Properties

Label 475.2.j.d.349.3
Level $475$
Weight $2$
Character 475.349
Analytic conductor $3.793$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(49,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.3
Character \(\chi\) \(=\) 475.349
Dual form 475.2.j.d.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28275 + 0.740597i) q^{2} +(-2.47401 + 1.42837i) q^{3} +(0.0969683 - 0.167954i) q^{4} +(2.11569 - 3.66449i) q^{6} +3.78541i q^{7} -2.67513i q^{8} +(2.58048 - 4.46952i) q^{9} -5.59460 q^{11} +0.554026i q^{12} +(-4.24917 - 2.45326i) q^{13} +(-2.80346 - 4.85574i) q^{14} +(2.17513 + 3.76744i) q^{16} +(1.51571 - 0.875095i) q^{17} +7.64438i q^{18} +(-0.636061 + 4.31224i) q^{19} +(-5.40696 - 9.36514i) q^{21} +(7.17648 - 4.14335i) q^{22} +(-0.503625 - 0.290768i) q^{23} +(3.82107 + 6.61830i) q^{24} +7.26750 q^{26} +6.17328i q^{27} +(0.635775 + 0.367065i) q^{28} +(0.832153 - 1.44133i) q^{29} +7.01680 q^{31} +(-0.946844 - 0.546661i) q^{32} +(13.8411 - 7.99116i) q^{33} +(-1.29619 + 2.24506i) q^{34} +(-0.500449 - 0.866803i) q^{36} -2.36322i q^{37} +(-2.37773 - 6.00260i) q^{38} +14.0166 q^{39} +(-0.417676 - 0.723435i) q^{41} +(13.8716 + 8.00877i) q^{42} +(-0.927797 + 0.535664i) q^{43} +(-0.542499 + 0.939635i) q^{44} +0.861369 q^{46} +(3.34941 + 1.93378i) q^{47} +(-10.7626 - 6.21378i) q^{48} -7.32934 q^{49} +(-2.49992 + 4.32999i) q^{51} +(-0.824069 + 0.475776i) q^{52} +(5.88624 + 3.39842i) q^{53} +(-4.57192 - 7.91879i) q^{54} +10.1265 q^{56} +(-4.58585 - 11.5771i) q^{57} +2.46516i q^{58} +(-0.204282 - 0.353827i) q^{59} +(-6.98016 + 12.0900i) q^{61} +(-9.00081 + 5.19662i) q^{62} +(16.9190 + 9.76817i) q^{63} -7.08110 q^{64} +(-11.8365 + 20.5013i) q^{66} +(0.676717 + 0.390703i) q^{67} -0.339426i q^{68} +1.66130 q^{69} +(-3.18919 - 5.52384i) q^{71} +(-11.9565 - 6.90312i) q^{72} +(2.50208 - 1.44458i) q^{73} +(1.75019 + 3.03142i) q^{74} +(0.662580 + 0.524980i) q^{76} -21.1779i q^{77} +(-17.9799 + 10.3807i) q^{78} +(-6.25135 - 10.8276i) q^{79} +(-1.07630 - 1.86420i) q^{81} +(1.07155 + 0.618659i) q^{82} -10.3903i q^{83} -2.09722 q^{84} +(0.793422 - 1.37425i) q^{86} +4.75449i q^{87} +14.9663i q^{88} +(8.92106 - 15.4517i) q^{89} +(9.28659 - 16.0848i) q^{91} +(-0.0976714 + 0.0563906i) q^{92} +(-17.3596 + 10.0226i) q^{93} -5.72861 q^{94} +3.12333 q^{96} +(-9.52619 + 5.49995i) q^{97} +(9.40172 - 5.42809i) q^{98} +(-14.4367 + 25.0052i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} + 2 q^{6} + 14 q^{9} - 4 q^{11} - 12 q^{14} + 12 q^{16} + 12 q^{19} - 6 q^{21} + 22 q^{24} + 76 q^{26} + 6 q^{29} - 12 q^{31} - 2 q^{34} - 26 q^{36} - 32 q^{39} - 22 q^{41} + 42 q^{44} - 48 q^{46}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28275 + 0.740597i −0.907043 + 0.523681i −0.879478 0.475939i \(-0.842108\pi\)
−0.0275641 + 0.999620i \(0.508775\pi\)
\(3\) −2.47401 + 1.42837i −1.42837 + 0.824669i −0.996992 0.0775023i \(-0.975305\pi\)
−0.431377 + 0.902172i \(0.641972\pi\)
\(4\) 0.0969683 0.167954i 0.0484841 0.0839770i
\(5\) 0 0
\(6\) 2.11569 3.66449i 0.863728 1.49602i
\(7\) 3.78541i 1.43075i 0.698740 + 0.715375i \(0.253744\pi\)
−0.698740 + 0.715375i \(0.746256\pi\)
\(8\) 2.67513i 0.945802i
\(9\) 2.58048 4.46952i 0.860159 1.48984i
\(10\) 0 0
\(11\) −5.59460 −1.68684 −0.843418 0.537258i \(-0.819460\pi\)
−0.843418 + 0.537258i \(0.819460\pi\)
\(12\) 0.554026i 0.159934i
\(13\) −4.24917 2.45326i −1.17851 0.680411i −0.222838 0.974855i \(-0.571532\pi\)
−0.955669 + 0.294444i \(0.904866\pi\)
\(14\) −2.80346 4.85574i −0.749257 1.29775i
\(15\) 0 0
\(16\) 2.17513 + 3.76744i 0.543783 + 0.941859i
\(17\) 1.51571 0.875095i 0.367614 0.212242i −0.304802 0.952416i \(-0.598590\pi\)
0.672415 + 0.740174i \(0.265257\pi\)
\(18\) 7.64438i 1.80180i
\(19\) −0.636061 + 4.31224i −0.145922 + 0.989296i
\(20\) 0 0
\(21\) −5.40696 9.36514i −1.17990 2.04364i
\(22\) 7.17648 4.14335i 1.53003 0.883364i
\(23\) −0.503625 0.290768i −0.105013 0.0606294i 0.446574 0.894747i \(-0.352644\pi\)
−0.551587 + 0.834118i \(0.685977\pi\)
\(24\) 3.82107 + 6.61830i 0.779974 + 1.35095i
\(25\) 0 0
\(26\) 7.26750 1.42527
\(27\) 6.17328i 1.18805i
\(28\) 0.635775 + 0.367065i 0.120150 + 0.0693687i
\(29\) 0.832153 1.44133i 0.154527 0.267649i −0.778360 0.627819i \(-0.783948\pi\)
0.932887 + 0.360170i \(0.117281\pi\)
\(30\) 0 0
\(31\) 7.01680 1.26025 0.630127 0.776492i \(-0.283003\pi\)
0.630127 + 0.776492i \(0.283003\pi\)
\(32\) −0.946844 0.546661i −0.167380 0.0966369i
\(33\) 13.8411 7.99116i 2.40942 1.39108i
\(34\) −1.29619 + 2.24506i −0.222294 + 0.385025i
\(35\) 0 0
\(36\) −0.500449 0.866803i −0.0834082 0.144467i
\(37\) 2.36322i 0.388510i −0.980951 0.194255i \(-0.937771\pi\)
0.980951 0.194255i \(-0.0622290\pi\)
\(38\) −2.37773 6.00260i −0.385718 0.973750i
\(39\) 14.0166 2.24446
\(40\) 0 0
\(41\) −0.417676 0.723435i −0.0652300 0.112982i 0.831566 0.555426i \(-0.187445\pi\)
−0.896796 + 0.442444i \(0.854111\pi\)
\(42\) 13.8716 + 8.00877i 2.14043 + 1.23578i
\(43\) −0.927797 + 0.535664i −0.141488 + 0.0816880i −0.569073 0.822287i \(-0.692698\pi\)
0.427585 + 0.903975i \(0.359364\pi\)
\(44\) −0.542499 + 0.939635i −0.0817848 + 0.141655i
\(45\) 0 0
\(46\) 0.861369 0.127002
\(47\) 3.34941 + 1.93378i 0.488561 + 0.282071i 0.723977 0.689824i \(-0.242312\pi\)
−0.235416 + 0.971895i \(0.575645\pi\)
\(48\) −10.7626 6.21378i −1.55345 0.896882i
\(49\) −7.32934 −1.04705
\(50\) 0 0
\(51\) −2.49992 + 4.32999i −0.350059 + 0.606319i
\(52\) −0.824069 + 0.475776i −0.114278 + 0.0659783i
\(53\) 5.88624 + 3.39842i 0.808537 + 0.466809i 0.846448 0.532472i \(-0.178737\pi\)
−0.0379106 + 0.999281i \(0.512070\pi\)
\(54\) −4.57192 7.91879i −0.622159 1.07761i
\(55\) 0 0
\(56\) 10.1265 1.35321
\(57\) −4.58585 11.5771i −0.607411 1.53342i
\(58\) 2.46516i 0.323691i
\(59\) −0.204282 0.353827i −0.0265953 0.0460643i 0.852421 0.522855i \(-0.175133\pi\)
−0.879017 + 0.476791i \(0.841800\pi\)
\(60\) 0 0
\(61\) −6.98016 + 12.0900i −0.893718 + 1.54796i −0.0583341 + 0.998297i \(0.518579\pi\)
−0.835384 + 0.549667i \(0.814754\pi\)
\(62\) −9.00081 + 5.19662i −1.14310 + 0.659971i
\(63\) 16.9190 + 9.76817i 2.13159 + 1.23067i
\(64\) −7.08110 −0.885138
\(65\) 0 0
\(66\) −11.8365 + 20.5013i −1.45697 + 2.52354i
\(67\) 0.676717 + 0.390703i 0.0826742 + 0.0477319i 0.540767 0.841172i \(-0.318134\pi\)
−0.458093 + 0.888904i \(0.651467\pi\)
\(68\) 0.339426i 0.0411614i
\(69\) 1.66130 0.199997
\(70\) 0 0
\(71\) −3.18919 5.52384i −0.378487 0.655559i 0.612355 0.790583i \(-0.290222\pi\)
−0.990842 + 0.135024i \(0.956889\pi\)
\(72\) −11.9565 6.90312i −1.40909 0.813540i
\(73\) 2.50208 1.44458i 0.292846 0.169075i −0.346378 0.938095i \(-0.612589\pi\)
0.639225 + 0.769020i \(0.279255\pi\)
\(74\) 1.75019 + 3.03142i 0.203456 + 0.352395i
\(75\) 0 0
\(76\) 0.662580 + 0.524980i 0.0760032 + 0.0602193i
\(77\) 21.1779i 2.41344i
\(78\) −17.9799 + 10.3807i −2.03582 + 1.17538i
\(79\) −6.25135 10.8276i −0.703331 1.21821i −0.967290 0.253672i \(-0.918362\pi\)
0.263959 0.964534i \(-0.414972\pi\)
\(80\) 0 0
\(81\) −1.07630 1.86420i −0.119589 0.207133i
\(82\) 1.07155 + 0.618659i 0.118333 + 0.0683194i
\(83\) 10.3903i 1.14048i −0.821478 0.570240i \(-0.806850\pi\)
0.821478 0.570240i \(-0.193150\pi\)
\(84\) −2.09722 −0.228825
\(85\) 0 0
\(86\) 0.793422 1.37425i 0.0855569 0.148189i
\(87\) 4.75449i 0.509735i
\(88\) 14.9663i 1.59541i
\(89\) 8.92106 15.4517i 0.945631 1.63788i 0.191148 0.981561i \(-0.438779\pi\)
0.754483 0.656320i \(-0.227888\pi\)
\(90\) 0 0
\(91\) 9.28659 16.0848i 0.973499 1.68615i
\(92\) −0.0976714 + 0.0563906i −0.0101829 + 0.00587913i
\(93\) −17.3596 + 10.0226i −1.80011 + 1.03929i
\(94\) −5.72861 −0.590861
\(95\) 0 0
\(96\) 3.12333 0.318774
\(97\) −9.52619 + 5.49995i −0.967238 + 0.558435i −0.898393 0.439192i \(-0.855265\pi\)
−0.0688448 + 0.997627i \(0.521931\pi\)
\(98\) 9.40172 5.42809i 0.949717 0.548319i
\(99\) −14.4367 + 25.0052i −1.45095 + 2.51311i
\(100\) 0 0
\(101\) −2.57944 + 4.46772i −0.256664 + 0.444555i −0.965346 0.260973i \(-0.915957\pi\)
0.708682 + 0.705528i \(0.249290\pi\)
\(102\) 7.40573i 0.733277i
\(103\) 7.75851i 0.764469i −0.924065 0.382235i \(-0.875155\pi\)
0.924065 0.382235i \(-0.124845\pi\)
\(104\) −6.56279 + 11.3671i −0.643534 + 1.11463i
\(105\) 0 0
\(106\) −10.0674 −0.977837
\(107\) 12.6521i 1.22313i 0.791195 + 0.611564i \(0.209459\pi\)
−0.791195 + 0.611564i \(0.790541\pi\)
\(108\) 1.03683 + 0.598613i 0.0997688 + 0.0576015i
\(109\) −4.09697 7.09616i −0.392418 0.679689i 0.600350 0.799738i \(-0.295028\pi\)
−0.992768 + 0.120049i \(0.961695\pi\)
\(110\) 0 0
\(111\) 3.37554 + 5.84661i 0.320392 + 0.554936i
\(112\) −14.2613 + 8.23376i −1.34757 + 0.778018i
\(113\) 12.5551i 1.18108i −0.807007 0.590541i \(-0.798914\pi\)
0.807007 0.590541i \(-0.201086\pi\)
\(114\) 14.4564 + 11.4542i 1.35397 + 1.07279i
\(115\) 0 0
\(116\) −0.161385 0.279527i −0.0149842 0.0259534i
\(117\) −21.9298 + 12.6612i −2.02741 + 1.17052i
\(118\) 0.524086 + 0.302581i 0.0482461 + 0.0278549i
\(119\) 3.31260 + 5.73758i 0.303665 + 0.525963i
\(120\) 0 0
\(121\) 20.2996 1.84541
\(122\) 20.6779i 1.87209i
\(123\) 2.06667 + 1.19319i 0.186345 + 0.107586i
\(124\) 0.680407 1.17850i 0.0611023 0.105832i
\(125\) 0 0
\(126\) −28.9371 −2.57792
\(127\) −7.06602 4.07957i −0.627007 0.362003i 0.152585 0.988290i \(-0.451240\pi\)
−0.779592 + 0.626287i \(0.784574\pi\)
\(128\) 10.9770 6.33757i 0.970238 0.560167i
\(129\) 1.53025 2.65047i 0.134731 0.233361i
\(130\) 0 0
\(131\) −9.62491 16.6708i −0.840932 1.45654i −0.889108 0.457698i \(-0.848674\pi\)
0.0481757 0.998839i \(-0.484659\pi\)
\(132\) 3.09955i 0.269782i
\(133\) −16.3236 2.40775i −1.41544 0.208779i
\(134\) −1.15741 −0.0999853
\(135\) 0 0
\(136\) −2.34099 4.05472i −0.200739 0.347689i
\(137\) −1.36131 0.785955i −0.116305 0.0671487i 0.440719 0.897645i \(-0.354724\pi\)
−0.557024 + 0.830496i \(0.688057\pi\)
\(138\) −2.13103 + 1.23035i −0.181406 + 0.104735i
\(139\) −1.02459 + 1.77464i −0.0869047 + 0.150523i −0.906201 0.422847i \(-0.861031\pi\)
0.819297 + 0.573370i \(0.194364\pi\)
\(140\) 0 0
\(141\) −11.0486 −0.930461
\(142\) 8.18188 + 4.72381i 0.686608 + 0.396413i
\(143\) 23.7724 + 13.7250i 1.98795 + 1.14774i
\(144\) 22.4515 1.87096
\(145\) 0 0
\(146\) −2.13970 + 3.70607i −0.177083 + 0.306716i
\(147\) 18.1328 10.4690i 1.49557 0.863468i
\(148\) −0.396911 0.229157i −0.0326259 0.0188366i
\(149\) −0.737839 1.27797i −0.0604461 0.104696i 0.834219 0.551434i \(-0.185919\pi\)
−0.894665 + 0.446738i \(0.852586\pi\)
\(150\) 0 0
\(151\) 6.42543 0.522894 0.261447 0.965218i \(-0.415800\pi\)
0.261447 + 0.965218i \(0.415800\pi\)
\(152\) 11.5358 + 1.70155i 0.935678 + 0.138014i
\(153\) 9.03266i 0.730247i
\(154\) 15.6843 + 27.1659i 1.26387 + 2.18909i
\(155\) 0 0
\(156\) 1.35917 2.35415i 0.108821 0.188483i
\(157\) 19.3028 11.1445i 1.54053 0.889425i 0.541724 0.840556i \(-0.317772\pi\)
0.998805 0.0488688i \(-0.0155616\pi\)
\(158\) 16.0379 + 9.25946i 1.27590 + 0.736643i
\(159\) −19.4168 −1.53985
\(160\) 0 0
\(161\) 1.10068 1.90643i 0.0867455 0.150248i
\(162\) 2.76124 + 1.59420i 0.216944 + 0.125253i
\(163\) 15.0321i 1.17741i 0.808350 + 0.588703i \(0.200361\pi\)
−0.808350 + 0.588703i \(0.799639\pi\)
\(164\) −0.162005 −0.0126505
\(165\) 0 0
\(166\) 7.69500 + 13.3281i 0.597248 + 1.03446i
\(167\) −8.31260 4.79928i −0.643249 0.371380i 0.142616 0.989778i \(-0.454449\pi\)
−0.785865 + 0.618398i \(0.787782\pi\)
\(168\) −25.0530 + 14.4643i −1.93288 + 1.11595i
\(169\) 5.53695 + 9.59028i 0.425919 + 0.737714i
\(170\) 0 0
\(171\) 17.6323 + 13.9705i 1.34838 + 1.06835i
\(172\) 0.207770i 0.0158423i
\(173\) 7.64894 4.41611i 0.581538 0.335751i −0.180207 0.983629i \(-0.557677\pi\)
0.761744 + 0.647878i \(0.224343\pi\)
\(174\) −3.52116 6.09883i −0.266938 0.462351i
\(175\) 0 0
\(176\) −12.1690 21.0773i −0.917272 1.58876i
\(177\) 1.01079 + 0.583580i 0.0759757 + 0.0438646i
\(178\) 26.4277i 1.98084i
\(179\) −10.8178 −0.808564 −0.404282 0.914634i \(-0.632478\pi\)
−0.404282 + 0.914634i \(0.632478\pi\)
\(180\) 0 0
\(181\) −5.37359 + 9.30733i −0.399416 + 0.691808i −0.993654 0.112481i \(-0.964120\pi\)
0.594238 + 0.804289i \(0.297454\pi\)
\(182\) 27.5105i 2.03921i
\(183\) 39.8810i 2.94809i
\(184\) −0.777843 + 1.34726i −0.0573434 + 0.0993216i
\(185\) 0 0
\(186\) 14.8454 25.7130i 1.08852 1.88537i
\(187\) −8.47979 + 4.89581i −0.620104 + 0.358017i
\(188\) 0.649573 0.375031i 0.0473750 0.0273519i
\(189\) −23.3684 −1.69980
\(190\) 0 0
\(191\) −6.28362 −0.454667 −0.227334 0.973817i \(-0.573001\pi\)
−0.227334 + 0.973817i \(0.573001\pi\)
\(192\) 17.5187 10.1144i 1.26430 0.729946i
\(193\) −15.4405 + 8.91459i −1.11143 + 0.641686i −0.939200 0.343370i \(-0.888431\pi\)
−0.172233 + 0.985056i \(0.555098\pi\)
\(194\) 8.14649 14.1101i 0.584884 1.01305i
\(195\) 0 0
\(196\) −0.710713 + 1.23099i −0.0507652 + 0.0879279i
\(197\) 16.9925i 1.21066i −0.795973 0.605332i \(-0.793041\pi\)
0.795973 0.605332i \(-0.206959\pi\)
\(198\) 42.7672i 3.03934i
\(199\) 8.22212 14.2411i 0.582850 1.00953i −0.412289 0.911053i \(-0.635271\pi\)
0.995140 0.0984735i \(-0.0313960\pi\)
\(200\) 0 0
\(201\) −2.23227 −0.157452
\(202\) 7.64131i 0.537641i
\(203\) 5.45603 + 3.15004i 0.382938 + 0.221090i
\(204\) 0.484826 + 0.839743i 0.0339446 + 0.0587937i
\(205\) 0 0
\(206\) 5.74593 + 9.95225i 0.400338 + 0.693406i
\(207\) −2.59919 + 1.50064i −0.180656 + 0.104302i
\(208\) 21.3446i 1.47998i
\(209\) 3.55851 24.1253i 0.246147 1.66878i
\(210\) 0 0
\(211\) −7.79632 13.5036i −0.536721 0.929628i −0.999078 0.0429343i \(-0.986329\pi\)
0.462357 0.886694i \(-0.347004\pi\)
\(212\) 1.14156 0.659078i 0.0784024 0.0452657i
\(213\) 15.7802 + 9.11068i 1.08124 + 0.624253i
\(214\) −9.37013 16.2295i −0.640529 1.10943i
\(215\) 0 0
\(216\) 16.5143 1.12366
\(217\) 26.5615i 1.80311i
\(218\) 10.5108 + 6.06841i 0.711880 + 0.411004i
\(219\) −4.12678 + 7.14779i −0.278862 + 0.483003i
\(220\) 0 0
\(221\) −8.58734 −0.577647
\(222\) −8.65997 4.99984i −0.581219 0.335567i
\(223\) −6.76042 + 3.90313i −0.452711 + 0.261373i −0.708974 0.705234i \(-0.750842\pi\)
0.256263 + 0.966607i \(0.417509\pi\)
\(224\) 2.06933 3.58419i 0.138263 0.239479i
\(225\) 0 0
\(226\) 9.29826 + 16.1051i 0.618511 + 1.07129i
\(227\) 16.8511i 1.11845i 0.829017 + 0.559223i \(0.188900\pi\)
−0.829017 + 0.559223i \(0.811100\pi\)
\(228\) −2.38909 0.352394i −0.158222 0.0233379i
\(229\) 0.251385 0.0166120 0.00830600 0.999966i \(-0.497356\pi\)
0.00830600 + 0.999966i \(0.497356\pi\)
\(230\) 0 0
\(231\) 30.2498 + 52.3942i 1.99029 + 3.44729i
\(232\) −3.85575 2.22612i −0.253142 0.146152i
\(233\) −20.0943 + 11.6014i −1.31642 + 0.760035i −0.983151 0.182797i \(-0.941485\pi\)
−0.333269 + 0.942832i \(0.608152\pi\)
\(234\) 18.7536 32.4822i 1.22596 2.12343i
\(235\) 0 0
\(236\) −0.0792355 −0.00515779
\(237\) 30.9318 + 17.8585i 2.00923 + 1.16003i
\(238\) −8.49848 4.90660i −0.550874 0.318047i
\(239\) 7.58778 0.490813 0.245406 0.969420i \(-0.421079\pi\)
0.245406 + 0.969420i \(0.421079\pi\)
\(240\) 0 0
\(241\) 2.75808 4.77714i 0.177664 0.307723i −0.763416 0.645907i \(-0.776479\pi\)
0.941080 + 0.338184i \(0.109813\pi\)
\(242\) −26.0393 + 15.0338i −1.67387 + 0.966409i
\(243\) −10.7131 6.18523i −0.687248 0.396783i
\(244\) 1.35371 + 2.34469i 0.0866623 + 0.150103i
\(245\) 0 0
\(246\) −3.53469 −0.225364
\(247\) 13.2818 16.7630i 0.845099 1.06661i
\(248\) 18.7708i 1.19195i
\(249\) 14.8411 + 25.7056i 0.940519 + 1.62903i
\(250\) 0 0
\(251\) 9.32933 16.1589i 0.588862 1.01994i −0.405520 0.914086i \(-0.632910\pi\)
0.994382 0.105852i \(-0.0337571\pi\)
\(252\) 3.28121 1.89441i 0.206697 0.119336i
\(253\) 2.81758 + 1.62673i 0.177140 + 0.102272i
\(254\) 12.0853 0.758297
\(255\) 0 0
\(256\) −2.30606 + 3.99422i −0.144129 + 0.249639i
\(257\) −0.599899 0.346352i −0.0374207 0.0216048i 0.481173 0.876626i \(-0.340211\pi\)
−0.518594 + 0.855021i \(0.673544\pi\)
\(258\) 4.53320i 0.282225i
\(259\) 8.94574 0.555861
\(260\) 0 0
\(261\) −4.29470 7.43865i −0.265836 0.460441i
\(262\) 24.6927 + 14.2564i 1.52552 + 0.880761i
\(263\) −10.0691 + 5.81338i −0.620885 + 0.358468i −0.777214 0.629237i \(-0.783368\pi\)
0.156328 + 0.987705i \(0.450034\pi\)
\(264\) −21.3774 37.0267i −1.31569 2.27884i
\(265\) 0 0
\(266\) 22.7223 9.00067i 1.39319 0.551866i
\(267\) 50.9703i 3.11933i
\(268\) 0.131240 0.0757716i 0.00801677 0.00462849i
\(269\) −11.8057 20.4481i −0.719809 1.24675i −0.961075 0.276286i \(-0.910896\pi\)
0.241267 0.970459i \(-0.422437\pi\)
\(270\) 0 0
\(271\) 3.81995 + 6.61635i 0.232046 + 0.401915i 0.958410 0.285395i \(-0.0921248\pi\)
−0.726364 + 0.687310i \(0.758791\pi\)
\(272\) 6.59373 + 3.80689i 0.399804 + 0.230827i
\(273\) 53.0587i 3.21126i
\(274\) 2.32830 0.140658
\(275\) 0 0
\(276\) 0.161093 0.279022i 0.00969667 0.0167951i
\(277\) 18.6537i 1.12079i −0.828224 0.560397i \(-0.810648\pi\)
0.828224 0.560397i \(-0.189352\pi\)
\(278\) 3.03524i 0.182041i
\(279\) 18.1067 31.3617i 1.08402 1.87758i
\(280\) 0 0
\(281\) −6.99489 + 12.1155i −0.417280 + 0.722750i −0.995665 0.0930139i \(-0.970350\pi\)
0.578385 + 0.815764i \(0.303683\pi\)
\(282\) 14.1726 8.18257i 0.843968 0.487265i
\(283\) 21.3620 12.3334i 1.26984 0.733143i 0.294884 0.955533i \(-0.404719\pi\)
0.974958 + 0.222390i \(0.0713857\pi\)
\(284\) −1.23700 −0.0734025
\(285\) 0 0
\(286\) −40.6588 −2.40420
\(287\) 2.73850 1.58107i 0.161649 0.0933278i
\(288\) −4.88662 + 2.82129i −0.287947 + 0.166246i
\(289\) −6.96842 + 12.0697i −0.409907 + 0.709979i
\(290\) 0 0
\(291\) 15.7119 27.2138i 0.921049 1.59530i
\(292\) 0.560312i 0.0327898i
\(293\) 10.5784i 0.617994i −0.951063 0.308997i \(-0.900007\pi\)
0.951063 0.308997i \(-0.0999933\pi\)
\(294\) −15.5066 + 26.8583i −0.904365 + 1.56641i
\(295\) 0 0
\(296\) −6.32191 −0.367454
\(297\) 34.5371i 2.00404i
\(298\) 1.89293 + 1.09288i 0.109654 + 0.0633090i
\(299\) 1.42666 + 2.47105i 0.0825058 + 0.142904i
\(300\) 0 0
\(301\) −2.02771 3.51209i −0.116875 0.202434i
\(302\) −8.24223 + 4.75866i −0.474287 + 0.273830i
\(303\) 14.7376i 0.846652i
\(304\) −17.6296 + 6.98337i −1.01113 + 0.400524i
\(305\) 0 0
\(306\) 6.68956 + 11.5867i 0.382417 + 0.662365i
\(307\) −11.1063 + 6.41222i −0.633870 + 0.365965i −0.782249 0.622966i \(-0.785928\pi\)
0.148379 + 0.988931i \(0.452594\pi\)
\(308\) −3.55691 2.05358i −0.202674 0.117014i
\(309\) 11.0820 + 19.1946i 0.630434 + 1.09194i
\(310\) 0 0
\(311\) 3.42706 0.194331 0.0971655 0.995268i \(-0.469022\pi\)
0.0971655 + 0.995268i \(0.469022\pi\)
\(312\) 37.4963i 2.12281i
\(313\) 2.46339 + 1.42224i 0.139239 + 0.0803896i 0.568001 0.823028i \(-0.307717\pi\)
−0.428762 + 0.903417i \(0.641050\pi\)
\(314\) −16.5071 + 28.5912i −0.931551 + 1.61349i
\(315\) 0 0
\(316\) −2.42473 −0.136402
\(317\) −4.03693 2.33072i −0.226737 0.130907i 0.382329 0.924026i \(-0.375122\pi\)
−0.609066 + 0.793120i \(0.708455\pi\)
\(318\) 24.9069 14.3800i 1.39671 0.806392i
\(319\) −4.65556 + 8.06367i −0.260662 + 0.451479i
\(320\) 0 0
\(321\) −18.0719 31.3015i −1.00868 1.74708i
\(322\) 3.26063i 0.181708i
\(323\) 2.80954 + 7.09272i 0.156327 + 0.394649i
\(324\) −0.417467 −0.0231926
\(325\) 0 0
\(326\) −11.1327 19.2825i −0.616585 1.06796i
\(327\) 20.2719 + 11.7040i 1.12104 + 0.647231i
\(328\) −1.93528 + 1.11734i −0.106858 + 0.0616946i
\(329\) −7.32016 + 12.6789i −0.403573 + 0.699010i
\(330\) 0 0
\(331\) −7.00260 −0.384898 −0.192449 0.981307i \(-0.561643\pi\)
−0.192449 + 0.981307i \(0.561643\pi\)
\(332\) −1.74509 1.00753i −0.0957741 0.0552952i
\(333\) −10.5624 6.09822i −0.578818 0.334181i
\(334\) 14.2173 0.777938
\(335\) 0 0
\(336\) 23.5217 40.7408i 1.28321 2.22259i
\(337\) 11.7239 6.76881i 0.638643 0.368721i −0.145449 0.989366i \(-0.546463\pi\)
0.784092 + 0.620645i \(0.213129\pi\)
\(338\) −14.2051 8.20130i −0.772654 0.446092i
\(339\) 17.9333 + 31.0614i 0.974003 + 1.68702i
\(340\) 0 0
\(341\) −39.2562 −2.12584
\(342\) −32.9644 4.86229i −1.78251 0.262923i
\(343\) 1.24667i 0.0673140i
\(344\) 1.43297 + 2.48198i 0.0772606 + 0.133819i
\(345\) 0 0
\(346\) −6.54112 + 11.3296i −0.351653 + 0.609081i
\(347\) −19.0208 + 10.9817i −1.02109 + 0.589527i −0.914420 0.404768i \(-0.867352\pi\)
−0.106671 + 0.994294i \(0.534019\pi\)
\(348\) 0.798535 + 0.461034i 0.0428060 + 0.0247140i
\(349\) 22.1930 1.18796 0.593981 0.804479i \(-0.297555\pi\)
0.593981 + 0.804479i \(0.297555\pi\)
\(350\) 0 0
\(351\) 15.1447 26.2313i 0.808362 1.40012i
\(352\) 5.29721 + 3.05835i 0.282342 + 0.163010i
\(353\) 0.679013i 0.0361402i −0.999837 0.0180701i \(-0.994248\pi\)
0.999837 0.0180701i \(-0.00575221\pi\)
\(354\) −1.72879 −0.0918843
\(355\) 0 0
\(356\) −1.73012 2.99666i −0.0916962 0.158822i
\(357\) −16.3908 9.46322i −0.867492 0.500847i
\(358\) 13.8766 8.01166i 0.733402 0.423430i
\(359\) −12.6627 21.9325i −0.668314 1.15755i −0.978375 0.206837i \(-0.933683\pi\)
0.310062 0.950716i \(-0.399650\pi\)
\(360\) 0 0
\(361\) −18.1909 5.48570i −0.957413 0.288721i
\(362\) 15.9187i 0.836666i
\(363\) −50.2213 + 28.9953i −2.63593 + 1.52186i
\(364\) −1.80101 3.11944i −0.0943985 0.163503i
\(365\) 0 0
\(366\) 29.5357 + 51.1574i 1.54386 + 2.67404i
\(367\) 10.1005 + 5.83153i 0.527243 + 0.304404i 0.739893 0.672725i \(-0.234876\pi\)
−0.212650 + 0.977128i \(0.568210\pi\)
\(368\) 2.52984i 0.131877i
\(369\) −4.31121 −0.224433
\(370\) 0 0
\(371\) −12.8644 + 22.2818i −0.667887 + 1.15681i
\(372\) 3.88749i 0.201557i
\(373\) 13.0913i 0.677843i −0.940815 0.338921i \(-0.889938\pi\)
0.940815 0.338921i \(-0.110062\pi\)
\(374\) 7.25164 12.5602i 0.374974 0.649473i
\(375\) 0 0
\(376\) 5.17312 8.96010i 0.266783 0.462082i
\(377\) −7.07192 + 4.08297i −0.364222 + 0.210284i
\(378\) 29.9759 17.3066i 1.54179 0.890155i
\(379\) 32.7566 1.68259 0.841297 0.540573i \(-0.181792\pi\)
0.841297 + 0.540573i \(0.181792\pi\)
\(380\) 0 0
\(381\) 23.3085 1.19413
\(382\) 8.06033 4.65363i 0.412402 0.238101i
\(383\) −22.2096 + 12.8227i −1.13486 + 0.655211i −0.945152 0.326630i \(-0.894087\pi\)
−0.189707 + 0.981841i \(0.560754\pi\)
\(384\) −18.1048 + 31.3584i −0.923905 + 1.60025i
\(385\) 0 0
\(386\) 13.2042 22.8704i 0.672078 1.16407i
\(387\) 5.52907i 0.281059i
\(388\) 2.13328i 0.108301i
\(389\) −9.27329 + 16.0618i −0.470174 + 0.814366i −0.999418 0.0341039i \(-0.989142\pi\)
0.529244 + 0.848470i \(0.322476\pi\)
\(390\) 0 0
\(391\) −1.01780 −0.0514723
\(392\) 19.6069i 0.990300i
\(393\) 47.6242 + 27.4958i 2.40232 + 1.38698i
\(394\) 12.5846 + 21.7971i 0.634002 + 1.09812i
\(395\) 0 0
\(396\) 2.79981 + 4.84942i 0.140696 + 0.243692i
\(397\) −13.3334 + 7.69806i −0.669186 + 0.386355i −0.795768 0.605601i \(-0.792933\pi\)
0.126582 + 0.991956i \(0.459599\pi\)
\(398\) 24.3571i 1.22091i
\(399\) 43.8239 17.3593i 2.19394 0.869054i
\(400\) 0 0
\(401\) 10.2956 + 17.8326i 0.514140 + 0.890517i 0.999865 + 0.0164054i \(0.00522222\pi\)
−0.485725 + 0.874112i \(0.661444\pi\)
\(402\) 2.86345 1.65321i 0.142816 0.0824548i
\(403\) −29.8155 17.2140i −1.48522 0.857491i
\(404\) 0.500248 + 0.866455i 0.0248883 + 0.0431078i
\(405\) 0 0
\(406\) −9.33165 −0.463122
\(407\) 13.2212i 0.655353i
\(408\) 11.5833 + 6.68761i 0.573458 + 0.331086i
\(409\) −0.811919 + 1.40629i −0.0401468 + 0.0695363i −0.885401 0.464829i \(-0.846116\pi\)
0.845254 + 0.534365i \(0.179449\pi\)
\(410\) 0 0
\(411\) 4.49054 0.221502
\(412\) −1.30307 0.752330i −0.0641978 0.0370646i
\(413\) 1.33938 0.773292i 0.0659066 0.0380512i
\(414\) 2.22274 3.84990i 0.109242 0.189212i
\(415\) 0 0
\(416\) 2.68220 + 4.64570i 0.131506 + 0.227774i
\(417\) 5.85398i 0.286671i
\(418\) 13.3024 + 33.5822i 0.650643 + 1.64256i
\(419\) −16.8087 −0.821161 −0.410580 0.911824i \(-0.634674\pi\)
−0.410580 + 0.911824i \(0.634674\pi\)
\(420\) 0 0
\(421\) −10.4718 18.1377i −0.510365 0.883977i −0.999928 0.0120096i \(-0.996177\pi\)
0.489563 0.871968i \(-0.337156\pi\)
\(422\) 20.0015 + 11.5479i 0.973658 + 0.562142i
\(423\) 17.2861 9.98016i 0.840481 0.485252i
\(424\) 9.09122 15.7465i 0.441509 0.764716i
\(425\) 0 0
\(426\) −26.9894 −1.30764
\(427\) −45.7656 26.4228i −2.21475 1.27869i
\(428\) 2.12498 + 1.22686i 0.102715 + 0.0593023i
\(429\) −78.4175 −3.78603
\(430\) 0 0
\(431\) −16.8908 + 29.2557i −0.813600 + 1.40920i 0.0967292 + 0.995311i \(0.469162\pi\)
−0.910329 + 0.413885i \(0.864171\pi\)
\(432\) −23.2575 + 13.4277i −1.11898 + 0.646041i
\(433\) −13.0154 7.51443i −0.625479 0.361120i 0.153520 0.988146i \(-0.450939\pi\)
−0.778999 + 0.627025i \(0.784272\pi\)
\(434\) −19.6713 34.0718i −0.944254 1.63550i
\(435\) 0 0
\(436\) −1.58910 −0.0761043
\(437\) 1.57420 1.98681i 0.0753042 0.0950419i
\(438\) 12.2251i 0.584139i
\(439\) 18.8607 + 32.6677i 0.900173 + 1.55915i 0.827269 + 0.561807i \(0.189894\pi\)
0.0729045 + 0.997339i \(0.476773\pi\)
\(440\) 0 0
\(441\) −18.9132 + 32.7586i −0.900628 + 1.55993i
\(442\) 11.0154 6.35976i 0.523950 0.302503i
\(443\) 11.3574 + 6.55722i 0.539608 + 0.311543i 0.744920 0.667154i \(-0.232488\pi\)
−0.205312 + 0.978697i \(0.565821\pi\)
\(444\) 1.30928 0.0621358
\(445\) 0 0
\(446\) 5.78129 10.0135i 0.273752 0.474153i
\(447\) 3.65084 + 2.10781i 0.172679 + 0.0996961i
\(448\) 26.8049i 1.26641i
\(449\) −11.6905 −0.551711 −0.275855 0.961199i \(-0.588961\pi\)
−0.275855 + 0.961199i \(0.588961\pi\)
\(450\) 0 0
\(451\) 2.33673 + 4.04733i 0.110032 + 0.190581i
\(452\) −2.10868 1.21744i −0.0991838 0.0572638i
\(453\) −15.8966 + 9.17789i −0.746886 + 0.431215i
\(454\) −12.4799 21.6158i −0.585709 1.01448i
\(455\) 0 0
\(456\) −30.9701 + 12.2678i −1.45031 + 0.574490i
\(457\) 21.4290i 1.00240i −0.865330 0.501202i \(-0.832891\pi\)
0.865330 0.501202i \(-0.167109\pi\)
\(458\) −0.322465 + 0.186175i −0.0150678 + 0.00869939i
\(459\) 5.40221 + 9.35691i 0.252154 + 0.436743i
\(460\) 0 0
\(461\) 4.82920 + 8.36442i 0.224918 + 0.389570i 0.956295 0.292404i \(-0.0944551\pi\)
−0.731377 + 0.681974i \(0.761122\pi\)
\(462\) −77.6060 44.8058i −3.61056 2.08456i
\(463\) 1.24981i 0.0580838i −0.999578 0.0290419i \(-0.990754\pi\)
0.999578 0.0290419i \(-0.00924562\pi\)
\(464\) 7.24017 0.336116
\(465\) 0 0
\(466\) 17.1840 29.7635i 0.796032 1.37877i
\(467\) 31.3476i 1.45059i −0.688437 0.725296i \(-0.741703\pi\)
0.688437 0.725296i \(-0.258297\pi\)
\(468\) 4.91092i 0.227007i
\(469\) −1.47897 + 2.56165i −0.0682925 + 0.118286i
\(470\) 0 0
\(471\) −31.8368 + 55.1430i −1.46696 + 2.54085i
\(472\) −0.946533 + 0.546481i −0.0435677 + 0.0251538i
\(473\) 5.19065 2.99682i 0.238666 0.137794i
\(474\) −52.9037 −2.42995
\(475\) 0 0
\(476\) 1.28487 0.0588918
\(477\) 30.3786 17.5391i 1.39094 0.803060i
\(478\) −9.73324 + 5.61949i −0.445188 + 0.257029i
\(479\) 2.37730 4.11760i 0.108622 0.188138i −0.806591 0.591111i \(-0.798690\pi\)
0.915212 + 0.402973i \(0.132023\pi\)
\(480\) 0 0
\(481\) −5.79758 + 10.0417i −0.264347 + 0.457862i
\(482\) 8.17052i 0.372157i
\(483\) 6.28870i 0.286146i
\(484\) 1.96841 3.40939i 0.0894733 0.154972i
\(485\) 0 0
\(486\) 18.3230 0.831150
\(487\) 17.0491i 0.772569i 0.922380 + 0.386285i \(0.126242\pi\)
−0.922380 + 0.386285i \(0.873758\pi\)
\(488\) 32.3423 + 18.6728i 1.46407 + 0.845280i
\(489\) −21.4714 37.1896i −0.970970 1.68177i
\(490\) 0 0
\(491\) 2.14031 + 3.70713i 0.0965910 + 0.167301i 0.910272 0.414012i \(-0.135873\pi\)
−0.813680 + 0.581312i \(0.802539\pi\)
\(492\) 0.400802 0.231403i 0.0180696 0.0104325i
\(493\) 2.91285i 0.131188i
\(494\) −4.62258 + 31.3392i −0.207980 + 1.41002i
\(495\) 0 0
\(496\) 15.2624 + 26.4353i 0.685304 + 1.18698i
\(497\) 20.9100 12.0724i 0.937942 0.541521i
\(498\) −38.0750 21.9826i −1.70618 0.985064i
\(499\) −2.41284 4.17916i −0.108013 0.187085i 0.806952 0.590617i \(-0.201116\pi\)
−0.914965 + 0.403532i \(0.867782\pi\)
\(500\) 0 0
\(501\) 27.4206 1.22506
\(502\) 27.6371i 1.23350i
\(503\) −21.0215 12.1368i −0.937304 0.541153i −0.0481900 0.998838i \(-0.515345\pi\)
−0.889114 + 0.457685i \(0.848679\pi\)
\(504\) 26.1311 45.2604i 1.16397 2.01606i
\(505\) 0 0
\(506\) −4.81901 −0.214231
\(507\) −27.3969 15.8176i −1.21674 0.702485i
\(508\) −1.37036 + 0.791177i −0.0607998 + 0.0351028i
\(509\) −5.05690 + 8.75880i −0.224143 + 0.388227i −0.956062 0.293165i \(-0.905292\pi\)
0.731919 + 0.681392i \(0.238625\pi\)
\(510\) 0 0
\(511\) 5.46831 + 9.47140i 0.241904 + 0.418990i
\(512\) 18.5188i 0.818423i
\(513\) −26.6207 3.92659i −1.17533 0.173363i
\(514\) 1.02603 0.0452562
\(515\) 0 0
\(516\) −0.296772 0.514024i −0.0130646 0.0226286i
\(517\) −18.7386 10.8187i −0.824123 0.475807i
\(518\) −11.4752 + 6.62519i −0.504190 + 0.291094i
\(519\) −12.6157 + 21.8510i −0.553767 + 0.959153i
\(520\) 0 0
\(521\) 29.3729 1.28685 0.643426 0.765508i \(-0.277513\pi\)
0.643426 + 0.765508i \(0.277513\pi\)
\(522\) 11.0181 + 6.36129i 0.482248 + 0.278426i
\(523\) −9.69944 5.59998i −0.424127 0.244870i 0.272714 0.962095i \(-0.412079\pi\)
−0.696842 + 0.717225i \(0.745412\pi\)
\(524\) −3.73324 −0.163087
\(525\) 0 0
\(526\) 8.61074 14.9142i 0.375446 0.650292i
\(527\) 10.6354 6.14037i 0.463286 0.267479i
\(528\) 60.2124 + 34.7636i 2.62041 + 1.51289i
\(529\) −11.3309 19.6257i −0.492648 0.853292i
\(530\) 0 0
\(531\) −2.10858 −0.0915046
\(532\) −1.98726 + 2.50814i −0.0861588 + 0.108742i
\(533\) 4.09866i 0.177533i
\(534\) −37.7485 65.3822i −1.63354 2.82937i
\(535\) 0 0
\(536\) 1.04518 1.81031i 0.0451450 0.0781934i
\(537\) 26.7634 15.4519i 1.15493 0.666798i
\(538\) 30.2877 + 17.4866i 1.30579 + 0.753901i
\(539\) 41.0047 1.76620
\(540\) 0 0
\(541\) −2.84691 + 4.93100i −0.122398 + 0.212000i −0.920713 0.390241i \(-0.872392\pi\)
0.798315 + 0.602241i \(0.205725\pi\)
\(542\) −9.80010 5.65809i −0.420950 0.243036i
\(543\) 30.7019i 1.31754i
\(544\) −1.91352 −0.0820415
\(545\) 0 0
\(546\) −39.2951 68.0612i −1.68168 2.91275i
\(547\) −10.3765 5.99088i −0.443667 0.256151i 0.261485 0.965208i \(-0.415788\pi\)
−0.705152 + 0.709056i \(0.749121\pi\)
\(548\) −0.264009 + 0.152425i −0.0112779 + 0.00651129i
\(549\) 36.0243 + 62.3959i 1.53748 + 2.66299i
\(550\) 0 0
\(551\) 5.68607 + 4.50522i 0.242235 + 0.191929i
\(552\) 4.44419i 0.189157i
\(553\) 40.9871 23.6639i 1.74295 1.00629i
\(554\) 13.8149 + 23.9281i 0.586939 + 1.01661i
\(555\) 0 0
\(556\) 0.198706 + 0.344168i 0.00842700 + 0.0145960i
\(557\) 29.9275 + 17.2786i 1.26807 + 0.732119i 0.974622 0.223857i \(-0.0718647\pi\)
0.293446 + 0.955976i \(0.405198\pi\)
\(558\) 53.6390i 2.27072i
\(559\) 5.25649 0.222326
\(560\) 0 0
\(561\) 13.9860 24.2245i 0.590491 1.02276i
\(562\) 20.7216i 0.874087i
\(563\) 24.8817i 1.04864i −0.851522 0.524318i \(-0.824320\pi\)
0.851522 0.524318i \(-0.175680\pi\)
\(564\) −1.07137 + 1.85566i −0.0451126 + 0.0781374i
\(565\) 0 0
\(566\) −18.2681 + 31.6413i −0.767867 + 1.32998i
\(567\) 7.05676 4.07422i 0.296356 0.171101i
\(568\) −14.7770 + 8.53150i −0.620029 + 0.357974i
\(569\) 38.7345 1.62384 0.811918 0.583771i \(-0.198423\pi\)
0.811918 + 0.583771i \(0.198423\pi\)
\(570\) 0 0
\(571\) −4.53514 −0.189790 −0.0948948 0.995487i \(-0.530251\pi\)
−0.0948948 + 0.995487i \(0.530251\pi\)
\(572\) 4.61034 2.66178i 0.192768 0.111295i
\(573\) 15.5457 8.97534i 0.649433 0.374950i
\(574\) −2.34188 + 4.05625i −0.0977481 + 0.169305i
\(575\) 0 0
\(576\) −18.2726 + 31.6491i −0.761359 + 1.31871i
\(577\) 21.9514i 0.913847i 0.889506 + 0.456923i \(0.151049\pi\)
−0.889506 + 0.456923i \(0.848951\pi\)
\(578\) 20.6432i 0.858642i
\(579\) 25.4666 44.1095i 1.05836 1.83313i
\(580\) 0 0
\(581\) 39.3314 1.63174
\(582\) 46.5448i 1.92934i
\(583\) −32.9311 19.0128i −1.36387 0.787430i
\(584\) −3.86443 6.69339i −0.159911 0.276974i
\(585\) 0 0
\(586\) 7.83430 + 13.5694i 0.323632 + 0.560547i
\(587\) 35.5472 20.5232i 1.46719 0.847084i 0.467866 0.883799i \(-0.345023\pi\)
0.999326 + 0.0367158i \(0.0116896\pi\)
\(588\) 4.06064i 0.167458i
\(589\) −4.46311 + 30.2581i −0.183899 + 1.24676i
\(590\) 0 0
\(591\) 24.2715 + 42.0395i 0.998397 + 1.72927i
\(592\) 8.90327 5.14030i 0.365922 0.211265i
\(593\) 8.41745 + 4.85982i 0.345663 + 0.199569i 0.662774 0.748820i \(-0.269379\pi\)
−0.317110 + 0.948389i \(0.602713\pi\)
\(594\) 25.5780 + 44.3025i 1.04948 + 1.81775i
\(595\) 0 0
\(596\) −0.286188 −0.0117227
\(597\) 46.9769i 1.92264i
\(598\) −3.66010 2.11316i −0.149673 0.0864135i
\(599\) −15.2247 + 26.3700i −0.622065 + 1.07745i 0.367036 + 0.930207i \(0.380373\pi\)
−0.989101 + 0.147241i \(0.952961\pi\)
\(600\) 0 0
\(601\) 24.5483 1.00135 0.500673 0.865637i \(-0.333086\pi\)
0.500673 + 0.865637i \(0.333086\pi\)
\(602\) 5.20209 + 3.00343i 0.212021 + 0.122411i
\(603\) 3.49251 2.01640i 0.142226 0.0821142i
\(604\) 0.623063 1.07918i 0.0253521 0.0439111i
\(605\) 0 0
\(606\) 10.9146 + 18.9047i 0.443376 + 0.767949i
\(607\) 39.0162i 1.58362i −0.610767 0.791810i \(-0.709139\pi\)
0.610767 0.791810i \(-0.290861\pi\)
\(608\) 2.95958 3.73531i 0.120027 0.151487i
\(609\) −17.9977 −0.729303
\(610\) 0 0
\(611\) −9.48813 16.4339i −0.383849 0.664845i
\(612\) −1.51707 0.875881i −0.0613239 0.0354054i
\(613\) 4.30775 2.48708i 0.173988 0.100452i −0.410477 0.911871i \(-0.634638\pi\)
0.584465 + 0.811419i \(0.301304\pi\)
\(614\) 9.49775 16.4506i 0.383298 0.663891i
\(615\) 0 0
\(616\) −56.6536 −2.28264
\(617\) −33.4649 19.3210i −1.34725 0.777834i −0.359389 0.933188i \(-0.617015\pi\)
−0.987859 + 0.155354i \(0.950348\pi\)
\(618\) −28.4310 16.4146i −1.14366 0.660293i
\(619\) 27.9053 1.12161 0.560804 0.827949i \(-0.310492\pi\)
0.560804 + 0.827949i \(0.310492\pi\)
\(620\) 0 0
\(621\) 1.79500 3.10902i 0.0720307 0.124761i
\(622\) −4.39607 + 2.53807i −0.176266 + 0.101767i
\(623\) 58.4912 + 33.7699i 2.34340 + 1.35296i
\(624\) 30.4880 + 52.8068i 1.22050 + 2.11396i
\(625\) 0 0
\(626\) −4.21322 −0.168394
\(627\) 25.6560 + 64.7690i 1.02460 + 2.58662i
\(628\) 4.32264i 0.172492i
\(629\) −2.06804 3.58195i −0.0824581 0.142822i
\(630\) 0 0
\(631\) 6.62012 11.4664i 0.263543 0.456469i −0.703638 0.710559i \(-0.748442\pi\)
0.967181 + 0.254089i \(0.0817757\pi\)
\(632\) −28.9654 + 16.7232i −1.15218 + 0.665212i
\(633\) 38.5763 + 22.2721i 1.53327 + 0.885235i
\(634\) 6.90451 0.274213
\(635\) 0 0
\(636\) −1.88281 + 3.26113i −0.0746584 + 0.129312i
\(637\) 31.1436 + 17.9808i 1.23395 + 0.712423i
\(638\) 13.7916i 0.546014i
\(639\) −32.9185 −1.30224
\(640\) 0 0
\(641\) −18.7555 32.4854i −0.740796 1.28310i −0.952133 0.305684i \(-0.901115\pi\)
0.211337 0.977413i \(-0.432218\pi\)
\(642\) 46.3636 + 26.7680i 1.82982 + 1.05645i
\(643\) −21.1257 + 12.1969i −0.833117 + 0.481000i −0.854919 0.518762i \(-0.826393\pi\)
0.0218020 + 0.999762i \(0.493060\pi\)
\(644\) −0.213462 0.369726i −0.00841157 0.0145693i
\(645\) 0 0
\(646\) −8.85679 7.01746i −0.348466 0.276098i
\(647\) 8.05266i 0.316583i −0.987392 0.158291i \(-0.949401\pi\)
0.987392 0.158291i \(-0.0505985\pi\)
\(648\) −4.98698 + 2.87923i −0.195907 + 0.113107i
\(649\) 1.14288 + 1.97952i 0.0448618 + 0.0777030i
\(650\) 0 0
\(651\) −37.9396 65.7133i −1.48697 2.57551i
\(652\) 2.52470 + 1.45764i 0.0988750 + 0.0570855i
\(653\) 19.9890i 0.782228i −0.920342 0.391114i \(-0.872090\pi\)
0.920342 0.391114i \(-0.127910\pi\)
\(654\) −34.6717 −1.35577
\(655\) 0 0
\(656\) 1.81700 3.14713i 0.0709419 0.122875i
\(657\) 14.9108i 0.581725i
\(658\) 21.6852i 0.845375i
\(659\) −16.2197 + 28.0933i −0.631829 + 1.09436i 0.355349 + 0.934734i \(0.384362\pi\)
−0.987178 + 0.159626i \(0.948971\pi\)
\(660\) 0 0
\(661\) 17.7771 30.7908i 0.691448 1.19762i −0.279915 0.960025i \(-0.590306\pi\)
0.971363 0.237599i \(-0.0763603\pi\)
\(662\) 8.98260 5.18610i 0.349118 0.201564i
\(663\) 21.2451 12.2659i 0.825093 0.476368i
\(664\) −27.7953 −1.07867
\(665\) 0 0
\(666\) 18.0653 0.700017
\(667\) −0.838187 + 0.483927i −0.0324547 + 0.0187377i
\(668\) −1.61212 + 0.930757i −0.0623747 + 0.0360121i
\(669\) 11.1502 19.3127i 0.431092 0.746674i
\(670\) 0 0
\(671\) 39.0512 67.6387i 1.50755 2.61116i
\(672\) 11.8231i 0.456086i
\(673\) 27.5963i 1.06376i 0.846820 + 0.531880i \(0.178514\pi\)
−0.846820 + 0.531880i \(0.821486\pi\)
\(674\) −10.0259 + 17.3654i −0.386184 + 0.668891i
\(675\) 0 0
\(676\) 2.14763 0.0826013
\(677\) 21.2114i 0.815221i −0.913156 0.407610i \(-0.866362\pi\)
0.913156 0.407610i \(-0.133638\pi\)
\(678\) −46.0079 26.5627i −1.76692 1.02013i
\(679\) −20.8196 36.0605i −0.798981 1.38388i
\(680\) 0 0
\(681\) −24.0696 41.6897i −0.922348 1.59755i
\(682\) 50.3559 29.0730i 1.92823 1.11326i
\(683\) 19.3626i 0.740891i 0.928854 + 0.370446i \(0.120795\pi\)
−0.928854 + 0.370446i \(0.879205\pi\)
\(684\) 4.05618 1.60672i 0.155092 0.0614344i
\(685\) 0 0
\(686\) 0.923282 + 1.59917i 0.0352511 + 0.0610567i
\(687\) −0.621929 + 0.359071i −0.0237281 + 0.0136994i
\(688\) −4.03616 2.33028i −0.153877 0.0888410i
\(689\) −16.6744 28.8809i −0.635244 1.10028i
\(690\) 0 0
\(691\) −1.28081 −0.0487241 −0.0243621 0.999703i \(-0.507755\pi\)
−0.0243621 + 0.999703i \(0.507755\pi\)
\(692\) 1.71289i 0.0651144i
\(693\) −94.6548 54.6490i −3.59564 2.07594i
\(694\) 16.2660 28.1735i 0.617448 1.06945i
\(695\) 0 0
\(696\) 12.7189 0.482108
\(697\) −1.26615 0.731012i −0.0479588 0.0276891i
\(698\) −28.4681 + 16.4361i −1.07753 + 0.622114i
\(699\) 33.1423 57.4041i 1.25356 2.17122i
\(700\) 0 0
\(701\) 18.5649 + 32.1553i 0.701185 + 1.21449i 0.968051 + 0.250754i \(0.0806787\pi\)
−0.266866 + 0.963734i \(0.585988\pi\)
\(702\) 44.8644i 1.69330i
\(703\) 10.1908 + 1.50315i 0.384352 + 0.0566924i
\(704\) 39.6159 1.49308
\(705\) 0 0
\(706\) 0.502875 + 0.871005i 0.0189260 + 0.0327807i
\(707\) −16.9122 9.76425i −0.636048 0.367222i
\(708\) 0.196029 0.113178i 0.00736723 0.00425347i
\(709\) 6.57886 11.3949i 0.247074 0.427945i −0.715638 0.698471i \(-0.753864\pi\)
0.962713 + 0.270526i \(0.0871975\pi\)
\(710\) 0 0
\(711\) −64.5258 −2.41991
\(712\) −41.3354 23.8650i −1.54911 0.894379i
\(713\) −3.53384 2.04026i −0.132343 0.0764084i
\(714\) 28.0337 1.04914
\(715\) 0 0
\(716\) −1.04899 + 1.81690i −0.0392025 + 0.0679007i
\(717\) −18.7722 + 10.8382i −0.701062 + 0.404758i
\(718\) 32.4863 + 18.7560i 1.21238 + 0.699967i
\(719\) 7.27853 + 12.6068i 0.271443 + 0.470153i 0.969232 0.246150i \(-0.0791657\pi\)
−0.697788 + 0.716304i \(0.745832\pi\)
\(720\) 0 0
\(721\) 29.3692 1.09376
\(722\) 27.3970 6.43530i 1.01961 0.239497i
\(723\) 15.7583i 0.586056i
\(724\) 1.04214 + 1.80503i 0.0387306 + 0.0670834i
\(725\) 0 0
\(726\) 42.9476 74.3874i 1.59394 2.76078i
\(727\) −7.76966 + 4.48581i −0.288161 + 0.166370i −0.637112 0.770771i \(-0.719871\pi\)
0.348951 + 0.937141i \(0.386538\pi\)
\(728\) −43.0291 24.8428i −1.59476 0.920737i
\(729\) 41.7969 1.54803
\(730\) 0 0
\(731\) −0.937514 + 1.62382i −0.0346752 + 0.0600592i
\(732\) −6.69817 3.86719i −0.247571 0.142935i
\(733\) 24.7325i 0.913516i 0.889591 + 0.456758i \(0.150990\pi\)
−0.889591 + 0.456758i \(0.849010\pi\)
\(734\) −17.2753 −0.637642
\(735\) 0 0
\(736\) 0.317903 + 0.550624i 0.0117181 + 0.0202963i
\(737\) −3.78596 2.18583i −0.139458 0.0805159i
\(738\) 5.53021 3.19287i 0.203570 0.117531i
\(739\) −0.784588 1.35895i −0.0288615 0.0499896i 0.851234 0.524787i \(-0.175855\pi\)
−0.880095 + 0.474797i \(0.842522\pi\)
\(740\) 0 0
\(741\) −8.91543 + 60.4431i −0.327517 + 2.22043i
\(742\) 38.1094i 1.39904i
\(743\) −21.0380 + 12.1463i −0.771808 + 0.445604i −0.833519 0.552490i \(-0.813678\pi\)
0.0617109 + 0.998094i \(0.480344\pi\)
\(744\) 26.8117 + 46.4392i 0.982965 + 1.70254i
\(745\) 0 0
\(746\) 9.69539 + 16.7929i 0.354974 + 0.614832i
\(747\) −46.4395 26.8119i −1.69913 0.980994i
\(748\) 1.89895i 0.0694326i
\(749\) −47.8935 −1.74999
\(750\) 0 0
\(751\) −17.4771 + 30.2712i −0.637748 + 1.10461i 0.348178 + 0.937429i \(0.386801\pi\)
−0.985926 + 0.167184i \(0.946533\pi\)
\(752\) 16.8249i 0.613541i
\(753\) 53.3029i 1.94247i
\(754\) 6.04768 10.4749i 0.220243 0.381473i
\(755\) 0 0
\(756\) −2.26600 + 3.92482i −0.0824135 + 0.142744i
\(757\) 2.78935 1.61043i 0.101381 0.0585321i −0.448452 0.893807i \(-0.648025\pi\)
0.549833 + 0.835275i \(0.314691\pi\)
\(758\) −42.0186 + 24.2595i −1.52619 + 0.881143i
\(759\) −9.29430 −0.337362
\(760\) 0 0
\(761\) 3.72402 0.134996 0.0674979 0.997719i \(-0.478498\pi\)
0.0674979 + 0.997719i \(0.478498\pi\)
\(762\) −29.8990 + 17.2622i −1.08313 + 0.625344i
\(763\) 26.8619 15.5087i 0.972465 0.561453i
\(764\) −0.609312 + 1.05536i −0.0220441 + 0.0381816i
\(765\) 0 0
\(766\) 18.9930 32.8968i 0.686244 1.18861i
\(767\) 2.00463i 0.0723829i
\(768\) 13.1756i 0.475435i
\(769\) −16.1032 + 27.8915i −0.580695 + 1.00579i 0.414702 + 0.909957i \(0.363886\pi\)
−0.995397 + 0.0958365i \(0.969447\pi\)
\(770\) 0 0
\(771\) 1.97887 0.0712674
\(772\) 3.45773i 0.124446i
\(773\) −17.9122 10.3416i −0.644259 0.371963i 0.141994 0.989867i \(-0.454649\pi\)
−0.786253 + 0.617904i \(0.787982\pi\)
\(774\) −4.09482 7.09243i −0.147185 0.254932i
\(775\) 0 0
\(776\) 14.7131 + 25.4838i 0.528169 + 0.914815i
\(777\) −22.1318 + 12.7778i −0.793975 + 0.458402i
\(778\) 27.4711i 0.984886i
\(779\) 3.38530 1.34097i 0.121291 0.0480452i
\(780\) 0 0
\(781\) 17.8422 + 30.9037i 0.638446 + 1.10582i
\(782\) 1.30558 0.753780i 0.0466876 0.0269551i
\(783\) 8.89775 + 5.13712i 0.317980 + 0.183586i
\(784\) −15.9423 27.6128i −0.569367 0.986172i
\(785\) 0 0
\(786\) −81.4534 −2.90535
\(787\) 46.0227i 1.64053i 0.571982 + 0.820266i \(0.306175\pi\)
−0.571982 + 0.820266i \(0.693825\pi\)
\(788\) −2.85395 1.64773i −0.101668 0.0586980i
\(789\) 16.6073 28.7647i 0.591236 1.02405i
\(790\) 0 0
\(791\) 47.5261 1.68983
\(792\) 66.8921 + 38.6202i 2.37691 + 1.37231i
\(793\) 59.3197 34.2483i 2.10651 1.21619i
\(794\) 11.4023 19.7494i 0.404654 0.700880i
\(795\) 0 0
\(796\) −1.59457 2.76187i −0.0565180 0.0978920i
\(797\) 25.0847i 0.888546i 0.895891 + 0.444273i \(0.146538\pi\)
−0.895891 + 0.444273i \(0.853462\pi\)
\(798\) −43.3589 + 54.7236i −1.53489 + 1.93719i
\(799\) 6.76897 0.239469
\(800\) 0 0
\(801\) −46.0412 79.7457i −1.62679 2.81768i
\(802\) −26.4135 15.2499i −0.932694 0.538491i
\(803\) −13.9981 + 8.08183i −0.493983 + 0.285201i
\(804\) −0.216460 + 0.374919i −0.00763394 + 0.0132224i
\(805\) 0 0
\(806\) 50.9946 1.79621
\(807\) 58.4150 + 33.7259i 2.05631 + 1.18721i
\(808\) 11.9517 + 6.90034i 0.420461 + 0.242753i
\(809\) −27.6272 −0.971319 −0.485660 0.874148i \(-0.661421\pi\)
−0.485660 + 0.874148i \(0.661421\pi\)
\(810\) 0 0
\(811\) 19.2254 33.2993i 0.675094 1.16930i −0.301347 0.953514i \(-0.597436\pi\)
0.976441 0.215783i \(-0.0692304\pi\)
\(812\) 1.05812 0.610908i 0.0371329 0.0214387i
\(813\) −18.9012 10.9126i −0.662893 0.382722i
\(814\) −9.79162 16.9596i −0.343196 0.594433i
\(815\) 0 0
\(816\) −21.7506 −0.761423
\(817\) −1.71978 4.34160i −0.0601674 0.151893i
\(818\) 2.40522i 0.0840966i
\(819\) −47.9277 83.0132i −1.67473 2.90071i
\(820\) 0 0
\(821\) −26.3339 + 45.6117i −0.919060 + 1.59186i −0.118215 + 0.992988i \(0.537717\pi\)
−0.800845 + 0.598871i \(0.795616\pi\)
\(822\) −5.76024 + 3.32568i −0.200912 + 0.115996i
\(823\) 4.04602 + 2.33597i 0.141035 + 0.0814269i 0.568857 0.822436i \(-0.307386\pi\)
−0.427822 + 0.903863i \(0.640719\pi\)
\(824\) −20.7550 −0.723036
\(825\) 0 0
\(826\) −1.14540 + 1.98388i −0.0398534 + 0.0690281i
\(827\) −23.7506 13.7124i −0.825888 0.476827i 0.0265546 0.999647i \(-0.491546\pi\)
−0.852443 + 0.522821i \(0.824880\pi\)
\(828\) 0.582059i 0.0202279i
\(829\) −0.156181 −0.00542438 −0.00271219 0.999996i \(-0.500863\pi\)
−0.00271219 + 0.999996i \(0.500863\pi\)
\(830\) 0 0
\(831\) 26.6444 + 46.1495i 0.924285 + 1.60091i
\(832\) 30.0888 + 17.3718i 1.04314 + 0.602258i
\(833\) −11.1091 + 6.41387i −0.384909 + 0.222227i
\(834\) 4.33544 + 7.50920i 0.150124 + 0.260022i
\(835\) 0 0
\(836\) −3.70687 2.93705i −0.128205 0.101580i
\(837\) 43.3167i 1.49724i
\(838\) 21.5615 12.4485i 0.744828 0.430027i
\(839\) −14.5946 25.2786i −0.503862 0.872715i −0.999990 0.00446519i \(-0.998579\pi\)
0.496128 0.868249i \(-0.334755\pi\)
\(840\) 0 0
\(841\) 13.1150 + 22.7159i 0.452243 + 0.783308i
\(842\) 26.8655 + 15.5108i 0.925845 + 0.534537i
\(843\) 39.9651i 1.37647i
\(844\) −3.02398 −0.104090
\(845\) 0 0
\(846\) −14.7826 + 25.6041i −0.508235 + 0.880288i
\(847\) 76.8421i 2.64033i
\(848\) 29.5680i 1.01537i
\(849\) −35.2332 + 61.0258i −1.20920 + 2.09440i
\(850\) 0 0
\(851\) −0.687148 + 1.19018i −0.0235551 + 0.0407987i
\(852\) 3.06035 1.76689i 0.104846 0.0605328i
\(853\) 39.6348 22.8832i 1.35707 0.783505i 0.367842 0.929888i \(-0.380097\pi\)
0.989228 + 0.146384i \(0.0467634\pi\)
\(854\) 78.2745 2.67850
\(855\) 0 0
\(856\) 33.8461 1.15684
\(857\) 12.9177 7.45807i 0.441262 0.254763i −0.262871 0.964831i \(-0.584669\pi\)
0.704133 + 0.710068i \(0.251336\pi\)
\(858\) 100.590 58.0757i 3.43409 1.98267i
\(859\) 24.6100 42.6258i 0.839682 1.45437i −0.0504787 0.998725i \(-0.516075\pi\)
0.890161 0.455647i \(-0.150592\pi\)
\(860\) 0 0
\(861\) −4.51671 + 7.82318i −0.153929 + 0.266613i
\(862\) 50.0370i 1.70427i
\(863\) 20.9577i 0.713407i −0.934218 0.356704i \(-0.883901\pi\)
0.934218 0.356704i \(-0.116099\pi\)
\(864\) 3.37469 5.84514i 0.114809 0.198856i
\(865\) 0 0
\(866\) 22.2607 0.756448
\(867\) 39.8139i 1.35215i
\(868\) 4.46110 + 2.57562i 0.151420 + 0.0874222i
\(869\) 34.9738 + 60.5764i 1.18640 + 2.05491i
\(870\) 0 0
\(871\) −1.91699 3.32032i −0.0649547 0.112505i
\(872\) −18.9831 + 10.9599i −0.642851 + 0.371150i
\(873\) 56.7700i 1.92137i
\(874\) −0.547883 + 3.71443i −0.0185324 + 0.125642i
\(875\) 0 0
\(876\) 0.800333 + 1.38622i 0.0270407 + 0.0468359i
\(877\) −22.6914 + 13.1009i −0.766233 + 0.442385i −0.831529 0.555481i \(-0.812534\pi\)
0.0652963 + 0.997866i \(0.479201\pi\)
\(878\) −48.3873 27.9364i −1.63299 0.942808i
\(879\) 15.1098 + 26.1709i 0.509641 + 0.882724i
\(880\) 0 0
\(881\) −45.3499 −1.52788 −0.763938 0.645289i \(-0.776737\pi\)
−0.763938 + 0.645289i \(0.776737\pi\)
\(882\) 56.0282i 1.88657i
\(883\) −37.5136 21.6585i −1.26243 0.728867i −0.288890 0.957362i \(-0.593286\pi\)
−0.973545 + 0.228495i \(0.926619\pi\)
\(884\) −0.832699 + 1.44228i −0.0280067 + 0.0485090i
\(885\) 0 0
\(886\) −19.4250 −0.652597
\(887\) −33.7877 19.5073i −1.13448 0.654992i −0.189422 0.981896i \(-0.560661\pi\)
−0.945058 + 0.326904i \(0.893995\pi\)
\(888\) 15.6405 9.03002i 0.524859 0.303028i
\(889\) 15.4428 26.7478i 0.517936 0.897091i
\(890\) 0 0
\(891\) 6.02145 + 10.4295i 0.201726 + 0.349400i
\(892\) 1.51392i 0.0506898i
\(893\) −10.4694 + 13.2135i −0.350344 + 0.442171i
\(894\) −6.24416 −0.208836
\(895\) 0 0
\(896\) 23.9903 + 41.5524i 0.801459 + 1.38817i
\(897\) −7.05913 4.07559i −0.235698 0.136080i
\(898\) 14.9961 8.65798i 0.500425 0.288921i
\(899\) 5.83905 10.1135i 0.194743 0.337305i
\(900\) 0 0
\(901\) 11.8958 0.396306
\(902\) −5.99488 3.46115i −0.199608 0.115244i
\(903\) 10.0331 + 5.79263i 0.333882 + 0.192767i
\(904\) −33.5865 −1.11707
\(905\) 0 0
\(906\) 13.5942 23.5459i 0.451638 0.782260i
\(907\) −43.4405 + 25.0804i −1.44242 + 0.832780i −0.998011 0.0630443i \(-0.979919\pi\)
−0.444407 + 0.895825i \(0.646586\pi\)
\(908\) 2.83021 + 1.63402i 0.0939237 + 0.0542269i
\(909\) 13.3124 + 23.0577i 0.441544 + 0.764776i
\(910\) 0 0
\(911\) −50.4028 −1.66992 −0.834959 0.550312i \(-0.814509\pi\)
−0.834959 + 0.550312i \(0.814509\pi\)
\(912\) 33.6410 42.4585i 1.11396 1.40594i
\(913\) 58.1294i 1.92380i
\(914\) 15.8702 + 27.4880i 0.524940 + 0.909223i
\(915\) 0 0
\(916\) 0.0243764 0.0422211i 0.000805418 0.00139503i
\(917\) 63.1059 36.4342i 2.08394 1.20316i
\(918\) −13.8594 8.00173i −0.457428 0.264096i
\(919\) −48.7246 −1.60728 −0.803638 0.595118i \(-0.797105\pi\)
−0.803638 + 0.595118i \(0.797105\pi\)
\(920\) 0 0
\(921\) 18.3180 31.7278i 0.603600 1.04547i
\(922\) −12.3893 7.15299i −0.408021 0.235571i
\(923\) 31.2956i 1.03011i
\(924\) 11.7331 0.385990
\(925\) 0 0
\(926\) 0.925608 + 1.60320i 0.0304174 + 0.0526844i
\(927\) −34.6768 20.0207i −1.13894 0.657565i
\(928\) −1.57584 + 0.909811i −0.0517294 + 0.0298660i
\(929\) 4.01832 + 6.95993i 0.131837 + 0.228348i 0.924385 0.381462i \(-0.124579\pi\)
−0.792548 + 0.609810i \(0.791246\pi\)
\(930\) 0 0
\(931\) 4.66191 31.6059i 0.152788 1.03584i
\(932\) 4.49989i 0.147399i
\(933\) −8.47858 + 4.89511i −0.277576 + 0.160259i
\(934\) 23.2159 + 40.2111i 0.759648 + 1.31575i
\(935\) 0 0
\(936\) 33.8702 + 58.6650i 1.10708 + 1.91752i
\(937\) 22.1206 + 12.7713i 0.722647 + 0.417221i 0.815726 0.578438i \(-0.196338\pi\)
−0.0930789 + 0.995659i \(0.529671\pi\)
\(938\) 4.38129i 0.143054i
\(939\) −8.12592 −0.265179
\(940\) 0 0
\(941\) −4.30747 + 7.46075i −0.140419 + 0.243214i −0.927655 0.373439i \(-0.878178\pi\)
0.787235 + 0.616653i \(0.211512\pi\)
\(942\) 94.3130i 3.07288i
\(943\) 0.485787i 0.0158194i
\(944\) 0.888680 1.53924i 0.0289241 0.0500980i
\(945\) 0 0
\(946\) −4.43888 + 7.68837i −0.144320 + 0.249970i
\(947\) 33.2793 19.2138i 1.08143 0.624364i 0.150149 0.988663i \(-0.452025\pi\)
0.931282 + 0.364299i \(0.118691\pi\)
\(948\) 5.99880 3.46341i 0.194832 0.112486i
\(949\) −14.1757 −0.460162
\(950\) 0 0
\(951\) 13.3165 0.431819
\(952\) 15.3488 8.86163i 0.497457 0.287207i
\(953\) 7.69932 4.44520i 0.249405 0.143994i −0.370087 0.928997i \(-0.620672\pi\)
0.619492 + 0.785003i \(0.287339\pi\)
\(954\) −25.9788 + 44.9966i −0.841095 + 1.45682i
\(955\) 0 0
\(956\) 0.735774 1.27440i 0.0237966 0.0412170i
\(957\) 26.5995i 0.859838i
\(958\) 7.04248i 0.227532i
\(959\) 2.97516 5.15313i 0.0960730 0.166403i
\(960\) 0 0
\(961\) 18.2354 0.588239
\(962\) 17.1747i 0.553734i
\(963\) 56.5489 + 32.6485i 1.82226 + 1.05208i
\(964\) −0.534893 0.926463i −0.0172278 0.0298394i
\(965\) 0 0
\(966\) −4.65739 8.06684i −0.149849 0.259546i
\(967\) 53.3729 30.8149i 1.71636 0.990939i 0.791021 0.611789i \(-0.209550\pi\)
0.925335 0.379150i \(-0.123784\pi\)
\(968\) 54.3040i 1.74540i
\(969\) −17.0818 13.5344i −0.548748 0.434787i
\(970\) 0 0
\(971\) −2.92998 5.07488i −0.0940277 0.162861i 0.815175 0.579215i \(-0.196641\pi\)
−0.909202 + 0.416354i \(0.863308\pi\)
\(972\) −2.07767 + 1.19954i −0.0666412 + 0.0384753i
\(973\) −6.71776 3.87850i −0.215361 0.124339i
\(974\) −12.6265 21.8698i −0.404580 0.700753i
\(975\) 0 0
\(976\) −60.7310 −1.94395
\(977\) 2.40082i 0.0768089i −0.999262 0.0384044i \(-0.987772\pi\)
0.999262 0.0384044i \(-0.0122275\pi\)
\(978\) 55.0850 + 31.8033i 1.76142 + 1.01696i
\(979\) −49.9098 + 86.4463i −1.59512 + 2.76284i
\(980\) 0 0
\(981\) −42.2885 −1.35017
\(982\) −5.49098 3.17022i −0.175224 0.101166i
\(983\) −15.9076 + 9.18425i −0.507373 + 0.292932i −0.731753 0.681570i \(-0.761298\pi\)
0.224380 + 0.974502i \(0.427964\pi\)
\(984\) 3.19194 5.52860i 0.101755 0.176245i
\(985\) 0 0
\(986\) 2.15725 + 3.73647i 0.0687009 + 0.118993i
\(987\) 41.8236i 1.33126i
\(988\) −1.52750 3.85621i −0.0485964 0.122682i
\(989\) 0.623016 0.0198108
\(990\) 0 0
\(991\) −5.14734 8.91546i −0.163511 0.283209i 0.772615 0.634875i \(-0.218948\pi\)
−0.936125 + 0.351666i \(0.885615\pi\)
\(992\) −6.64381 3.83581i −0.210941 0.121787i
\(993\) 17.3245 10.0023i 0.549776 0.317413i
\(994\) −17.8816 + 30.9718i −0.567169 + 0.982365i
\(995\) 0 0
\(996\) 5.75648 0.182401
\(997\) −1.99385 1.15115i −0.0631459 0.0364573i 0.468095 0.883678i \(-0.344941\pi\)
−0.531241 + 0.847221i \(0.678274\pi\)
\(998\) 6.19014 + 3.57388i 0.195946 + 0.113129i
\(999\) 14.5888 0.461569
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.j.d.349.3 24
5.2 odd 4 475.2.e.h.26.2 yes 12
5.3 odd 4 475.2.e.f.26.5 12
5.4 even 2 inner 475.2.j.d.349.10 24
19.11 even 3 inner 475.2.j.d.49.10 24
95.7 odd 12 9025.2.a.br.1.5 6
95.12 even 12 9025.2.a.by.1.2 6
95.49 even 6 inner 475.2.j.d.49.3 24
95.68 odd 12 475.2.e.f.201.5 yes 12
95.83 odd 12 9025.2.a.bz.1.2 6
95.87 odd 12 475.2.e.h.201.2 yes 12
95.88 even 12 9025.2.a.bs.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.e.f.26.5 12 5.3 odd 4
475.2.e.f.201.5 yes 12 95.68 odd 12
475.2.e.h.26.2 yes 12 5.2 odd 4
475.2.e.h.201.2 yes 12 95.87 odd 12
475.2.j.d.49.3 24 95.49 even 6 inner
475.2.j.d.49.10 24 19.11 even 3 inner
475.2.j.d.349.3 24 1.1 even 1 trivial
475.2.j.d.349.10 24 5.4 even 2 inner
9025.2.a.br.1.5 6 95.7 odd 12
9025.2.a.bs.1.5 6 95.88 even 12
9025.2.a.by.1.2 6 95.12 even 12
9025.2.a.bz.1.2 6 95.83 odd 12