0.105846 0.183331i
\(87\) 4.14617i 0.444516i
\(88\) 6.27551i 0.668971i
\(89\) −3.56433 6.17360i −0.377818 0.654400i 0.612926 0.790140i \(-0.289992\pi\)
−0.990745 + 0.135740i \(0.956659\pi\)
\(90\) 0 0
\(91\) 5.79760 + 10.0417i 0.607754 + 1.05266i
\(92\) −12.6312 7.29264i −1.31690 0.760311i
\(93\) −4.10326 2.36902i −0.425488 0.245656i
\(94\) 1.19514 0.123270
\(95\) 0 0
\(96\) 3.59960 0.367382
\(97\) 9.37476 + 5.41252i 0.951862 + 0.549558i 0.893659 0.448747i \(-0.148129\pi\)
0.0582034 + 0.998305i \(0.481463\pi\)
\(98\) 1.01329 + 0.585025i 0.102358 + 0.0590964i
\(99\) 5.01144 + 8.68006i 0.503668 + 0.872379i
\(100\) 0 0
\(101\) 3.09011 + 5.35223i 0.307478 + 0.532567i 0.977810 0.209494i \(-0.0671818\pi\)
−0.670332 + 0.742061i \(0.733848\pi\)
\(102\) 0.323363i 0.0320177i
\(103\) 18.3217i 1.80529i −0.430387 0.902644i \(-0.641623\pi\)
0.430387 0.902644i \(-0.358377\pi\)
\(104\) −2.14613 3.71721i −0.210446 0.364503i
\(105\) 0 0
\(106\) −2.21475 −0.215116
\(107\) 8.73445i 0.844391i 0.906505 + 0.422196i \(0.138740\pi\)
−0.906505 + 0.422196i \(0.861260\pi\)
\(108\) −8.38423 + 4.84064i −0.806773 + 0.465790i
\(109\) −3.04839 + 5.27997i −0.291983 + 0.505730i −0.974279 0.225347i \(-0.927648\pi\)
0.682295 + 0.731077i \(0.260982\pi\)
\(110\) 0 0
\(111\) 3.34094 5.78668i 0.317108 0.549248i
\(112\) 9.74041 + 5.62363i 0.920382 + 0.531383i
\(113\) 10.3443i 0.973111i −0.873650 0.486556i \(-0.838253\pi\)
0.873650 0.486556i \(-0.161747\pi\)
\(114\) 1.39351 + 0.0920244i 0.130514 + 0.00861887i
\(115\) 0 0
\(116\) −3.83122 + 6.63587i −0.355720 + 0.616125i
\(117\) 5.93692 + 3.42768i 0.548868 + 0.316889i
\(118\) −3.62999 + 2.09578i −0.334168 + 0.192932i
\(119\) 1.65542 2.86726i 0.151752 0.262842i
\(120\) 0 0
\(121\) 15.7074 1.42794
\(122\) 1.90927i 0.172857i
\(123\) 6.06960 3.50429i 0.547278 0.315971i
\(124\) 4.37812 + 7.58313i 0.393167 + 0.680985i
\(125\) 0 0
\(126\) 1.97930 0.176330
\(127\) 2.91602 1.68356i 0.258755 0.149392i −0.365012 0.931003i \(-0.618935\pi\)
0.623766 + 0.781611i \(0.285602\pi\)
\(128\) −7.60862 4.39284i −0.672514 0.388276i
\(129\) 3.24924 + 5.62785i 0.286080 + 0.495504i
\(130\) 0 0
\(131\) −1.21089 + 2.09732i −0.105796 + 0.183244i −0.914063 0.405572i \(-0.867072\pi\)
0.808267 + 0.588816i \(0.200406\pi\)
\(132\) 10.1291i 0.881624i
\(133\) 11.8852 + 7.94987i 1.03057 + 0.689341i
\(134\) 3.48377 0.300952
\(135\) 0 0
\(136\) −0.612795 + 1.06139i −0.0525468 + 0.0910137i
\(137\) −9.97584 + 5.75955i −0.852293 + 0.492072i −0.861424 0.507886i \(-0.830427\pi\)
0.00913057 + 0.999958i \(0.497094\pi\)
\(138\) −2.12636 1.22765i −0.181008 0.104505i
\(139\) 3.53776 + 6.12759i 0.300069 + 0.519735i 0.976151 0.217091i \(-0.0696569\pi\)
−0.676082 + 0.736826i \(0.736324\pi\)
\(140\) 0 0
\(141\) −3.95618 −0.333171
\(142\) −0.122698 + 0.0708399i −0.0102966 + 0.00594475i
\(143\) 15.8198 9.13355i 1.32292 0.763785i
\(144\) 6.64964 0.554137
\(145\) 0 0
\(146\) −0.643032 1.11376i −0.0532177 0.0921758i
\(147\) −3.35422 1.93656i −0.276651 0.159725i
\(148\) −10.6942 + 6.17431i −0.879060 + 0.507525i
\(149\) 6.37476 11.0414i 0.522240 0.904547i −0.477425 0.878673i \(-0.658430\pi\)
0.999665 0.0258744i \(-0.00823700\pi\)
\(150\) 0 0
\(151\) −19.6361 −1.59797 −0.798983 0.601353i \(-0.794628\pi\)
−0.798983 + 0.601353i \(0.794628\pi\)
\(152\) −4.39960 2.94285i −0.356855 0.238697i
\(153\) 1.95744i 0.158250i
\(154\) 2.63707 4.56753i 0.212501 0.368062i
\(155\) 0 0
\(156\) 3.46400 + 5.99983i 0.277342 + 0.480371i
\(157\) −2.67159 1.54244i −0.213216 0.123101i 0.389589 0.920989i \(-0.372617\pi\)
−0.602805 + 0.797888i \(0.705950\pi\)
\(158\) −0.778182 + 0.449283i −0.0619088 + 0.0357431i
\(159\) 7.33131 0.581410
\(160\) 0 0
\(161\) −12.5696 21.7712i −0.990625 1.71581i
\(162\) 0.156201 0.0901827i 0.0122723 0.00708542i
\(163\) 22.4721i 1.76015i 0.474831 + 0.880077i \(0.342509\pi\)
−0.474831 + 0.880077i \(0.657491\pi\)
\(164\) −12.9524 −1.01141
\(165\) 0 0
\(166\) 0.855642 1.48201i 0.0664107 0.115027i
\(167\) 9.12769 5.26987i 0.706322 0.407795i −0.103376 0.994642i \(-0.532964\pi\)
0.809698 + 0.586847i \(0.199631\pi\)
\(168\) 3.55268 + 2.05114i 0.274095 + 0.158249i
\(169\) −0.252915 + 0.438062i −0.0194550 + 0.0336970i
\(170\) 0 0
\(171\) 8.43545 + 0.557059i 0.645075 + 0.0425994i
\(172\) 12.0097i 0.915730i
\(173\) 19.8650 + 11.4691i 1.51031 + 0.871977i 0.999928 + 0.0120281i \(0.00382875\pi\)
0.510380 + 0.859949i \(0.329505\pi\)
\(174\) −0.644953 + 1.11709i −0.0488938 + 0.0846865i
\(175\) 0 0
\(176\) 8.85947 15.3450i 0.667807 1.15668i
\(177\) 12.0161 6.93747i 0.903182 0.521452i
\(178\) 2.21778i 0.166230i
\(179\) −23.2705 −1.73932 −0.869661 0.493649i \(-0.835663\pi\)
−0.869661 + 0.493649i \(0.835663\pi\)
\(180\) 0 0
\(181\) 7.98346 + 13.8278i 0.593406 + 1.02781i 0.993770 + 0.111453i \(0.0355503\pi\)
−0.400364 + 0.916356i \(0.631116\pi\)
\(182\) 3.60736i 0.267395i
\(183\) 6.32010i 0.467195i
\(184\) 4.65298 + 8.05919i 0.343022 + 0.594132i
\(185\) 0 0
\(186\) 0.737020 + 1.27656i 0.0540409 + 0.0936016i
\(187\) −4.51709 2.60794i −0.330322 0.190712i
\(188\) 6.33179 + 3.65566i 0.461793 + 0.266617i
\(189\) −16.6867 −1.21378
\(190\) 0 0
\(191\) −2.44600 −0.176986 −0.0884930 0.996077i \(-0.528205\pi\)
−0.0884930 + 0.996077i \(0.528205\pi\)
\(192\) 5.14592 + 2.97100i 0.371375 + 0.214413i
\(193\) −16.4940 9.52280i −1.18726 0.685466i −0.229579 0.973290i \(-0.573735\pi\)
−0.957683 + 0.287824i \(0.907068\pi\)
\(194\) −1.68388 2.91656i −0.120895 0.209397i
\(195\) 0 0
\(196\) 3.57891 + 6.19885i 0.255636 + 0.442775i
\(197\) 6.18524i 0.440680i −0.975423 0.220340i \(-0.929283\pi\)
0.975423 0.220340i \(-0.0707167\pi\)
\(198\) 3.11819i 0.221600i
\(199\) 3.60525 + 6.24447i 0.255569 + 0.442659i 0.965050 0.262066i \(-0.0844038\pi\)
−0.709481 + 0.704725i \(0.751070\pi\)
\(200\) 0 0
\(201\) −11.5320 −0.813407
\(202\) 1.92272i 0.135282i
\(203\) −11.4376 + 6.60350i −0.802763 + 0.463475i
\(204\) 0.989093 1.71316i 0.0692504 0.119945i
\(205\) 0 0
\(206\) −2.85001 + 4.93636i −0.198570 + 0.343933i
\(207\) −12.8717 7.43146i −0.894643 0.516522i
\(208\) 12.1192i 0.840318i
\(209\) 12.5242 18.7239i 0.866320 1.29516i
\(210\) 0 0
\(211\) 9.82333 17.0145i 0.676266 1.17133i −0.299831 0.953992i \(-0.596930\pi\)
0.976097 0.217335i \(-0.0697362\pi\)
\(212\) −11.7336 6.77440i −0.805868 0.465268i
\(213\) 0.406158 0.234495i 0.0278295 0.0160674i
\(214\) 1.35868 2.35330i 0.0928773 0.160868i
\(215\) 0 0
\(216\) 6.17701 0.420292
\(217\) 15.0923i 1.02453i
\(218\) 1.64264 0.948379i 0.111254 0.0642323i
\(219\) 2.12858 + 3.68680i 0.143836 + 0.249131i
\(220\) 0 0
\(221\) −3.56752 −0.239977
\(222\) −1.80028 + 1.03939i −0.120827 + 0.0697595i
\(223\) −9.81536 5.66690i −0.657285 0.379484i 0.133957 0.990987i \(-0.457232\pi\)
−0.791242 + 0.611504i \(0.790565\pi\)
\(224\) −5.73299 9.92983i −0.383051 0.663464i
\(225\) 0 0
\(226\) −1.60910 + 2.78704i −0.107036 + 0.185391i
\(227\) 11.1369i 0.739180i −0.929195 0.369590i \(-0.879498\pi\)
0.929195 0.369590i \(-0.120502\pi\)
\(228\) 7.10125 + 4.74996i 0.470292 + 0.314574i
\(229\) −3.51221 −0.232093 −0.116047 0.993244i \(-0.537022\pi\)
−0.116047 + 0.993244i \(0.537022\pi\)
\(230\) 0 0
\(231\) −8.72927 + 15.1195i −0.574344 + 0.994792i
\(232\) 4.23393 2.44446i 0.277971 0.160487i
\(233\) 5.36068 + 3.09499i 0.351190 + 0.202759i 0.665209 0.746657i \(-0.268342\pi\)
−0.314020 + 0.949417i \(0.601676\pi\)
\(234\) −1.06638 1.84702i −0.0697113 0.120744i
\(235\) 0 0
\(236\) −25.6419 −1.66915
\(237\) 2.57595 1.48723i 0.167326 0.0966057i
\(238\) −0.892028 + 0.515013i −0.0578216 + 0.0333833i
\(239\) −12.1221 −0.784116 −0.392058 0.919940i \(-0.628237\pi\)
−0.392058 + 0.919940i \(0.628237\pi\)
\(240\) 0 0
\(241\) 2.55102 + 4.41849i 0.164326 + 0.284620i 0.936416 0.350893i \(-0.114122\pi\)
−0.772090 + 0.635513i \(0.780789\pi\)
\(242\) −4.23200 2.44335i −0.272043 0.157064i
\(243\) −13.7330 + 7.92873i −0.880971 + 0.508629i
\(244\) −5.84001 + 10.1152i −0.373868 + 0.647559i
\(245\) 0 0
\(246\) −2.18042 −0.139019
\(247\) 1.01526 15.3740i 0.0645996 0.978221i
\(248\) 5.58681i 0.354763i
\(249\) −2.83236 + 4.90579i −0.179494 + 0.310892i
\(250\) 0 0
\(251\) −12.7122 22.0181i −0.802385 1.38977i −0.918042 0.396483i \(-0.870231\pi\)
0.115657 0.993289i \(-0.463103\pi\)
\(252\) 10.4862 + 6.05422i 0.660570 + 0.381380i
\(253\) −34.2984 + 19.8022i −2.15632 + 1.24495i
\(254\) −1.04754 −0.0657285
\(255\) 0 0
\(256\) −4.40321 7.62659i −0.275201 0.476662i
\(257\) 15.9781 9.22493i 0.996684 0.575436i 0.0894183 0.995994i \(-0.471499\pi\)
0.907265 + 0.420559i \(0.138166\pi\)
\(258\) 2.02173i 0.125867i
\(259\) −21.2841 −1.32253
\(260\) 0 0
\(261\) −3.90415 + 6.76218i −0.241661 + 0.418569i
\(262\) 0.652493 0.376717i 0.0403111 0.0232737i
\(263\) 11.2155 + 6.47530i 0.691580 + 0.399284i 0.804204 0.594354i \(-0.202592\pi\)
−0.112624 + 0.993638i \(0.535925\pi\)
\(264\) 3.23137 5.59689i 0.198877 0.344465i
\(265\) 0 0
\(266\) −1.96555 3.99069i −0.120516 0.244685i
\(267\) 7.34134i 0.449283i
\(268\) 18.4568 + 10.6560i 1.12743 + 0.650921i
\(269\) 0.0782471 0.135528i 0.00477081 0.00826329i −0.863630 0.504126i \(-0.831815\pi\)
0.868401 + 0.495863i \(0.165148\pi\)
\(270\) 0 0
\(271\) −13.9095 + 24.0920i −0.844944 + 1.46349i 0.0407264 + 0.999170i \(0.487033\pi\)
−0.885670 + 0.464315i \(0.846301\pi\)
\(272\) −2.99685 + 1.73023i −0.181711 + 0.104911i
\(273\) 11.9411i 0.722711i
\(274\) 3.58368 0.216498
\(275\) 0 0
\(276\) −7.51022 13.0081i −0.452062 0.782994i
\(277\) 0.524062i 0.0314878i −0.999876 0.0157439i \(-0.994988\pi\)
0.999876 0.0157439i \(-0.00501165\pi\)
\(278\) 2.20125i 0.132022i
\(279\) 4.46146 + 7.72748i 0.267101 + 0.462632i
\(280\) 0 0
\(281\) 2.44413 + 4.23336i 0.145804 + 0.252541i 0.929673 0.368386i \(-0.120090\pi\)
−0.783868 + 0.620927i \(0.786756\pi\)
\(282\) 1.06590 + 0.615400i 0.0634736 + 0.0366465i
\(283\) −15.4833 8.93931i −0.920389 0.531387i −0.0366299 0.999329i \(-0.511662\pi\)
−0.883759 + 0.467942i \(0.844996\pi\)
\(284\) −0.866730 −0.0514310
\(285\) 0 0
\(286\) −5.68304 −0.336045
\(287\) −19.3338 11.1624i −1.14124 0.658894i
\(288\) −5.87075 3.38948i −0.345937 0.199727i
\(289\) −7.99068 13.8403i −0.470040 0.814133i
\(290\) 0 0
\(291\) 5.57400 + 9.65445i 0.326754 + 0.565954i
\(292\) 7.86754i 0.460413i
\(293\) 7.25399i 0.423783i −0.977293 0.211891i \(-0.932038\pi\)
0.977293 0.211891i \(-0.0679623\pi\)
\(294\) 0.602479 + 1.04352i 0.0351373 + 0.0608595i
\(295\) 0 0
\(296\) 7.87888 0.457951
\(297\) 26.2882i 1.52540i
\(298\) −3.43507 + 1.98324i −0.198988 + 0.114886i
\(299\) −13.5441 + 23.4591i −0.783278 + 1.35668i
\(300\) 0 0
\(301\) 10.3500 17.9267i 0.596562 1.03328i
\(302\) 5.29051 + 3.05448i 0.304435 + 0.175766i
\(303\) 6.36461i 0.365637i
\(304\) −6.60345 13.4071i −0.378734 0.768950i
\(305\) 0 0
\(306\) −0.304488 + 0.527388i −0.0174064 + 0.0301488i
\(307\) −12.4537 7.19015i −0.710771 0.410364i 0.100576 0.994929i \(-0.467932\pi\)
−0.811346 + 0.584566i \(0.801265\pi\)
\(308\) 27.9420 16.1323i 1.59215 0.919226i
\(309\) 9.43415 16.3404i 0.536690 0.929574i
\(310\) 0 0
\(311\) 8.52590 0.483459 0.241730 0.970344i \(-0.422285\pi\)
0.241730 + 0.970344i \(0.422285\pi\)
\(312\) 4.42033i 0.250252i
\(313\) 18.4999 10.6809i 1.04568 0.603722i 0.124241 0.992252i \(-0.460350\pi\)
0.921436 + 0.388530i \(0.127017\pi\)
\(314\) 0.479867 + 0.831153i 0.0270804 + 0.0469047i
\(315\) 0 0
\(316\) −5.49701 −0.309231
\(317\) 24.3291 14.0464i 1.36646 0.788924i 0.375983 0.926626i \(-0.377305\pi\)
0.990474 + 0.137702i \(0.0439717\pi\)
\(318\) −1.97525 1.14041i −0.110767 0.0639512i
\(319\) 10.4032 + 18.0188i 0.582466 + 1.00886i
\(320\) 0 0
\(321\) −4.49752 + 7.78993i −0.251027 + 0.434792i
\(322\) 7.82102i 0.435848i
\(323\) −3.94662 + 1.94384i −0.219596 + 0.108158i
\(324\) 1.10339 0.0612995
\(325\) 0 0
\(326\) 3.49563 6.05461i 0.193605 0.335334i
\(327\) −5.43750 + 3.13934i −0.300694 + 0.173606i
\(328\) 7.15692 + 4.13205i 0.395175 + 0.228154i
\(329\) 6.30091 + 10.9135i 0.347381 + 0.601681i
\(330\) 0 0
\(331\) 15.1725 0.833957 0.416979 0.908916i \(-0.363089\pi\)
0.416979 + 0.908916i \(0.363089\pi\)
\(332\) 9.06627 5.23441i 0.497576 0.287276i
\(333\) −10.8978 + 6.29184i −0.597195 + 0.344791i
\(334\) −3.27900 −0.179419
\(335\) 0 0
\(336\) 5.79140 + 10.0310i 0.315947 + 0.547236i
\(337\) 15.1562 + 8.75041i 0.825608 + 0.476665i 0.852347 0.522977i \(-0.175179\pi\)
−0.0267383 + 0.999642i \(0.508512\pi\)
\(338\) 0.136284 0.0786838i 0.00741289 0.00427984i
\(339\) 5.32647 9.22571i 0.289294 0.501072i
\(340\) 0 0
\(341\) 23.7764 1.28757
\(342\) −2.18609 1.46225i −0.118210 0.0790697i
\(343\) 10.6254i 0.573720i
\(344\) −3.83131 + 6.63603i −0.206570 + 0.357791i
\(345\) 0 0
\(346\) −3.56812 6.18016i −0.191823 0.332247i
\(347\) −15.0417 8.68435i −0.807483 0.466201i 0.0385980 0.999255i \(-0.487711\pi\)
−0.846081 + 0.533054i \(0.821044\pi\)
\(348\) −6.83385 + 3.94552i −0.366333 + 0.211502i
\(349\) 34.2563 1.83370 0.916850 0.399232i \(-0.130723\pi\)
0.916850 + 0.399232i \(0.130723\pi\)
\(350\) 0 0
\(351\) 8.99019 + 15.5715i 0.479861 + 0.831144i
\(352\) −15.6435 + 9.03176i −0.833799 + 0.481394i
\(353\) 34.9287i 1.85907i −0.368736 0.929534i \(-0.620209\pi\)
0.368736 0.929534i \(-0.379791\pi\)
\(354\) −4.31660 −0.229425
\(355\) 0 0
\(356\) −6.78367 + 11.7497i −0.359534 + 0.622731i
\(357\) 2.95281 1.70480i 0.156279 0.0902278i
\(358\) 6.26972 + 3.61982i 0.331365 + 0.191314i
\(359\) −0.488273 + 0.845713i −0.0257701 + 0.0446350i −0.878623 0.477516i \(-0.841537\pi\)
0.852853 + 0.522151i \(0.174870\pi\)
\(360\) 0 0
\(361\) −7.25370 17.5609i −0.381774 0.924256i
\(362\) 4.96743i 0.261082i
\(363\) 14.0088 + 8.08801i 0.735273 + 0.424510i
\(364\) 11.0341 19.1116i 0.578342 1.00172i
\(365\) 0 0
\(366\) −0.983116 + 1.70281i −0.0513883 + 0.0890071i
\(367\) 8.54451 4.93318i 0.446020 0.257510i −0.260128 0.965574i \(-0.583765\pi\)
0.706148 + 0.708064i \(0.250431\pi\)
\(368\) 26.2754i 1.36970i
\(369\) −13.1989 −0.687109
\(370\) 0 0
\(371\) −11.6764 20.2241i −0.606208 1.04998i
\(372\) 9.01748i 0.467535i
\(373\) 12.9521i 0.670634i 0.942105 + 0.335317i \(0.108843\pi\)
−0.942105 + 0.335317i \(0.891157\pi\)
\(374\) 0.811352 + 1.40530i 0.0419540 + 0.0726664i
\(375\) 0 0
\(376\) −2.33245 4.03992i −0.120287 0.208343i
\(377\) 12.3244 + 7.11547i 0.634737 + 0.366465i
\(378\) 4.49585 + 2.59568i 0.231241 + 0.133507i
\(379\) −5.21597 −0.267926 −0.133963 0.990986i \(-0.542770\pi\)
−0.133963 + 0.990986i \(0.542770\pi\)
\(380\) 0 0
\(381\) 3.46758 0.177650
\(382\) 0.659018 + 0.380484i 0.0337183 + 0.0194673i
\(383\) 29.0390 + 16.7657i 1.48382 + 0.856686i 0.999831 0.0183857i \(-0.00585269\pi\)
0.483993 + 0.875072i \(0.339186\pi\)
\(384\) −4.52390 7.83562i −0.230859 0.399860i
\(385\) 0 0
\(386\) 2.96262 + 5.13141i 0.150793 + 0.261182i
\(387\) 12.2383i 0.622107i
\(388\) 20.6023i 1.04593i
\(389\) 13.8703 + 24.0241i 0.703253 + 1.21807i 0.967318 + 0.253565i \(0.0816031\pi\)
−0.264066 + 0.964505i \(0.585064\pi\)
\(390\) 0 0
\(391\) 7.73464 0.391158
\(392\) 4.56695i 0.230666i
\(393\) −2.15989 + 1.24702i −0.108952 + 0.0629036i
\(394\) −0.962139 + 1.66647i −0.0484718 + 0.0839557i
\(395\) 0 0
\(396\) 9.53783 16.5200i 0.479294 0.830161i
\(397\) 4.76264 + 2.74971i 0.239030 + 0.138004i 0.614731 0.788737i \(-0.289265\pi\)
−0.375701 + 0.926741i \(0.622598\pi\)
\(398\) 2.24324i 0.112444i
\(399\) 6.50640 + 13.2101i 0.325728 + 0.661331i
\(400\) 0 0
\(401\) 4.25655 7.37256i 0.212562 0.368168i −0.739954 0.672658i \(-0.765153\pi\)
0.952516 + 0.304490i \(0.0984860\pi\)
\(402\) 3.10704 + 1.79385i 0.154965 + 0.0894692i
\(403\) 14.0836 8.13120i 0.701556 0.405044i
\(404\) 5.88114 10.1864i 0.292597 0.506794i
\(405\) 0 0
\(406\) 4.10880 0.203917
\(407\) 33.5311i 1.66207i
\(408\) −1.09306 + 0.631078i −0.0541145 + 0.0312430i
\(409\) −10.7353 18.5941i −0.530826 0.919418i −0.999353 0.0359683i \(-0.988548\pi\)
0.468527 0.883449i \(-0.344785\pi\)
\(410\) 0 0
\(411\) −11.8628 −0.585148
\(412\) −30.1983 + 17.4350i −1.48777 + 0.858962i
\(413\) −38.2753 22.0983i −1.88341 1.08738i
\(414\) 2.31199 + 4.00448i 0.113628 + 0.196809i
\(415\) 0 0
\(416\) −6.17746 + 10.6997i −0.302875 + 0.524595i
\(417\) 7.28662i 0.356827i
\(418\) −6.28694 + 3.09653i −0.307504 + 0.151456i
\(419\) 5.09378 0.248848 0.124424 0.992229i \(-0.460292\pi\)
0.124424 + 0.992229i \(0.460292\pi\)
\(420\) 0 0
\(421\) −2.82911 + 4.90017i −0.137883 + 0.238820i −0.926695 0.375815i \(-0.877363\pi\)
0.788812 + 0.614634i \(0.210696\pi\)
\(422\) −5.29335 + 3.05611i −0.257676 + 0.148769i
\(423\) 6.45232 + 3.72525i 0.313723 + 0.181128i
\(424\) 4.32232 + 7.48648i 0.209910 + 0.363576i
\(425\) 0 0
\(426\) −0.145907 −0.00706920
\(427\) −17.4346 + 10.0659i −0.843719 + 0.487121i
\(428\) 14.3964 8.31176i 0.695876 0.401764i
\(429\) 18.8121 0.908256
\(430\) 0 0
\(431\) 19.1834 + 33.2267i 0.924033 + 1.60047i 0.793109 + 0.609079i \(0.208461\pi\)
0.130923 + 0.991392i \(0.458206\pi\)
\(432\) 15.1042 + 8.72041i 0.726701 + 0.419561i
\(433\) −6.02970 + 3.48125i −0.289769 + 0.167298i −0.637838 0.770171i \(-0.720171\pi\)
0.348069 + 0.937469i \(0.386838\pi\)
\(434\) 2.34767 4.06628i 0.112692 0.195188i
\(435\) 0 0
\(436\) 11.6035 0.555706
\(437\) −2.20116 + 33.3319i −0.105296 + 1.59448i
\(438\) 1.32443i 0.0632839i
\(439\) 4.76346 8.25055i 0.227347 0.393777i −0.729674 0.683796i \(-0.760328\pi\)
0.957021 + 0.290018i \(0.0936613\pi\)
\(440\) 0 0
\(441\) 3.64703 + 6.31685i 0.173668 + 0.300802i
\(442\) 0.961187 + 0.554941i 0.0457190 + 0.0263959i
\(443\) −30.0544 + 17.3519i −1.42793 + 0.824414i −0.996957 0.0779516i \(-0.975162\pi\)
−0.430971 + 0.902366i \(0.641829\pi\)
\(444\) −12.7170 −0.603524
\(445\) 0 0
\(446\) 1.76302 + 3.05363i 0.0834813 + 0.144594i
\(447\) 11.3708 6.56495i 0.537821 0.310511i
\(448\) 18.9273i 0.894233i
\(449\) 8.84228 0.417293 0.208646 0.977991i \(-0.433094\pi\)
0.208646 + 0.977991i \(0.433094\pi\)
\(450\) 0 0
\(451\) −17.5852 + 30.4585i −0.828056 + 1.43423i
\(452\) −17.0498 + 9.84371i −0.801956 + 0.463009i
\(453\) −17.5127 10.1110i −0.822821 0.475056i
\(454\) −1.73238 + 3.00058i −0.0813048 + 0.140824i
\(455\) 0 0
\(456\) −2.40852 4.89005i −0.112789 0.228998i
\(457\) 0.664998i 0.0311073i 0.999879 + 0.0155536i \(0.00495108\pi\)
−0.999879 + 0.0155536i \(0.995049\pi\)
\(458\) 0.946285 + 0.546338i 0.0442170 + 0.0255287i
\(459\) 2.56701 4.44619i 0.119818 0.207531i
\(460\) 0 0
\(461\) 19.7696 34.2420i 0.920762 1.59481i 0.122524 0.992466i \(-0.460901\pi\)
0.798238 0.602342i \(-0.205766\pi\)
\(462\) 4.70381 2.71574i 0.218841 0.126348i
\(463\) 15.5782i 0.723981i 0.932182 + 0.361991i \(0.117903\pi\)
−0.932182 + 0.361991i \(0.882097\pi\)
\(464\) 13.8039 0.640830
\(465\) 0 0
\(466\) −0.962875 1.66775i −0.0446043 0.0772569i
\(467\) 41.0358i 1.89891i 0.313901 + 0.949456i \(0.398364\pi\)
−0.313901 + 0.949456i \(0.601636\pi\)
\(468\) 13.0472i 0.603107i
\(469\) 18.3668 + 31.8122i 0.848099 + 1.46895i
\(470\) 0 0
\(471\) −1.58846 2.75130i −0.0731925 0.126773i
\(472\) 14.1686 + 8.18025i 0.652163 + 0.376527i
\(473\) −28.2417 16.3053i −1.29855 0.749721i
\(474\) −0.925375 −0.0425039
\(475\) 0 0
\(476\) −6.30121 −0.288816
\(477\) −11.9570 6.90336i −0.547472 0.316083i
\(478\) 3.26604 + 1.88565i 0.149385 + 0.0862475i
\(479\) −11.7794 20.4024i −0.538213 0.932211i −0.999000 0.0447012i \(-0.985766\pi\)
0.460788 0.887510i \(-0.347567\pi\)
\(480\) 0 0
\(481\) 11.4671 + 19.8617i 0.522857 + 0.905614i
\(482\) 1.58728i 0.0722988i
\(483\) 25.8893i 1.17800i
\(484\) −14.9472 25.8894i −0.679420 1.17679i
\(485\) 0 0
\(486\) 4.93338 0.223783
\(487\) 23.9166i 1.08377i −0.840454 0.541883i \(-0.817712\pi\)
0.840454 0.541883i \(-0.182288\pi\)
\(488\) 6.45387 3.72614i 0.292153 0.168675i
\(489\) −11.5713 + 20.0421i −0.523272 + 0.906334i
\(490\) 0 0
\(491\) −8.17373 + 14.1573i −0.368875 + 0.638911i −0.989390 0.145284i \(-0.953590\pi\)
0.620515 + 0.784195i \(0.286924\pi\)
\(492\) −11.5517 6.66940i −0.520793 0.300680i
\(493\) 4.06343i 0.183007i
\(494\) −2.66502 + 3.98423i −0.119905 + 0.179259i
\(495\) 0 0
\(496\) 7.88720 13.6610i 0.354146 0.613398i
\(497\) −1.29375 0.746950i −0.0580328 0.0335053i
\(498\) 1.52623 0.881169i 0.0683920 0.0394861i
\(499\) −16.0354 + 27.7742i −0.717844 + 1.24334i 0.244009 + 0.969773i \(0.421537\pi\)
−0.961852 + 0.273569i \(0.911796\pi\)
\(500\) 0 0
\(501\) 10.8542 0.484930
\(502\) 7.90972i 0.353028i
\(503\) −12.7525 + 7.36269i −0.568608 + 0.328286i −0.756593 0.653886i \(-0.773138\pi\)
0.187985 + 0.982172i \(0.439804\pi\)
\(504\) −3.86282 6.69060i −0.172064 0.298023i
\(505\) 0 0
\(506\) 12.3212 0.547746
\(507\) −0.451131 + 0.260461i −0.0200354 + 0.0115675i
\(508\) −5.54980 3.20418i −0.246232 0.142162i
\(509\) −11.0332 19.1100i −0.489037 0.847036i 0.510884 0.859650i \(-0.329318\pi\)
−0.999920 + 0.0126136i \(0.995985\pi\)
\(510\) 0 0
\(511\) 6.78026 11.7438i 0.299941 0.519513i
\(512\) 20.3111i 0.897633i
\(513\) 18.4300 + 12.3277i 0.813705 + 0.544280i
\(514\) −5.73990 −0.253176
\(515\) 0 0
\(516\) 6.18399 10.7110i 0.272235 0.471525i
\(517\) 17.1931 9.92647i 0.756154 0.436565i
\(518\) 5.73453 + 3.31083i 0.251961 + 0.145470i
\(519\) 11.8112 + 20.4577i 0.518456 + 0.897992i
\(520\) 0 0
\(521\) −14.7781 −0.647442 −0.323721 0.946153i \(-0.604934\pi\)
−0.323721 + 0.946153i \(0.604934\pi\)
\(522\) 2.10377 1.21461i 0.0920794 0.0531621i
\(523\) 11.0072 6.35498i 0.481309 0.277884i −0.239653 0.970859i \(-0.577034\pi\)
0.720962 + 0.692975i \(0.243700\pi\)
\(524\) 4.60916 0.201352
\(525\) 0 0
\(526\) −2.01452 3.48924i −0.0878371 0.152138i
\(527\) −4.02137 2.32174i −0.175174 0.101136i
\(528\) 15.8029 9.12378i 0.687731 0.397062i
\(529\) 17.8647 30.9426i 0.776726 1.34533i
\(530\) 0 0
\(531\) −26.1301 −1.13395
\(532\) 1.79323 27.1546i 0.0777464 1.17730i
\(533\) 24.0556i 1.04196i
\(534\) −1.14197 + 1.97796i −0.0494180 + 0.0855946i
\(535\) 0 0
\(536\) −6.79894 11.7761i −0.293670 0.508651i
\(537\) −20.7541 11.9824i −0.895607 0.517079i
\(538\) −0.0421638 + 0.0243433i −0.00181781 + 0.00104951i
\(539\) 19.4361 0.837172
\(540\) 0 0
\(541\) 15.1172 + 26.1838i 0.649941 + 1.12573i 0.983137 + 0.182873i \(0.0585396\pi\)
−0.333196 + 0.942858i \(0.608127\pi\)
\(542\) 7.49521 4.32736i 0.321947 0.185876i
\(543\) 16.4433i 0.705649i
\(544\) 3.52776 0.151251
\(545\) 0 0
\(546\) 1.85749 3.21727i 0.0794933 0.137686i
\(547\) −6.76144 + 3.90372i −0.289098 + 0.166911i −0.637535 0.770421i \(-0.720046\pi\)
0.348437 + 0.937332i \(0.386713\pi\)
\(548\) 18.9861 + 10.9617i 0.811048 + 0.468259i
\(549\) −5.95118 + 10.3077i −0.253990 + 0.439924i
\(550\) 0 0
\(551\) 17.5110 + 1.15639i 0.745995 + 0.0492639i
\(552\) 9.58359i 0.407905i
\(553\) −8.20530 4.73733i −0.348925 0.201452i
\(554\) −0.0815198 + 0.141196i −0.00346345 + 0.00599886i
\(555\) 0 0
\(556\) 6.73311 11.6621i 0.285548 0.494583i
\(557\) 2.09141 1.20747i 0.0886157 0.0511623i −0.455037 0.890472i \(-0.650374\pi\)
0.543653 + 0.839310i \(0.317041\pi\)
\(558\) 2.77599i 0.117517i
\(559\) −22.3048 −0.943392
\(560\) 0 0
\(561\) −2.68575 4.65186i −0.113392 0.196402i
\(562\) 1.52078i 0.0641500i
\(563\) 25.3392i 1.06792i −0.845510 0.533960i \(-0.820703\pi\)
0.845510 0.533960i \(-0.179297\pi\)
\(564\) 3.76473 + 6.52070i 0.158524 + 0.274571i
\(565\) 0 0
\(566\) 2.78109 + 4.81699i 0.116898 + 0.202473i
\(567\) 1.64702 + 0.950905i 0.0691681 + 0.0399342i
\(568\) 0.478917 + 0.276503i 0.0200949 + 0.0116018i
\(569\) 45.1046 1.89088 0.945441 0.325793i \(-0.105631\pi\)
0.945441 + 0.325793i \(0.105631\pi\)
\(570\) 0 0
\(571\) −9.73299 −0.407313 −0.203656 0.979042i \(-0.565283\pi\)
−0.203656 + 0.979042i \(0.565283\pi\)
\(572\) −30.1084 17.3831i −1.25889 0.726823i
\(573\) −2.18149 1.25949i −0.0911332 0.0526158i
\(574\) 3.47270 + 6.01490i 0.144948 + 0.251057i
\(575\) 0 0
\(576\) −5.59515 9.69108i −0.233131 0.403795i
\(577\) 8.83145i 0.367658i −0.982958 0.183829i \(-0.941151\pi\)
0.982958 0.183829i \(-0.0588493\pi\)
\(578\) 4.97192i 0.206805i
\(579\) −9.80691 16.9861i −0.407561 0.705917i
\(580\) 0 0
\(581\) 18.0441 0.748596
\(582\) 3.46823i 0.143763i
\(583\) −31.8611 + 18.3950i −1.31955 + 0.761843i
\(584\) −2.50989 + 4.34726i −0.103860 + 0.179891i
\(585\) 0 0
\(586\) −1.12839 + 1.95442i −0.0466132 + 0.0807365i
\(587\) 23.3768 + 13.4966i 0.964865 + 0.557065i 0.897667 0.440674i \(-0.145261\pi\)
0.0671982 + 0.997740i \(0.478594\pi\)
\(588\) 7.37137i 0.303990i
\(589\) 11.1498 16.6691i 0.459419 0.686837i
\(590\) 0 0
\(591\) 3.18489 5.51639i 0.131009 0.226914i
\(592\) 19.2657 + 11.1230i 0.791814 + 0.457154i
\(593\) 18.3891 10.6170i 0.755151 0.435987i −0.0724009 0.997376i \(-0.523066\pi\)
0.827552 + 0.561389i \(0.189733\pi\)
\(594\) 4.08923 7.08276i 0.167783 0.290609i
\(595\) 0 0
\(596\) −24.2650 −0.993934
\(597\) 7.42562i 0.303910i
\(598\) 7.29832 4.21369i 0.298451 0.172311i
\(599\) −15.1647 26.2660i −0.619612 1.07320i −0.989556 0.144146i \(-0.953957\pi\)
0.369945 0.929054i \(-0.379377\pi\)
\(600\) 0 0
\(601\) −10.7285 −0.437624 −0.218812 0.975767i \(-0.570218\pi\)
−0.218812 + 0.975767i \(0.570218\pi\)
\(602\) −5.57713 + 3.21996i −0.227307 + 0.131236i
\(603\) 18.8081 + 10.8589i 0.765926 + 0.442208i
\(604\) 18.6859 + 32.3649i 0.760317 + 1.31691i
\(605\) 0 0
\(606\) 0.990039 1.71480i 0.0402176 0.0696589i
\(607\) 8.81498i 0.357789i 0.983868 + 0.178894i \(0.0572521\pi\)
−0.983868 + 0.178894i \(0.942748\pi\)
\(608\) −1.00395 + 15.2026i −0.0407154 + 0.616548i
\(609\) −13.6010 −0.551142
\(610\) 0 0
\(611\) 6.78942 11.7596i 0.274671 0.475743i
\(612\) −3.22631 + 1.86271i −0.130416 + 0.0752957i
\(613\) 20.8978 + 12.0654i 0.844055 + 0.487315i 0.858640 0.512578i \(-0.171310\pi\)
−0.0145856 + 0.999894i \(0.504643\pi\)
\(614\) 2.23691 + 3.87445i 0.0902744 + 0.156360i
\(615\) 0 0
\(616\) −20.5861 −0.829436
\(617\) −13.3930 + 7.73248i −0.539183 + 0.311298i −0.744748 0.667346i \(-0.767430\pi\)
0.205564 + 0.978644i \(0.434097\pi\)
\(618\) −5.08363 + 2.93504i −0.204494 + 0.118065i
\(619\) −0.0390990 −0.00157152 −0.000785761 1.00000i \(-0.500250\pi\)
−0.000785761 1.00000i \(0.500250\pi\)
\(620\) 0 0
\(621\) −19.4914 33.7601i −0.782163 1.35475i
\(622\) −2.29711 1.32624i −0.0921057 0.0531772i
\(623\) −20.2518 + 11.6924i −0.811370 + 0.468445i
\(624\) 6.24041 10.8087i 0.249816 0.432694i
\(625\) 0 0
\(626\) −6.64584 −0.265621
\(627\) 20.8112 10.2502i 0.831117 0.409353i
\(628\) 5.87120i 0.234286i
\(629\) 3.27427 5.67119i 0.130554 0.226125i
\(630\) 0 0
\(631\) −3.36758 5.83282i −0.134061 0.232201i 0.791177 0.611587i \(-0.209469\pi\)
−0.925238 + 0.379386i \(0.876135\pi\)
\(632\) 3.03741 + 1.75365i 0.120822 + 0.0697564i
\(633\) 17.5221 10.1164i 0.696442 0.402091i
\(634\) −8.73989 −0.347105
\(635\) 0 0
\(636\) −6.97651 12.0837i −0.276637 0.479149i
\(637\) 11.5127 6.64687i 0.456150 0.263358i
\(638\) 6.47301i 0.256269i
\(639\) −0.883229 −0.0349400
\(640\) 0 0
\(641\) −13.7894 + 23.8840i −0.544649 + 0.943360i 0.453980 + 0.891012i \(0.350004\pi\)
−0.998629 + 0.0523477i \(0.983330\pi\)
\(642\) 2.42351 1.39921i 0.0956483 0.0552226i
\(643\) 10.3128 + 5.95407i 0.406695 + 0.234806i 0.689369 0.724410i \(-0.257888\pi\)
−0.282673 + 0.959216i \(0.591221\pi\)
\(644\) −23.9227 + 41.4353i −0.942685 + 1.63278i
\(645\) 0 0
\(646\) 1.36570 + 0.0901878i 0.0537327 + 0.00354839i
\(647\) 11.6648i 0.458590i −0.973357 0.229295i \(-0.926358\pi\)
0.973357 0.229295i \(-0.0736421\pi\)
\(648\) −0.609686 0.352002i −0.0239507 0.0138280i
\(649\) −34.8136 + 60.2990i −1.36656 + 2.36694i
\(650\) 0 0
\(651\) −7.77128 + 13.4603i −0.304581 + 0.527549i
\(652\) 37.0393 21.3846i 1.45057 0.837487i
\(653\) 40.7527i 1.59477i 0.603468 + 0.797387i \(0.293785\pi\)
−0.603468 + 0.797387i \(0.706215\pi\)
\(654\) 1.95335 0.0763819
\(655\) 0 0
\(656\) 11.6669 + 20.2076i 0.455514 + 0.788974i
\(657\) 8.01730i 0.312785i
\(658\) 3.92053i 0.152838i
\(659\) −11.5723 20.0438i −0.450793 0.780796i 0.547643 0.836712i \(-0.315525\pi\)
−0.998435 + 0.0559165i \(0.982192\pi\)
\(660\) 0 0
\(661\) −2.44485 4.23460i −0.0950936 0.164707i 0.814554 0.580088i \(-0.196982\pi\)
−0.909648 + 0.415381i \(0.863648\pi\)
\(662\) −4.08789 2.36015i −0.158880 0.0917297i
\(663\) −3.18174 1.83698i −0.123568 0.0713423i
\(664\) −6.67950 −0.259215
\(665\) 0 0
\(666\) 3.91488 0.151699
\(667\) −26.7201 15.4269i −1.03461 0.597331i
\(668\) −17.3719 10.0297i −0.672140 0.388060i
\(669\) −5.83597 10.1082i −0.225632 0.390805i
\(670\) 0 0
\(671\) 15.8578 + 27.4665i 0.612182 + 1.06033i
\(672\) 11.8081i 0.455506i
\(673\) 29.5149i 1.13771i −0.822436 0.568857i \(-0.807386\pi\)
0.822436 0.568857i \(-0.192614\pi\)
\(674\) −2.72232 4.71520i −0.104860 0.181623i
\(675\) 0 0
\(676\) 0.962701 0.0370270
\(677\) 29.4248i 1.13089i −0.824788 0.565443i \(-0.808705\pi\)
0.824788 0.565443i \(-0.191295\pi\)
\(678\) −2.87019 + 1.65711i −0.110229 + 0.0636408i
\(679\) 17.7551 30.7528i 0.681380 1.18018i
\(680\) 0 0
\(681\) 5.73457 9.93256i 0.219749 0.380616i
\(682\) −6.40602 3.69852i −0.245299 0.141623i
\(683\) 29.9433i 1.14575i −0.819643 0.572875i \(-0.805828\pi\)
0.819643 0.572875i \(-0.194172\pi\)
\(684\) −7.10907 14.4337i −0.271822 0.551885i
\(685\) 0 0
\(686\) −1.65283 + 2.86278i −0.0631053 + 0.109302i
\(687\) −3.13241 1.80850i −0.119509 0.0689985i
\(688\) −18.7369 + 10.8177i −0.714336 + 0.412422i
\(689\) −12.5816 + 21.7921i −0.479323 + 0.830211i
\(690\) 0 0
\(691\) −24.2225 −0.921467 −0.460733 0.887539i \(-0.652414\pi\)
−0.460733 + 0.887539i \(0.652414\pi\)
\(692\) 43.6561i 1.65956i
\(693\) 28.4739 16.4394i 1.08164 0.624482i
\(694\) 2.70177 + 4.67960i 0.102558 + 0.177635i
\(695\) 0 0
\(696\) 5.03478 0.190843
\(697\) 5.94847 3.43435i 0.225314 0.130085i
\(698\) −9.22959 5.32871i −0.349345 0.201695i
\(699\) 3.18733 + 5.52061i 0.120556 + 0.208809i
\(700\) 0 0
\(701\) 7.42695 12.8639i 0.280512 0.485861i −0.690999 0.722856i \(-0.742829\pi\)
0.971511 + 0.236995i \(0.0761624\pi\)
\(702\) 5.59384i 0.211126i
\(703\) 23.5078 + 15.7241i 0.886613 + 0.593047i
\(704\) −29.8182 −1.12381
\(705\) 0 0
\(706\) −5.43330 + 9.41075i −0.204485 + 0.354178i
\(707\) 17.5574 10.1367i 0.660313 0.381232i
\(708\) −22.8691 13.2035i −0.859473 0.496217i
\(709\) −14.9004 25.8083i −0.559598 0.969252i −0.997530 0.0702441i \(-0.977622\pi\)
0.437932 0.899008i \(-0.355711\pi\)
\(710\) 0 0
\(711\) −5.60165 −0.210078
\(712\) 7.49672 4.32823i 0.280952 0.162207i
\(713\) −30.5344 + 17.6290i −1.14352 + 0.660213i
\(714\) −1.06076 −0.0396978
\(715\) 0 0
\(716\) 22.1444 + 38.3552i 0.827575 + 1.43340i
\(717\) −10.8113 6.24190i −0.403755 0.233108i
\(718\) 0.263108 0.151905i 0.00981910 0.00566906i
\(719\) −12.9463 + 22.4236i −0.482814 + 0.836258i −0.999805 0.0197322i \(-0.993719\pi\)
0.516991 + 0.855991i \(0.327052\pi\)
\(720\) 0 0
\(721\) −60.1021 −2.23832
\(722\) −0.777316 + 5.85972i −0.0289287 + 0.218076i
\(723\) 5.25426i 0.195408i
\(724\) 15.1942 26.3171i 0.564688 0.978069i
\(725\) 0 0
\(726\) −2.51624 4.35826i −0.0933865 0.161750i
\(727\) −8.09634 4.67442i −0.300277 0.173365i 0.342291 0.939594i \(-0.388797\pi\)
−0.642567 + 0.766229i \(0.722131\pi\)
\(728\) −12.1939 + 7.04014i −0.451935 + 0.260925i
\(729\) −14.5913 −0.540419
\(730\) 0 0
\(731\) 3.18439 + 5.51553i 0.117779 + 0.203999i
\(732\) −10.4170 + 6.01424i −0.385022 + 0.222293i
\(733\) 7.20434i 0.266098i −0.991109 0.133049i \(-0.957523\pi\)
0.991109 0.133049i \(-0.0424768\pi\)
\(734\) −3.06950 −0.113297
\(735\) 0 0
\(736\) 13.3932 23.1977i 0.493680 0.855079i
\(737\) 50.1170 28.9350i 1.84608 1.06584i
\(738\) 3.55615 + 2.05314i 0.130904 + 0.0755773i
\(739\) 6.48702 11.2359i 0.238629 0.413318i −0.721692 0.692214i \(-0.756635\pi\)
0.960321 + 0.278897i \(0.0899687\pi\)
\(740\) 0 0
\(741\) 8.82179 13.1887i 0.324077 0.484498i
\(742\) 7.26523i 0.266715i
\(743\) 7.99428 + 4.61550i 0.293282 + 0.169326i 0.639421 0.768857i \(-0.279174\pi\)
−0.346139 + 0.938183i \(0.612508\pi\)
\(744\) 2.87674 4.98267i 0.105467 0.182673i
\(745\) 0 0
\(746\) 2.01475 3.48965i 0.0737652 0.127765i
\(747\) 9.23885 5.33405i 0.338032 0.195163i
\(748\) 9.92694i 0.362965i
\(749\) 28.6523 1.04693
\(750\) 0 0
\(751\) −7.46131 12.9234i −0.272267 0.471580i 0.697175 0.716901i \(-0.254440\pi\)
−0.969442 + 0.245321i \(0.921107\pi\)
\(752\) 13.1714i 0.480310i
\(753\) 26.1829i 0.954157i
\(754\) −2.21368 3.83420i −0.0806174 0.139633i
\(755\) 0 0
\(756\) 15.8791 + 27.5035i 0.577519 + 1.00029i
\(757\) −21.2156 12.2488i −0.771093 0.445191i 0.0621711 0.998066i \(-0.480198\pi\)
−0.833265 + 0.552874i \(0.813531\pi\)
\(758\) 1.40532 + 0.811365i 0.0510437 + 0.0294701i
\(759\) −40.7860 −1.48044
\(760\) 0 0
\(761\) −15.8968 −0.576260 −0.288130 0.957591i \(-0.593034\pi\)
−0.288130 + 0.957591i \(0.593034\pi\)
\(762\) −0.934262 0.539396i −0.0338447 0.0195403i
\(763\) 17.3203 + 9.99990i 0.627038 + 0.362021i
\(764\) 2.32762 + 4.03156i 0.0842105 + 0.145857i
\(765\) 0 0
\(766\) −5.21593 9.03426i −0.188459 0.326421i
\(767\) 47.6231i 1.71957i
\(768\) 9.06916i 0.327255i
\(769\) −14.7925 25.6214i −0.533432 0.923931i −0.999238 0.0390437i \(-0.987569\pi\)
0.465806 0.884887i \(-0.345765\pi\)
\(770\) 0 0
\(771\) 19.0003 0.684280
\(772\) 36.2478i 1.30459i
\(773\) −12.2378 + 7.06551i −0.440164 + 0.254129i −0.703667 0.710530i \(-0.748455\pi\)
0.263503 + 0.964658i \(0.415122\pi\)
\(774\) −1.90371 + 3.29733i −0.0684276 + 0.118520i
\(775\) 0 0
\(776\) −6.57253 + 11.3840i −0.235940 + 0.408660i
\(777\) −18.9825 10.9596i −0.680995 0.393172i
\(778\) 8.63032i 0.309412i
\(779\) 13.1072 + 26.6119i 0.469615 + 0.953469i
\(780\) 0 0
\(781\) −1.17675 + 2.03818i −0.0421073 + 0.0729319i
\(782\) −2.08392 1.20315i −0.0745210 0.0430247i
\(783\) −17.7360 + 10.2399i −0.633833 + 0.365944i
\(784\) 6.44741 11.1672i 0.230265 0.398830i
\(785\) 0 0
\(786\) 0.775912 0.0276759
\(787\) 24.2465i 0.864293i 0.901803 + 0.432146i \(0.142244\pi\)
−0.901803 + 0.432146i \(0.857756\pi\)
\(788\) −10.1947 + 5.88591i −0.363171 + 0.209677i
\(789\) 6.66849 + 11.5502i 0.237404 + 0.411196i
\(790\) 0 0
\(791\) −33.9333 −1.20653
\(792\) −10.5404 + 6.08549i −0.374536 + 0.216238i
\(793\) 18.7863 + 10.8463i 0.667120 + 0.385162i
\(794\) −0.855456 1.48169i −0.0303590 0.0525833i
\(795\) 0 0
\(796\) 6.86155 11.8846i 0.243201 0.421237i
\(797\) 27.9258i 0.989184i −0.869125 0.494592i \(-0.835318\pi\)
0.869125 0.494592i \(-0.164682\pi\)
\(798\) 0.301875 4.57125i 0.0106863 0.161820i
\(799\) −3.87723 −0.137166
\(800\) 0 0
\(801\) −6.91280 + 11.9733i −0.244252 + 0.423057i
\(802\) −2.29366 + 1.32425i −0.0809919 + 0.0467607i
\(803\) −18.5011 10.6816i −0.652890 0.376946i
\(804\) 10.9739 + 19.0074i 0.387021 + 0.670341i
\(805\) 0 0
\(806\) −5.05936 −0.178208
\(807\) 0.139571 0.0805816i 0.00491315 0.00283661i
\(808\) −6.49932 + 3.75238i −0.228645 + 0.132008i
\(809\) −8.78914 −0.309010 −0.154505 0.987992i \(-0.549378\pi\)
−0.154505 + 0.987992i \(0.549378\pi\)
\(810\) 0 0
\(811\) 7.04963 + 12.2103i 0.247546 + 0.428762i 0.962844 0.270057i \(-0.0870425\pi\)
−0.715298 + 0.698819i \(0.753709\pi\)
\(812\) 21.7682 + 12.5679i 0.763914 + 0.441046i
\(813\) −24.8108 + 14.3245i −0.870152 + 0.502383i
\(814\) 5.21589 9.03418i 0.182817 0.316648i
\(815\) 0 0
\(816\) −3.56370 −0.124755
\(817\) −24.6750 + 12.1533i −0.863269 + 0.425189i
\(818\) 6.67967i 0.233549i
\(819\) 11.2441 19.4754i 0.392901 0.680524i
\(820\) 0 0
\(821\) 15.2663 + 26.4420i 0.532797 + 0.922832i 0.999267 + 0.0382943i \(0.0121924\pi\)
−0.466469 + 0.884537i \(0.654474\pi\)
\(822\) 3.19616 + 1.84530i 0.111479 + 0.0643623i
\(823\) 12.4346 7.17914i 0.433444 0.250249i −0.267369 0.963594i \(-0.586154\pi\)
0.700813 + 0.713345i \(0.252821\pi\)
\(824\) 22.2484 0.775059
\(825\) 0 0
\(826\) 6.87495 + 11.9078i 0.239210 + 0.414324i
\(827\) −7.16518 + 4.13682i −0.249158 + 0.143851i −0.619379 0.785092i \(-0.712615\pi\)
0.370221 + 0.928944i \(0.379282\pi\)
\(828\) 28.2873i 0.983052i
\(829\) −13.1498 −0.456710 −0.228355 0.973578i \(-0.573335\pi\)
−0.228355 + 0.973578i \(0.573335\pi\)
\(830\) 0 0
\(831\) 0.269848 0.467391i 0.00936094 0.0162136i
\(832\) −17.6624 + 10.1974i −0.612333 + 0.353531i
\(833\) −3.28728 1.89791i −0.113897 0.0657587i
\(834\) 1.13346 1.96322i 0.0392486 0.0679806i
\(835\) 0 0
\(836\) −42.7794 2.82506i −1.47956 0.0977067i
\(837\) 23.4032i 0.808934i
\(838\) −1.37240 0.792358i −0.0474089 0.0273715i
\(839\) −4.20767 + 7.28790i −0.145265 + 0.251606i −0.929472 0.368893i \(-0.879737\pi\)
0.784207 + 0.620500i \(0.213070\pi\)
\(840\) 0 0
\(841\) 6.39543 11.0772i 0.220532 0.381973i
\(842\) 1.52448 0.880159i 0.0525371 0.0303323i
\(843\) 5.03410i 0.173384i
\(844\) −37.3918 −1.28708
\(845\) 0 0
\(846\) −1.15895 2.00737i −0.0398457 0.0690147i
\(847\) 51.5262i 1.77046i
\(848\) 24.4082i 0.838181i
\(849\) −9.20601 15.9453i −0.315950 0.547241i
\(850\) 0 0
\(851\) −24.8616 43.0616i −0.852245 1.47613i
\(852\) −0.773005 0.446294i −0.0264827 0.0152898i
\(853\) 45.0648 + 26.0182i 1.54299 + 0.890845i 0.998648 + 0.0519802i \(0.0165533\pi\)
0.544340 + 0.838865i \(0.316780\pi\)
\(854\) 6.26314 0.214320
\(855\) 0 0
\(856\) −10.6064 −0.362520
\(857\) 18.5845 + 10.7298i 0.634834 + 0.366522i 0.782622 0.622497i \(-0.213882\pi\)
−0.147788 + 0.989019i \(0.547215\pi\)
\(858\) −5.06849 2.92629i −0.173035 0.0999020i
\(859\) 9.07396 + 15.7166i 0.309599 + 0.536242i 0.978275 0.207313i \(-0.0664717\pi\)
−0.668675 + 0.743554i \(0.733138\pi\)
\(860\) 0 0
\(861\) −11.4954 19.9106i −0.391762 0.678552i
\(862\) 11.9362i 0.406549i
\(863\) 13.7867i 0.469303i 0.972080 + 0.234652i \(0.0753949\pi\)
−0.972080 + 0.234652i \(0.924605\pi\)
\(864\) −8.89000 15.3979i −0.302444 0.523848i
\(865\) 0 0
\(866\) 2.16609 0.0736066
\(867\) 16.4581i 0.558948i
\(868\) 24.8756 14.3619i 0.844332 0.487475i
\(869\) −7.46320 + 12.9266i −0.253172 + 0.438506i
\(870\) 0 0
\(871\) 19.7907 34.2786i 0.670584 1.16148i
\(872\) −6.41158 3.70173i −0.217123 0.125356i
\(873\) 20.9945i 0.710557i
\(874\) 5.77796 8.63812i 0.195442 0.292189i
\(875\) 0 0
\(876\) 4.05113 7.01676i 0.136875 0.237075i
\(877\) 18.3543 + 10.5968i 0.619780 + 0.357830i 0.776783 0.629768i \(-0.216850\pi\)
−0.157003 + 0.987598i \(0.550183\pi\)
\(878\) −2.56681 + 1.48195i −0.0866257 + 0.0500134i
\(879\) 3.73521 6.46957i 0.125985 0.218213i
\(880\) 0 0
\(881\) 44.5944 1.50242 0.751212 0.660061i \(-0.229469\pi\)
0.751212 + 0.660061i \(0.229469\pi\)
\(882\) 2.26924i 0.0764093i
\(883\) −1.46665 + 0.846773i −0.0493568 + 0.0284962i −0.524475 0.851426i \(-0.675739\pi\)
0.475119 + 0.879922i \(0.342405\pi\)
\(884\) 3.39487 + 5.88009i 0.114182 + 0.197769i
\(885\) 0 0
\(886\) 10.7966 0.362720
\(887\) 41.9463 24.2177i 1.40842 0.813151i 0.413183 0.910648i \(-0.364417\pi\)
0.995236 + 0.0974969i \(0.0310836\pi\)
\(888\) 7.02688 + 4.05697i 0.235807 + 0.136143i
\(889\) −5.52273 9.56565i −0.185227 0.320822i
\(890\) 0 0
\(891\) 1.49806 2.59471i 0.0501868 0.0869260i
\(892\) 21.5706i 0.722238i
\(893\) 1.10340 16.7086i 0.0369239 0.559133i
\(894\) −4.08481 −0.136617
\(895\) 0 0
\(896\) −14.4102 + 24.9592i −0.481411 + 0.833828i
\(897\) −24.1590 + 13.9482i −0.806647 + 0.465718i
\(898\) −2.38235 1.37545i −0.0795001 0.0458994i
\(899\) 9.26149 + 16.0414i 0.308888 + 0.535009i
\(900\) 0 0
\(901\) 7.18499 0.239367
\(902\) 9.47588 5.47090i 0.315512 0.182161i
\(903\) 18.4615 10.6588i 0.614360 0.354701i
\(904\) 12.5613 0.417783
\(905\) 0 0
\(906\) 3.14561 + 5.44835i 0.104506 + 0.181009i
\(907\) −24.1957 13.9694i −0.803404 0.463846i 0.0412557 0.999149i \(-0.486864\pi\)
−0.844660 + 0.535303i \(0.820197\pi\)
\(908\) −18.3561 + 10.5979i −0.609169 + 0.351704i
\(909\) 5.99309 10.3803i 0.198778 0.344294i
\(910\) 0 0
\(911\) 45.0862 1.49377 0.746887 0.664951i \(-0.231548\pi\)
0.746887 + 0.664951i \(0.231548\pi\)
\(912\) 1.01418 15.3575i 0.0335828 0.508538i
\(913\) 28.4267i 0.940787i
\(914\) 0.103443 0.179169i 0.00342159 0.00592637i
\(915\) 0 0
\(916\) 3.34224 + 5.78893i 0.110431 + 0.191272i
\(917\) 6.88002 + 3.97218i 0.227198 + 0.131173i
\(918\) −1.38325 + 0.798617i −0.0456539 + 0.0263583i
\(919\) 5.86849 0.193584 0.0967918 0.995305i \(-0.469142\pi\)
0.0967918 + 0.995305i \(0.469142\pi\)
\(920\) 0 0
\(921\) −7.40467 12.8253i −0.243992 0.422607i
\(922\) −10.6529 + 6.15048i −0.350836 + 0.202555i
\(923\) 1.60972i 0.0529846i
\(924\) 33.2273 1.09310
\(925\) 0 0
\(926\) 2.42325 4.19720i 0.0796330 0.137928i
\(927\) −30.7732 + 17.7669i −1.01072 + 0.583542i
\(928\) −12.1870 7.03617i −0.400058 0.230974i
\(929\) 23.3157 40.3839i 0.764963 1.32495i −0.175304 0.984514i \(-0.556091\pi\)
0.940266 0.340440i \(-0.110576\pi\)
\(930\) 0 0
\(931\) 9.11442 13.6262i 0.298713 0.446579i
\(932\) 11.7808i 0.385894i
\(933\) 7.60393 + 4.39013i 0.248942 + 0.143726i
\(934\) 6.38328 11.0562i 0.208867 0.361769i
\(935\) 0 0
\(936\) −4.16230 + 7.20931i −0.136049 + 0.235644i
\(937\) −44.4219 + 25.6470i −1.45120 + 0.837850i −0.998550 0.0538383i \(-0.982854\pi\)
−0.452649 + 0.891689i \(0.649521\pi\)
\(938\) 11.4281i 0.373140i
\(939\) 21.9992 0.717916
\(940\) 0 0
\(941\) 5.67430 + 9.82817i 0.184977 + 0.320389i 0.943569 0.331177i \(-0.107446\pi\)
−0.758592 + 0.651566i \(0.774112\pi\)
\(942\) 0.988367i 0.0322027i
\(943\) 52.1543i 1.69838i
\(944\) 23.0970 + 40.0052i 0.751743 + 1.30206i
\(945\) 0 0
\(946\) 5.07272 + 8.78621i 0.164928 + 0.285664i
\(947\) 6.24348 + 3.60467i 0.202886 + 0.117136i 0.598001 0.801495i \(-0.295962\pi\)
−0.395115 + 0.918632i \(0.629295\pi\)
\(948\) −4.90258 2.83051i −0.159228 0.0919305i
\(949\) −14.6119 −0.474321
\(950\) 0 0
\(951\) 28.9309 0.938150
\(952\) 3.48177 + 2.01020i 0.112845 + 0.0651511i
\(953\) 17.7877 + 10.2697i 0.576199 + 0.332669i 0.759622 0.650365i \(-0.225384\pi\)
−0.183422 + 0.983034i \(0.558718\pi\)
\(954\) 2.14769 + 3.71991i 0.0695340 + 0.120436i
\(955\) 0 0
\(956\) 11.5355 + 19.9801i 0.373085 + 0.646202i
\(957\) 21.4271i 0.692639i
\(958\) 7.32930i 0.236799i
\(959\) 18.8935 + 32.7246i 0.610104 + 1.05673i
\(960\) 0 0
\(961\) −9.83289 −0.317190
\(962\) 7.13504i 0.230043i
\(963\) 14.6704 8.46998i 0.472748 0.272941i
\(964\) 4.85513 8.40933i 0.156373 0.270846i
\(965\) 0 0
\(966\) −4.02718 + 6.97528i −0.129572 + 0.224426i
\(967\) 14.7804 + 8.53345i 0.475305 + 0.274417i 0.718458 0.695571i \(-0.244848\pi\)
−0.243153 + 0.969988i \(0.578182\pi\)
\(968\) 19.0738i 0.613055i
\(969\) −4.52076 0.298541i −0.145228 0.00959053i
\(970\) 0 0
\(971\) 1.74085 3.01525i 0.0558667 0.0967639i −0.836740 0.547601i \(-0.815541\pi\)
0.892606 + 0.450837i \(0.148874\pi\)
\(972\) 26.1368 + 15.0901i 0.838337 + 0.484014i
\(973\) 20.1008 11.6052i 0.644403 0.372046i
\(974\) −3.72032 + 6.44379i −0.119207 + 0.206472i
\(975\) 0 0
\(976\) 21.0416 0.673524
\(977\) 21.9600i 0.702562i 0.936270 + 0.351281i \(0.114254\pi\)
−0.936270 + 0.351281i \(0.885746\pi\)
\(978\) 6.23524 3.59992i 0.199381 0.115113i
\(979\) 18.4202 + 31.9047i 0.588711 + 1.01968i
\(980\) 0 0
\(981\) 11.8244 0.377523
\(982\) 4.40445 2.54291i 0.140552 0.0811476i
\(983\) −4.76057 2.74852i −0.151839 0.0876641i 0.422156 0.906523i \(-0.361274\pi\)
−0.573994 + 0.818859i \(0.694607\pi\)
\(984\) 4.25533 + 7.37044i 0.135655 + 0.234961i
\(985\) 0 0
\(986\) −0.632082 + 1.09480i −0.0201296 + 0.0348655i
\(987\) 12.9778i 0.413088i
\(988\) −26.3059 + 12.9566i −0.836903 + 0.412203i
\(989\) 48.3584 1.53771
\(990\) 0 0
\(991\) 14.7485 25.5452i 0.468502 0.811469i −0.530850 0.847466i \(-0.678127\pi\)
0.999352 + 0.0359970i \(0.0114607\pi\)
\(992\) −13.9267 + 8.04058i −0.442173 + 0.255289i
\(993\) 13.5318 + 7.81259i 0.429419 + 0.247925i
\(994\) 0.232382 + 0.402497i 0.00737071 + 0.0127664i
\(995\) 0 0
\(996\) 10.7812 0.341614
\(997\) −6.29123 + 3.63224i −0.199245 + 0.115034i −0.596303 0.802759i \(-0.703364\pi\)
0.397058 + 0.917793i \(0.370031\pi\)
\(998\) 8.64076 4.98874i 0.273518 0.157916i
\(999\) −33.0048 −1.04422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.j.d.49.6 24
5.2 odd 4 475.2.e.h.201.4 yes 12
5.3 odd 4 475.2.e.f.201.3 yes 12
5.4 even 2 inner 475.2.j.d.49.7 24
19.7 even 3 inner 475.2.j.d.349.7 24
95.7 odd 12 475.2.e.h.26.4 yes 12
95.8 even 12 9025.2.a.bs.1.3 6
95.27 even 12 9025.2.a.by.1.4 6
95.64 even 6 inner 475.2.j.d.349.6 24
95.68 odd 12 9025.2.a.bz.1.4 6
95.83 odd 12 475.2.e.f.26.3 12
95.87 odd 12 9025.2.a.br.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.e.f.26.3 12 95.83 odd 12
475.2.e.f.201.3 yes 12 5.3 odd 4
475.2.e.h.26.4 yes 12 95.7 odd 12
475.2.e.h.201.4 yes 12 5.2 odd 4
475.2.j.d.49.6 24 1.1 even 1 trivial
475.2.j.d.49.7 24 5.4 even 2 inner
475.2.j.d.349.6 24 95.64 even 6 inner
475.2.j.d.349.7 24 19.7 even 3 inner
9025.2.a.br.1.3 6 95.87 odd 12
9025.2.a.bs.1.3 6 95.8 even 12
9025.2.a.by.1.4 6 95.27 even 12
9025.2.a.bz.1.4 6 95.68 odd 12