Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [475,2,Mod(49,475)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("475.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.j (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | −1.87935 | − | 1.08504i | −1.22342 | − | 0.706345i | 1.35464 | + | 2.34630i | 0 | 1.53283 | + | 2.65494i | − | 1.76171i | − | 1.53919i | −0.502155 | − | 0.869757i | 0 | ||||||
49.2 | −1.87935 | − | 1.08504i | 2.55640 | + | 1.47594i | 1.35464 | + | 2.34630i | 0 | −3.20292 | − | 5.54761i | 0.591620i | − | 1.53919i | 2.85679 | + | 4.94811i | 0 | |||||||
49.3 | −1.28275 | − | 0.740597i | −2.47401 | − | 1.42837i | 0.0969683 | + | 0.167954i | 0 | 2.11569 | + | 3.66449i | − | 3.78541i | 2.67513i | 2.58048 | + | 4.46952i | 0 | |||||||
49.4 | −1.28275 | − | 0.740597i | 0.157277 | + | 0.0908038i | 0.0969683 | + | 0.167954i | 0 | −0.134498 | − | 0.232958i | 1.30422i | 2.67513i | −1.48351 | − | 2.56951i | 0 | ||||||||
49.5 | −0.269427 | − | 0.155554i | −1.94349 | − | 1.12208i | −0.951606 | − | 1.64823i | 0 | 0.349087 | + | 0.604636i | 3.96928i | 1.21432i | 1.01811 | + | 1.76343i | 0 | ||||||||
49.6 | −0.269427 | − | 0.155554i | 0.891863 | + | 0.514917i | −0.951606 | − | 1.64823i | 0 | −0.160195 | − | 0.277466i | − | 3.28038i | 1.21432i | −0.969720 | − | 1.67960i | 0 | |||||||
49.7 | 0.269427 | + | 0.155554i | −0.891863 | − | 0.514917i | −0.951606 | − | 1.64823i | 0 | −0.160195 | − | 0.277466i | 3.28038i | − | 1.21432i | −0.969720 | − | 1.67960i | 0 | |||||||
49.8 | 0.269427 | + | 0.155554i | 1.94349 | + | 1.12208i | −0.951606 | − | 1.64823i | 0 | 0.349087 | + | 0.604636i | − | 3.96928i | − | 1.21432i | 1.01811 | + | 1.76343i | 0 | ||||||
49.9 | 1.28275 | + | 0.740597i | −0.157277 | − | 0.0908038i | 0.0969683 | + | 0.167954i | 0 | −0.134498 | − | 0.232958i | − | 1.30422i | − | 2.67513i | −1.48351 | − | 2.56951i | 0 | ||||||
49.10 | 1.28275 | + | 0.740597i | 2.47401 | + | 1.42837i | 0.0969683 | + | 0.167954i | 0 | 2.11569 | + | 3.66449i | 3.78541i | − | 2.67513i | 2.58048 | + | 4.46952i | 0 | |||||||
49.11 | 1.87935 | + | 1.08504i | −2.55640 | − | 1.47594i | 1.35464 | + | 2.34630i | 0 | −3.20292 | − | 5.54761i | − | 0.591620i | 1.53919i | 2.85679 | + | 4.94811i | 0 | |||||||
49.12 | 1.87935 | + | 1.08504i | 1.22342 | + | 0.706345i | 1.35464 | + | 2.34630i | 0 | 1.53283 | + | 2.65494i | 1.76171i | 1.53919i | −0.502155 | − | 0.869757i | 0 | ||||||||
349.1 | −1.87935 | + | 1.08504i | −1.22342 | + | 0.706345i | 1.35464 | − | 2.34630i | 0 | 1.53283 | − | 2.65494i | 1.76171i | 1.53919i | −0.502155 | + | 0.869757i | 0 | ||||||||
349.2 | −1.87935 | + | 1.08504i | 2.55640 | − | 1.47594i | 1.35464 | − | 2.34630i | 0 | −3.20292 | + | 5.54761i | − | 0.591620i | 1.53919i | 2.85679 | − | 4.94811i | 0 | |||||||
349.3 | −1.28275 | + | 0.740597i | −2.47401 | + | 1.42837i | 0.0969683 | − | 0.167954i | 0 | 2.11569 | − | 3.66449i | 3.78541i | − | 2.67513i | 2.58048 | − | 4.46952i | 0 | |||||||
349.4 | −1.28275 | + | 0.740597i | 0.157277 | − | 0.0908038i | 0.0969683 | − | 0.167954i | 0 | −0.134498 | + | 0.232958i | − | 1.30422i | − | 2.67513i | −1.48351 | + | 2.56951i | 0 | ||||||
349.5 | −0.269427 | + | 0.155554i | −1.94349 | + | 1.12208i | −0.951606 | + | 1.64823i | 0 | 0.349087 | − | 0.604636i | − | 3.96928i | − | 1.21432i | 1.01811 | − | 1.76343i | 0 | ||||||
349.6 | −0.269427 | + | 0.155554i | 0.891863 | − | 0.514917i | −0.951606 | + | 1.64823i | 0 | −0.160195 | + | 0.277466i | 3.28038i | − | 1.21432i | −0.969720 | + | 1.67960i | 0 | |||||||
349.7 | 0.269427 | − | 0.155554i | −0.891863 | + | 0.514917i | −0.951606 | + | 1.64823i | 0 | −0.160195 | + | 0.277466i | − | 3.28038i | 1.21432i | −0.969720 | + | 1.67960i | 0 | |||||||
349.8 | 0.269427 | − | 0.155554i | 1.94349 | − | 1.12208i | −0.951606 | + | 1.64823i | 0 | 0.349087 | − | 0.604636i | 3.96928i | 1.21432i | 1.01811 | − | 1.76343i | 0 | ||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.c | even | 3 | 1 | inner |
95.i | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.j.d | 24 | |
5.b | even | 2 | 1 | inner | 475.2.j.d | 24 | |
5.c | odd | 4 | 1 | 475.2.e.f | ✓ | 12 | |
5.c | odd | 4 | 1 | 475.2.e.h | yes | 12 | |
19.c | even | 3 | 1 | inner | 475.2.j.d | 24 | |
95.i | even | 6 | 1 | inner | 475.2.j.d | 24 | |
95.l | even | 12 | 1 | 9025.2.a.bs | 6 | ||
95.l | even | 12 | 1 | 9025.2.a.by | 6 | ||
95.m | odd | 12 | 1 | 475.2.e.f | ✓ | 12 | |
95.m | odd | 12 | 1 | 475.2.e.h | yes | 12 | |
95.m | odd | 12 | 1 | 9025.2.a.br | 6 | ||
95.m | odd | 12 | 1 | 9025.2.a.bz | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
475.2.e.f | ✓ | 12 | 5.c | odd | 4 | 1 | |
475.2.e.f | ✓ | 12 | 95.m | odd | 12 | 1 | |
475.2.e.h | yes | 12 | 5.c | odd | 4 | 1 | |
475.2.e.h | yes | 12 | 95.m | odd | 12 | 1 | |
475.2.j.d | 24 | 1.a | even | 1 | 1 | trivial | |
475.2.j.d | 24 | 5.b | even | 2 | 1 | inner | |
475.2.j.d | 24 | 19.c | even | 3 | 1 | inner | |
475.2.j.d | 24 | 95.i | even | 6 | 1 | inner | |
9025.2.a.br | 6 | 95.m | odd | 12 | 1 | ||
9025.2.a.bs | 6 | 95.l | even | 12 | 1 | ||
9025.2.a.by | 6 | 95.l | even | 12 | 1 | ||
9025.2.a.bz | 6 | 95.m | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} - 7T_{2}^{10} + 38T_{2}^{8} - 75T_{2}^{6} + 114T_{2}^{4} - 11T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).