Properties

Label 475.2.j.c.49.8
Level $475$
Weight $2$
Character 475.49
Analytic conductor $3.793$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(49,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.1387535264013605949997056.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 11x^{14} + 82x^{12} - 337x^{10} + 1006x^{8} - 1596x^{6} + 1765x^{4} - 414x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.8
Root \(0.426014 - 0.245959i\) of defining polynomial
Character \(\chi\) \(=\) 475.49
Dual form 475.2.j.c.349.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.38851 + 1.37901i) q^{2} +(-1.29204 - 0.745959i) q^{3} +(2.80333 + 4.85550i) q^{4} +(-2.05737 - 3.56347i) q^{6} +2.84864i q^{7} +9.94721i q^{8} +(-0.387090 - 0.670459i) q^{9} -0.864801 q^{11} -8.36467i q^{12} +(0.557098 - 0.321640i) q^{13} +(-3.92829 + 6.80401i) q^{14} +(-8.11063 + 14.0480i) q^{16} +(3.24054 + 1.87093i) q^{17} -2.13520i q^{18} +(3.36069 - 2.77592i) q^{19} +(2.12497 - 3.68055i) q^{21} +(-2.06559 - 1.19257i) q^{22} +(0.361531 - 0.208730i) q^{23} +(7.42021 - 12.8522i) q^{24} +1.77418 q^{26} +5.63077i q^{27} +(-13.8316 + 7.98566i) q^{28} +(-4.85261 - 8.40497i) q^{29} +4.93349 q^{31} +(-21.5156 + 12.4220i) q^{32} +(1.11736 + 0.645106i) q^{33} +(5.16005 + 8.93746i) q^{34} +(2.17028 - 3.75903i) q^{36} -6.36467i q^{37} +(11.8551 - 1.99589i) q^{38} -0.959723 q^{39} +(2.00686 - 3.47598i) q^{41} +(10.1510 - 5.86069i) q^{42} +(1.78254 + 1.02915i) q^{43} +(-2.42432 - 4.19904i) q^{44} +1.15136 q^{46} +(3.42423 - 1.97698i) q^{47} +(20.9585 - 12.1004i) q^{48} -1.11474 q^{49} +(-2.79127 - 4.83462i) q^{51} +(3.12345 + 1.80333i) q^{52} +(-9.51544 + 5.49374i) q^{53} +(-7.76487 + 13.4492i) q^{54} -28.3360 q^{56} +(-6.41287 + 1.07966i) q^{57} -26.7672i q^{58} +(1.22980 - 2.13007i) q^{59} +(-3.16740 - 5.48609i) q^{61} +(11.7837 + 6.80333i) q^{62} +(1.90989 - 1.10268i) q^{63} -36.0778 q^{64} +(1.77921 + 3.08169i) q^{66} +(2.19295 - 1.26610i) q^{67} +20.9793i q^{68} -0.622817 q^{69} +(0.891065 - 1.54337i) q^{71} +(6.66920 - 3.85046i) q^{72} +(6.17554 + 3.56545i) q^{73} +(8.77693 - 15.2021i) q^{74} +(22.8996 + 8.53606i) q^{76} -2.46350i q^{77} +(-2.29231 - 1.32347i) q^{78} +(0.912262 - 1.58008i) q^{79} +(3.03905 - 5.26380i) q^{81} +(9.58681 - 5.53495i) q^{82} -7.43913i q^{83} +23.8279 q^{84} +(2.83841 + 4.91626i) q^{86} +14.4794i q^{87} -8.60235i q^{88} +(2.22294 + 3.85024i) q^{89} +(0.916237 + 1.58697i) q^{91} +(2.02698 + 1.17028i) q^{92} +(-6.37427 - 3.68018i) q^{93} +10.9051 q^{94} +37.0653 q^{96} +(-9.39996 - 5.42707i) q^{97} +(-2.66256 - 1.53723i) q^{98} +(0.334755 + 0.579813i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 10 q^{4} - 4 q^{6} + 2 q^{9} - 8 q^{11} - 2 q^{14} - 14 q^{16} - 10 q^{19} + 8 q^{21} + 46 q^{24} + 12 q^{26} - 2 q^{29} + 30 q^{34} + 14 q^{36} - 60 q^{39} + 16 q^{41} - 24 q^{44} + 48 q^{46} + 40 q^{49}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38851 + 1.37901i 1.68893 + 0.975106i 0.955336 + 0.295521i \(0.0954933\pi\)
0.733597 + 0.679585i \(0.237840\pi\)
\(3\) −1.29204 0.745959i −0.745959 0.430680i 0.0782728 0.996932i \(-0.475059\pi\)
−0.824232 + 0.566252i \(0.808393\pi\)
\(4\) 2.80333 + 4.85550i 1.40166 + 2.42775i
\(5\) 0 0
\(6\) −2.05737 3.56347i −0.839917 1.45478i
\(7\) 2.84864i 1.07668i 0.842727 + 0.538342i \(0.180949\pi\)
−0.842727 + 0.538342i \(0.819051\pi\)
\(8\) 9.94721i 3.51687i
\(9\) −0.387090 0.670459i −0.129030 0.223486i
\(10\) 0 0
\(11\) −0.864801 −0.260747 −0.130374 0.991465i \(-0.541618\pi\)
−0.130374 + 0.991465i \(0.541618\pi\)
\(12\) 8.36467i 2.41467i
\(13\) 0.557098 0.321640i 0.154511 0.0892070i −0.420751 0.907176i \(-0.638233\pi\)
0.575262 + 0.817969i \(0.304900\pi\)
\(14\) −3.92829 + 6.80401i −1.04988 + 1.81845i
\(15\) 0 0
\(16\) −8.11063 + 14.0480i −2.02766 + 3.51201i
\(17\) 3.24054 + 1.87093i 0.785946 + 0.453766i 0.838534 0.544850i \(-0.183413\pi\)
−0.0525872 + 0.998616i \(0.516747\pi\)
\(18\) 2.13520i 0.503271i
\(19\) 3.36069 2.77592i 0.770996 0.636840i
\(20\) 0 0
\(21\) 2.12497 3.68055i 0.463706 0.803162i
\(22\) −2.06559 1.19257i −0.440385 0.254256i
\(23\) 0.361531 0.208730i 0.0753845 0.0435233i −0.461834 0.886966i \(-0.652808\pi\)
0.537218 + 0.843443i \(0.319475\pi\)
\(24\) 7.42021 12.8522i 1.51464 2.62344i
\(25\) 0 0
\(26\) 1.77418 0.347945
\(27\) 5.63077i 1.08364i
\(28\) −13.8316 + 7.98566i −2.61392 + 1.50915i
\(29\) −4.85261 8.40497i −0.901108 1.56076i −0.826059 0.563584i \(-0.809422\pi\)
−0.0750490 0.997180i \(-0.523911\pi\)
\(30\) 0 0
\(31\) 4.93349 0.886081 0.443041 0.896501i \(-0.353900\pi\)
0.443041 + 0.896501i \(0.353900\pi\)
\(32\) −21.5156 + 12.4220i −3.80346 + 2.19593i
\(33\) 1.11736 + 0.645106i 0.194507 + 0.112299i
\(34\) 5.16005 + 8.93746i 0.884941 + 1.53276i
\(35\) 0 0
\(36\) 2.17028 3.75903i 0.361713 0.626505i
\(37\) 6.36467i 1.04635i −0.852227 0.523173i \(-0.824748\pi\)
0.852227 0.523173i \(-0.175252\pi\)
\(38\) 11.8551 1.99589i 1.92315 0.323777i
\(39\) −0.959723 −0.153679
\(40\) 0 0
\(41\) 2.00686 3.47598i 0.313419 0.542857i −0.665681 0.746236i \(-0.731859\pi\)
0.979100 + 0.203379i \(0.0651924\pi\)
\(42\) 10.1510 5.86069i 1.56634 0.904325i
\(43\) 1.78254 + 1.02915i 0.271834 + 0.156944i 0.629721 0.776821i \(-0.283169\pi\)
−0.357887 + 0.933765i \(0.616503\pi\)
\(44\) −2.42432 4.19904i −0.365480 0.633030i
\(45\) 0 0
\(46\) 1.15136 0.169759
\(47\) 3.42423 1.97698i 0.499475 0.288372i −0.229022 0.973421i \(-0.573553\pi\)
0.728497 + 0.685049i \(0.240219\pi\)
\(48\) 20.9585 12.1004i 3.02510 1.74654i
\(49\) −1.11474 −0.159248
\(50\) 0 0
\(51\) −2.79127 4.83462i −0.390856 0.676982i
\(52\) 3.12345 + 1.80333i 0.433145 + 0.250076i
\(53\) −9.51544 + 5.49374i −1.30705 + 0.754624i −0.981602 0.190937i \(-0.938847\pi\)
−0.325444 + 0.945561i \(0.605514\pi\)
\(54\) −7.76487 + 13.4492i −1.05667 + 1.83020i
\(55\) 0 0
\(56\) −28.3360 −3.78656
\(57\) −6.41287 + 1.07966i −0.849406 + 0.143004i
\(58\) 26.7672i 3.51470i
\(59\) 1.22980 2.13007i 0.160106 0.277311i −0.774801 0.632206i \(-0.782150\pi\)
0.934906 + 0.354894i \(0.115483\pi\)
\(60\) 0 0
\(61\) −3.16740 5.48609i −0.405543 0.702422i 0.588841 0.808249i \(-0.299584\pi\)
−0.994385 + 0.105827i \(0.966251\pi\)
\(62\) 11.7837 + 6.80333i 1.49653 + 0.864023i
\(63\) 1.90989 1.10268i 0.240624 0.138924i
\(64\) −36.0778 −4.50973
\(65\) 0 0
\(66\) 1.77921 + 3.08169i 0.219006 + 0.379329i
\(67\) 2.19295 1.26610i 0.267911 0.154678i −0.360027 0.932942i \(-0.617233\pi\)
0.627938 + 0.778263i \(0.283899\pi\)
\(68\) 20.9793i 2.54411i
\(69\) −0.622817 −0.0749783
\(70\) 0 0
\(71\) 0.891065 1.54337i 0.105750 0.183164i −0.808294 0.588779i \(-0.799609\pi\)
0.914044 + 0.405614i \(0.132942\pi\)
\(72\) 6.66920 3.85046i 0.785972 0.453781i
\(73\) 6.17554 + 3.56545i 0.722792 + 0.417304i 0.815780 0.578363i \(-0.196308\pi\)
−0.0929873 + 0.995667i \(0.529642\pi\)
\(74\) 8.77693 15.2021i 1.02030 1.76721i
\(75\) 0 0
\(76\) 22.8996 + 8.53606i 2.62677 + 0.979153i
\(77\) 2.46350i 0.280742i
\(78\) −2.29231 1.32347i −0.259553 0.149853i
\(79\) 0.912262 1.58008i 0.102637 0.177773i −0.810133 0.586246i \(-0.800605\pi\)
0.912771 + 0.408473i \(0.133939\pi\)
\(80\) 0 0
\(81\) 3.03905 5.26380i 0.337673 0.584866i
\(82\) 9.58681 5.53495i 1.05869 0.611233i
\(83\) 7.43913i 0.816550i −0.912859 0.408275i \(-0.866130\pi\)
0.912859 0.408275i \(-0.133870\pi\)
\(84\) 23.8279 2.59984
\(85\) 0 0
\(86\) 2.83841 + 4.91626i 0.306073 + 0.530134i
\(87\) 14.4794i 1.55236i
\(88\) 8.60235i 0.917014i
\(89\) 2.22294 + 3.85024i 0.235631 + 0.408125i 0.959456 0.281859i \(-0.0909510\pi\)
−0.723825 + 0.689984i \(0.757618\pi\)
\(90\) 0 0
\(91\) 0.916237 + 1.58697i 0.0960478 + 0.166360i
\(92\) 2.02698 + 1.17028i 0.211327 + 0.122010i
\(93\) −6.37427 3.68018i −0.660981 0.381617i
\(94\) 10.9051 1.12477
\(95\) 0 0
\(96\) 37.0653 3.78296
\(97\) −9.39996 5.42707i −0.954422 0.551036i −0.0599699 0.998200i \(-0.519100\pi\)
−0.894452 + 0.447165i \(0.852434\pi\)
\(98\) −2.66256 1.53723i −0.268959 0.155284i
\(99\) 0.334755 + 0.579813i 0.0336442 + 0.0582734i
\(100\) 0 0
\(101\) 2.64799 + 4.58645i 0.263485 + 0.456369i 0.967166 0.254147i \(-0.0817948\pi\)
−0.703681 + 0.710516i \(0.748461\pi\)
\(102\) 15.3967i 1.52450i
\(103\) 0.385134i 0.0379484i −0.999820 0.0189742i \(-0.993960\pi\)
0.999820 0.0189742i \(-0.00604004\pi\)
\(104\) 3.19943 + 5.54157i 0.313729 + 0.543395i
\(105\) 0 0
\(106\) −30.3037 −2.94335
\(107\) 6.43336i 0.621937i 0.950420 + 0.310968i \(0.100653\pi\)
−0.950420 + 0.310968i \(0.899347\pi\)
\(108\) −27.3402 + 15.7849i −2.63081 + 1.51890i
\(109\) 3.28441 5.68877i 0.314590 0.544885i −0.664761 0.747056i \(-0.731466\pi\)
0.979350 + 0.202171i \(0.0647998\pi\)
\(110\) 0 0
\(111\) −4.74778 + 8.22340i −0.450640 + 0.780531i
\(112\) −40.0177 23.1042i −3.78132 2.18315i
\(113\) 0.294513i 0.0277054i 0.999904 + 0.0138527i \(0.00440960\pi\)
−0.999904 + 0.0138527i \(0.995590\pi\)
\(114\) −16.8061 6.26463i −1.57403 0.586736i
\(115\) 0 0
\(116\) 27.2069 47.1238i 2.52610 4.37533i
\(117\) −0.431294 0.249007i −0.0398731 0.0230207i
\(118\) 5.87477 3.39180i 0.540816 0.312240i
\(119\) −5.32959 + 9.23112i −0.488563 + 0.846216i
\(120\) 0 0
\(121\) −10.2521 −0.932011
\(122\) 17.4715i 1.58179i
\(123\) −5.18588 + 2.99407i −0.467595 + 0.269966i
\(124\) 13.8302 + 23.9546i 1.24199 + 2.15119i
\(125\) 0 0
\(126\) 6.08241 0.541864
\(127\) −7.65127 + 4.41746i −0.678940 + 0.391986i −0.799456 0.600725i \(-0.794879\pi\)
0.120516 + 0.992711i \(0.461545\pi\)
\(128\) −43.1412 24.9076i −3.81318 2.20154i
\(129\) −1.53540 2.65940i −0.135185 0.234147i
\(130\) 0 0
\(131\) −10.4564 + 18.1110i −0.913578 + 1.58236i −0.104609 + 0.994513i \(0.533359\pi\)
−0.808969 + 0.587851i \(0.799974\pi\)
\(132\) 7.23377i 0.629619i
\(133\) 7.90759 + 9.57340i 0.685675 + 0.830119i
\(134\) 6.98384 0.603312
\(135\) 0 0
\(136\) −18.6105 + 32.2343i −1.59584 + 2.76407i
\(137\) −4.51613 + 2.60739i −0.385839 + 0.222764i −0.680356 0.732882i \(-0.738175\pi\)
0.294517 + 0.955646i \(0.404841\pi\)
\(138\) −1.48761 0.858870i −0.126633 0.0731118i
\(139\) −5.36192 9.28711i −0.454792 0.787723i 0.543884 0.839160i \(-0.316953\pi\)
−0.998676 + 0.0514375i \(0.983620\pi\)
\(140\) 0 0
\(141\) −5.89898 −0.496784
\(142\) 4.25664 2.45757i 0.357209 0.206235i
\(143\) −0.481778 + 0.278155i −0.0402883 + 0.0232605i
\(144\) 12.5582 1.04651
\(145\) 0 0
\(146\) 9.83357 + 17.0322i 0.813832 + 1.40960i
\(147\) 1.44028 + 0.831547i 0.118792 + 0.0685848i
\(148\) 30.9037 17.8423i 2.54027 1.46662i
\(149\) −7.45578 + 12.9138i −0.610801 + 1.05794i 0.380304 + 0.924861i \(0.375819\pi\)
−0.991106 + 0.133078i \(0.957514\pi\)
\(150\) 0 0
\(151\) 21.4589 1.74630 0.873152 0.487448i \(-0.162072\pi\)
0.873152 + 0.487448i \(0.162072\pi\)
\(152\) 27.6127 + 33.4295i 2.23968 + 2.71149i
\(153\) 2.89687i 0.234198i
\(154\) 3.39719 5.88411i 0.273753 0.474155i
\(155\) 0 0
\(156\) −2.69042 4.65994i −0.215406 0.373094i
\(157\) −2.10546 1.21559i −0.168034 0.0970145i 0.413624 0.910448i \(-0.364263\pi\)
−0.581659 + 0.813433i \(0.697596\pi\)
\(158\) 4.35790 2.51603i 0.346696 0.200165i
\(159\) 16.3924 1.30000
\(160\) 0 0
\(161\) 0.594597 + 1.02987i 0.0468608 + 0.0811653i
\(162\) 14.5176 8.38176i 1.14061 0.658533i
\(163\) 17.8175i 1.39558i 0.716305 + 0.697788i \(0.245832\pi\)
−0.716305 + 0.697788i \(0.754168\pi\)
\(164\) 22.5035 1.75723
\(165\) 0 0
\(166\) 10.2586 17.7684i 0.796223 1.37910i
\(167\) 0.351258 0.202799i 0.0271812 0.0156931i −0.486348 0.873765i \(-0.661671\pi\)
0.513529 + 0.858072i \(0.328338\pi\)
\(168\) 36.6112 + 21.1375i 2.82462 + 1.63079i
\(169\) −6.29309 + 10.9000i −0.484084 + 0.838458i
\(170\) 0 0
\(171\) −3.16203 1.17868i −0.241807 0.0901358i
\(172\) 11.5401i 0.879928i
\(173\) −15.6067 9.01051i −1.18655 0.685056i −0.229031 0.973419i \(-0.573556\pi\)
−0.957521 + 0.288363i \(0.906889\pi\)
\(174\) −19.9672 + 34.5842i −1.51371 + 2.62182i
\(175\) 0 0
\(176\) 7.01408 12.1487i 0.528706 0.915746i
\(177\) −3.17789 + 1.83476i −0.238865 + 0.137909i
\(178\) 12.2618i 0.919061i
\(179\) −20.1523 −1.50625 −0.753127 0.657875i \(-0.771455\pi\)
−0.753127 + 0.657875i \(0.771455\pi\)
\(180\) 0 0
\(181\) 8.55541 + 14.8184i 0.635919 + 1.10144i 0.986320 + 0.164844i \(0.0527120\pi\)
−0.350401 + 0.936600i \(0.613955\pi\)
\(182\) 5.05399i 0.374627i
\(183\) 9.45099i 0.698637i
\(184\) 2.07628 + 3.59623i 0.153066 + 0.265117i
\(185\) 0 0
\(186\) −10.1500 17.5803i −0.744235 1.28905i
\(187\) −2.80242 1.61798i −0.204933 0.118318i
\(188\) 19.1985 + 11.0842i 1.40019 + 0.808401i
\(189\) −16.0400 −1.16674
\(190\) 0 0
\(191\) 5.28080 0.382105 0.191053 0.981580i \(-0.438810\pi\)
0.191053 + 0.981580i \(0.438810\pi\)
\(192\) 46.6140 + 26.9126i 3.36408 + 1.94225i
\(193\) −15.5916 9.00182i −1.12231 0.647966i −0.180320 0.983608i \(-0.557713\pi\)
−0.941989 + 0.335642i \(0.891047\pi\)
\(194\) −14.9679 25.9252i −1.07464 1.86132i
\(195\) 0 0
\(196\) −3.12497 5.41260i −0.223212 0.386614i
\(197\) 8.07785i 0.575523i −0.957702 0.287761i \(-0.907089\pi\)
0.957702 0.287761i \(-0.0929110\pi\)
\(198\) 1.84652i 0.131227i
\(199\) 0.701872 + 1.21568i 0.0497544 + 0.0861771i 0.889830 0.456292i \(-0.150823\pi\)
−0.840076 + 0.542469i \(0.817489\pi\)
\(200\) 0 0
\(201\) −3.77783 −0.266468
\(202\) 14.6064i 1.02770i
\(203\) 23.9427 13.8233i 1.68045 0.970208i
\(204\) 15.6497 27.1060i 1.09570 1.89780i
\(205\) 0 0
\(206\) 0.531103 0.919897i 0.0370037 0.0640923i
\(207\) −0.279890 0.161595i −0.0194537 0.0112316i
\(208\) 10.4348i 0.723525i
\(209\) −2.90633 + 2.40062i −0.201035 + 0.166054i
\(210\) 0 0
\(211\) −9.45817 + 16.3820i −0.651128 + 1.12779i 0.331722 + 0.943377i \(0.392370\pi\)
−0.982850 + 0.184409i \(0.940963\pi\)
\(212\) −53.3498 30.8015i −3.66408 2.11546i
\(213\) −2.30258 + 1.32940i −0.157770 + 0.0910888i
\(214\) −8.87166 + 15.3662i −0.606454 + 1.05041i
\(215\) 0 0
\(216\) −56.0104 −3.81103
\(217\) 14.0537i 0.954030i
\(218\) 15.6897 9.05846i 1.06264 0.613516i
\(219\) −5.31936 9.21340i −0.359449 0.622584i
\(220\) 0 0
\(221\) 2.40706 0.161917
\(222\) −22.6803 + 13.0945i −1.52220 + 0.878843i
\(223\) 13.9846 + 8.07400i 0.936477 + 0.540675i 0.888854 0.458190i \(-0.151502\pi\)
0.0476227 + 0.998865i \(0.484835\pi\)
\(224\) −35.3859 61.2901i −2.36432 4.09512i
\(225\) 0 0
\(226\) −0.406136 + 0.703448i −0.0270157 + 0.0467926i
\(227\) 26.3186i 1.74683i −0.486978 0.873414i \(-0.661901\pi\)
0.486978 0.873414i \(-0.338099\pi\)
\(228\) −23.2197 28.1111i −1.53776 1.86170i
\(229\) 13.3323 0.881026 0.440513 0.897746i \(-0.354797\pi\)
0.440513 + 0.897746i \(0.354797\pi\)
\(230\) 0 0
\(231\) −1.83767 + 3.18294i −0.120910 + 0.209422i
\(232\) 83.6060 48.2700i 5.48900 3.16908i
\(233\) −21.9186 12.6547i −1.43594 0.829038i −0.438372 0.898794i \(-0.644445\pi\)
−0.997564 + 0.0697556i \(0.977778\pi\)
\(234\) −0.686767 1.18951i −0.0448953 0.0777610i
\(235\) 0 0
\(236\) 13.7901 0.897658
\(237\) −2.35736 + 1.36102i −0.153127 + 0.0884077i
\(238\) −25.4596 + 14.6991i −1.65030 + 0.952801i
\(239\) 23.5500 1.52332 0.761660 0.647977i \(-0.224385\pi\)
0.761660 + 0.647977i \(0.224385\pi\)
\(240\) 0 0
\(241\) −4.19208 7.26089i −0.270035 0.467715i 0.698835 0.715283i \(-0.253702\pi\)
−0.968871 + 0.247568i \(0.920369\pi\)
\(242\) −24.4873 14.1378i −1.57410 0.908809i
\(243\) 6.77601 3.91213i 0.434681 0.250963i
\(244\) 17.7585 30.7586i 1.13687 1.96912i
\(245\) 0 0
\(246\) −16.5154 −1.05298
\(247\) 0.979387 2.62739i 0.0623169 0.167177i
\(248\) 49.0745i 3.11623i
\(249\) −5.54929 + 9.61165i −0.351672 + 0.609113i
\(250\) 0 0
\(251\) −9.12391 15.8031i −0.575896 0.997481i −0.995944 0.0899792i \(-0.971320\pi\)
0.420048 0.907502i \(-0.362013\pi\)
\(252\) 10.7081 + 6.18233i 0.674548 + 0.389450i
\(253\) −0.312652 + 0.180510i −0.0196563 + 0.0113486i
\(254\) −24.3669 −1.52891
\(255\) 0 0
\(256\) −32.6176 56.4954i −2.03860 3.53096i
\(257\) −12.2108 + 7.04989i −0.761687 + 0.439760i −0.829901 0.557911i \(-0.811603\pi\)
0.0682144 + 0.997671i \(0.478270\pi\)
\(258\) 8.46934i 0.527278i
\(259\) 18.1306 1.12658
\(260\) 0 0
\(261\) −3.75679 + 6.50696i −0.232540 + 0.402770i
\(262\) −49.9504 + 28.8389i −3.08595 + 1.78167i
\(263\) 5.55184 + 3.20536i 0.342341 + 0.197651i 0.661307 0.750116i \(-0.270002\pi\)
−0.318966 + 0.947766i \(0.603335\pi\)
\(264\) −6.41700 + 11.1146i −0.394939 + 0.684055i
\(265\) 0 0
\(266\) 5.68558 + 33.7708i 0.348605 + 2.07062i
\(267\) 6.63288i 0.405926i
\(268\) 12.2951 + 7.09857i 0.751042 + 0.433614i
\(269\) 8.99557 15.5808i 0.548469 0.949977i −0.449910 0.893074i \(-0.648544\pi\)
0.998380 0.0569032i \(-0.0181226\pi\)
\(270\) 0 0
\(271\) −5.94095 + 10.2900i −0.360887 + 0.625075i −0.988107 0.153767i \(-0.950859\pi\)
0.627220 + 0.778842i \(0.284193\pi\)
\(272\) −52.5656 + 30.3488i −3.18726 + 1.84017i
\(273\) 2.73390i 0.165463i
\(274\) −14.3824 −0.868874
\(275\) 0 0
\(276\) −1.74596 3.02409i −0.105094 0.182029i
\(277\) 23.6240i 1.41943i −0.704489 0.709715i \(-0.748824\pi\)
0.704489 0.709715i \(-0.251176\pi\)
\(278\) 29.5765i 1.77388i
\(279\) −1.90970 3.30770i −0.114331 0.198027i
\(280\) 0 0
\(281\) −6.90465 11.9592i −0.411897 0.713426i 0.583200 0.812328i \(-0.301800\pi\)
−0.995097 + 0.0989020i \(0.968467\pi\)
\(282\) −14.0898 8.13474i −0.839035 0.484417i
\(283\) 10.1822 + 5.87868i 0.605268 + 0.349451i 0.771111 0.636701i \(-0.219701\pi\)
−0.165843 + 0.986152i \(0.553035\pi\)
\(284\) 9.99179 0.592904
\(285\) 0 0
\(286\) −1.53431 −0.0907257
\(287\) 9.90181 + 5.71681i 0.584485 + 0.337453i
\(288\) 16.6569 + 9.61689i 0.981519 + 0.566680i
\(289\) −1.49927 2.59681i −0.0881922 0.152753i
\(290\) 0 0
\(291\) 8.09675 + 14.0240i 0.474640 + 0.822100i
\(292\) 39.9805i 2.33968i
\(293\) 27.0576i 1.58072i −0.612640 0.790362i \(-0.709892\pi\)
0.612640 0.790362i \(-0.290108\pi\)
\(294\) 2.29342 + 3.97232i 0.133755 + 0.231670i
\(295\) 0 0
\(296\) 63.3107 3.67986
\(297\) 4.86949i 0.282557i
\(298\) −35.6165 + 20.5632i −2.06321 + 1.19119i
\(299\) 0.134272 0.232566i 0.00776516 0.0134497i
\(300\) 0 0
\(301\) −2.93167 + 5.07780i −0.168979 + 0.292679i
\(302\) 51.2549 + 29.5921i 2.94939 + 1.70283i
\(303\) 7.90117i 0.453910i
\(304\) 11.7388 + 69.7256i 0.673269 + 3.99904i
\(305\) 0 0
\(306\) 3.99480 6.91920i 0.228368 0.395544i
\(307\) 7.65414 + 4.41912i 0.436845 + 0.252212i 0.702258 0.711922i \(-0.252175\pi\)
−0.265414 + 0.964135i \(0.585508\pi\)
\(308\) 11.9616 6.90601i 0.681573 0.393506i
\(309\) −0.287294 + 0.497608i −0.0163436 + 0.0283080i
\(310\) 0 0
\(311\) −0.651493 −0.0369428 −0.0184714 0.999829i \(-0.505880\pi\)
−0.0184714 + 0.999829i \(0.505880\pi\)
\(312\) 9.54656i 0.540468i
\(313\) −2.56825 + 1.48278i −0.145166 + 0.0838116i −0.570824 0.821073i \(-0.693376\pi\)
0.425658 + 0.904884i \(0.360043\pi\)
\(314\) −3.35261 5.80690i −0.189199 0.327702i
\(315\) 0 0
\(316\) 10.2295 0.575453
\(317\) 8.98921 5.18993i 0.504885 0.291495i −0.225844 0.974164i \(-0.572514\pi\)
0.730728 + 0.682668i \(0.239181\pi\)
\(318\) 39.1535 + 22.6053i 2.19562 + 1.26764i
\(319\) 4.19654 + 7.26862i 0.234961 + 0.406965i
\(320\) 0 0
\(321\) 4.79903 8.31216i 0.267856 0.463939i
\(322\) 3.27981i 0.182777i
\(323\) 16.0840 2.70787i 0.894938 0.150670i
\(324\) 34.0778 1.89321
\(325\) 0 0
\(326\) −24.5705 + 42.5574i −1.36083 + 2.35703i
\(327\) −8.48718 + 4.90007i −0.469342 + 0.270975i
\(328\) 34.5763 + 19.9626i 1.90916 + 1.10225i
\(329\) 5.63170 + 9.75438i 0.310485 + 0.537776i
\(330\) 0 0
\(331\) 15.0922 0.829543 0.414772 0.909926i \(-0.363861\pi\)
0.414772 + 0.909926i \(0.363861\pi\)
\(332\) 36.1207 20.8543i 1.98238 1.14453i
\(333\) −4.26725 + 2.46370i −0.233844 + 0.135010i
\(334\) 1.11865 0.0612096
\(335\) 0 0
\(336\) 34.4696 + 59.7032i 1.88047 + 3.25708i
\(337\) 13.6810 + 7.89872i 0.745251 + 0.430271i 0.823975 0.566626i \(-0.191751\pi\)
−0.0787246 + 0.996896i \(0.525085\pi\)
\(338\) −30.0623 + 17.3565i −1.63517 + 0.944067i
\(339\) 0.219695 0.380522i 0.0119322 0.0206671i
\(340\) 0 0
\(341\) −4.26649 −0.231043
\(342\) −5.92714 7.17575i −0.320503 0.388020i
\(343\) 16.7650i 0.905224i
\(344\) −10.2371 + 17.7313i −0.551950 + 0.956005i
\(345\) 0 0
\(346\) −24.8511 43.0434i −1.33600 2.31403i
\(347\) −18.4915 10.6761i −0.992676 0.573122i −0.0866031 0.996243i \(-0.527601\pi\)
−0.906073 + 0.423121i \(0.860935\pi\)
\(348\) −70.3048 + 40.5905i −3.76873 + 2.17588i
\(349\) 32.3897 1.73378 0.866891 0.498497i \(-0.166115\pi\)
0.866891 + 0.498497i \(0.166115\pi\)
\(350\) 0 0
\(351\) 1.81108 + 3.13689i 0.0966685 + 0.167435i
\(352\) 18.6067 10.7426i 0.991741 0.572582i
\(353\) 0.730583i 0.0388850i 0.999811 + 0.0194425i \(0.00618913\pi\)
−0.999811 + 0.0194425i \(0.993811\pi\)
\(354\) −10.1206 −0.537902
\(355\) 0 0
\(356\) −12.4632 + 21.5870i −0.660551 + 1.14411i
\(357\) 13.7721 7.95132i 0.728896 0.420828i
\(358\) −48.1340 27.7902i −2.54396 1.46876i
\(359\) −13.4248 + 23.2524i −0.708533 + 1.22722i 0.256868 + 0.966447i \(0.417309\pi\)
−0.965401 + 0.260769i \(0.916024\pi\)
\(360\) 0 0
\(361\) 3.58853 18.6580i 0.188870 0.982002i
\(362\) 47.1919i 2.48035i
\(363\) 13.2461 + 7.64766i 0.695242 + 0.401398i
\(364\) −5.13702 + 8.89759i −0.269253 + 0.466360i
\(365\) 0 0
\(366\) −13.0330 + 22.5738i −0.681245 + 1.17995i
\(367\) 19.8877 11.4822i 1.03813 0.599364i 0.118826 0.992915i \(-0.462087\pi\)
0.919303 + 0.393551i \(0.128754\pi\)
\(368\) 6.77173i 0.353001i
\(369\) −3.10734 −0.161761
\(370\) 0 0
\(371\) −15.6497 27.1060i −0.812491 1.40728i
\(372\) 41.2670i 2.13960i
\(373\) 29.5305i 1.52903i 0.644606 + 0.764515i \(0.277021\pi\)
−0.644606 + 0.764515i \(0.722979\pi\)
\(374\) −4.46241 7.72912i −0.230746 0.399663i
\(375\) 0 0
\(376\) 19.6654 + 34.0615i 1.01417 + 1.75659i
\(377\) −5.40676 3.12159i −0.278462 0.160770i
\(378\) −38.3118 22.1193i −1.97054 1.13769i
\(379\) −17.5117 −0.899517 −0.449759 0.893150i \(-0.648490\pi\)
−0.449759 + 0.893150i \(0.648490\pi\)
\(380\) 0 0
\(381\) 13.1810 0.675282
\(382\) 12.6132 + 7.28226i 0.645350 + 0.372593i
\(383\) −7.02045 4.05326i −0.358728 0.207112i 0.309794 0.950804i \(-0.399740\pi\)
−0.668523 + 0.743692i \(0.733073\pi\)
\(384\) 37.1601 + 64.3631i 1.89632 + 3.28452i
\(385\) 0 0
\(386\) −24.8272 43.0019i −1.26367 2.18874i
\(387\) 1.59349i 0.0810016i
\(388\) 60.8554i 3.08947i
\(389\) 8.65392 + 14.9890i 0.438771 + 0.759974i 0.997595 0.0693125i \(-0.0220805\pi\)
−0.558824 + 0.829286i \(0.688747\pi\)
\(390\) 0 0
\(391\) 1.56208 0.0789976
\(392\) 11.0885i 0.560054i
\(393\) 27.0201 15.6001i 1.36298 0.786920i
\(394\) 11.1394 19.2940i 0.561196 0.972019i
\(395\) 0 0
\(396\) −1.87686 + 3.25081i −0.0943156 + 0.163359i
\(397\) −9.86354 5.69472i −0.495037 0.285810i 0.231625 0.972805i \(-0.425596\pi\)
−0.726662 + 0.686996i \(0.758929\pi\)
\(398\) 3.87155i 0.194063i
\(399\) −3.07555 18.2679i −0.153970 0.914541i
\(400\) 0 0
\(401\) 4.46930 7.74106i 0.223186 0.386570i −0.732587 0.680673i \(-0.761687\pi\)
0.955774 + 0.294103i \(0.0950208\pi\)
\(402\) −9.02339 5.20966i −0.450046 0.259834i
\(403\) 2.74844 1.58681i 0.136909 0.0790447i
\(404\) −14.8464 + 25.7146i −0.738634 + 1.27935i
\(405\) 0 0
\(406\) 76.2500 3.78422
\(407\) 5.50417i 0.272832i
\(408\) 48.0910 27.7653i 2.38086 1.37459i
\(409\) −3.27235 5.66788i −0.161808 0.280259i 0.773709 0.633541i \(-0.218399\pi\)
−0.935517 + 0.353282i \(0.885066\pi\)
\(410\) 0 0
\(411\) 7.78001 0.383760
\(412\) 1.87002 1.07966i 0.0921293 0.0531909i
\(413\) 6.06780 + 3.50324i 0.298577 + 0.172383i
\(414\) −0.445681 0.771941i −0.0219040 0.0379389i
\(415\) 0 0
\(416\) −7.99086 + 13.8406i −0.391784 + 0.678590i
\(417\) 15.9991i 0.783479i
\(418\) −10.2523 + 1.72605i −0.501455 + 0.0844239i
\(419\) −21.8441 −1.06715 −0.533576 0.845752i \(-0.679152\pi\)
−0.533576 + 0.845752i \(0.679152\pi\)
\(420\) 0 0
\(421\) 14.6717 25.4121i 0.715054 1.23851i −0.247885 0.968789i \(-0.579736\pi\)
0.962939 0.269720i \(-0.0869311\pi\)
\(422\) −45.1819 + 26.0858i −2.19942 + 1.26984i
\(423\) −2.65097 1.53054i −0.128894 0.0744172i
\(424\) −54.6474 94.6521i −2.65391 4.59671i
\(425\) 0 0
\(426\) −7.33299 −0.355285
\(427\) 15.6279 9.02276i 0.756286 0.436642i
\(428\) −31.2372 + 18.0348i −1.50991 + 0.871746i
\(429\) 0.829969 0.0400713
\(430\) 0 0
\(431\) 6.44336 + 11.1602i 0.310366 + 0.537570i 0.978442 0.206524i \(-0.0662151\pi\)
−0.668076 + 0.744093i \(0.732882\pi\)
\(432\) −79.1011 45.6691i −3.80576 2.19725i
\(433\) −11.9883 + 6.92144i −0.576120 + 0.332623i −0.759590 0.650402i \(-0.774600\pi\)
0.183470 + 0.983025i \(0.441267\pi\)
\(434\) −19.3802 + 33.5675i −0.930280 + 1.61129i
\(435\) 0 0
\(436\) 36.8291 1.76379
\(437\) 0.635578 1.70506i 0.0304038 0.0815641i
\(438\) 29.3418i 1.40200i
\(439\) −0.0354040 + 0.0613216i −0.00168974 + 0.00292672i −0.866869 0.498536i \(-0.833871\pi\)
0.865179 + 0.501463i \(0.167205\pi\)
\(440\) 0 0
\(441\) 0.431503 + 0.747384i 0.0205477 + 0.0355897i
\(442\) 5.74930 + 3.31936i 0.273466 + 0.157886i
\(443\) −3.28149 + 1.89457i −0.155908 + 0.0900137i −0.575924 0.817503i \(-0.695358\pi\)
0.420016 + 0.907517i \(0.362024\pi\)
\(444\) −53.2384 −2.52658
\(445\) 0 0
\(446\) 22.2682 + 38.5697i 1.05443 + 1.82633i
\(447\) 19.2663 11.1234i 0.911266 0.526120i
\(448\) 102.773i 4.85555i
\(449\) 26.5765 1.25422 0.627112 0.778929i \(-0.284237\pi\)
0.627112 + 0.778929i \(0.284237\pi\)
\(450\) 0 0
\(451\) −1.73553 + 3.00603i −0.0817230 + 0.141548i
\(452\) −1.43001 + 0.825616i −0.0672620 + 0.0388337i
\(453\) −27.7258 16.0075i −1.30267 0.752098i
\(454\) 36.2936 62.8624i 1.70334 2.95028i
\(455\) 0 0
\(456\) −10.7396 63.7902i −0.502927 2.98725i
\(457\) 33.1523i 1.55080i 0.631471 + 0.775400i \(0.282452\pi\)
−0.631471 + 0.775400i \(0.717548\pi\)
\(458\) 31.8445 + 18.3854i 1.48799 + 0.859094i
\(459\) −10.5348 + 18.2467i −0.491720 + 0.851684i
\(460\) 0 0
\(461\) 9.62679 16.6741i 0.448364 0.776590i −0.549915 0.835220i \(-0.685340\pi\)
0.998280 + 0.0586304i \(0.0186734\pi\)
\(462\) −8.77861 + 5.06833i −0.408418 + 0.235800i
\(463\) 39.1713i 1.82044i 0.414120 + 0.910222i \(0.364089\pi\)
−0.414120 + 0.910222i \(0.635911\pi\)
\(464\) 157.431 7.30855
\(465\) 0 0
\(466\) −34.9019 60.4519i −1.61680 2.80038i
\(467\) 39.0650i 1.80771i 0.427836 + 0.903856i \(0.359276\pi\)
−0.427836 + 0.903856i \(0.640724\pi\)
\(468\) 2.79220i 0.129069i
\(469\) 3.60665 + 6.24691i 0.166540 + 0.288455i
\(470\) 0 0
\(471\) 1.81356 + 3.14118i 0.0835644 + 0.144738i
\(472\) 21.1882 + 12.2330i 0.975268 + 0.563071i
\(473\) −1.54154 0.890007i −0.0708800 0.0409226i
\(474\) −7.50743 −0.344828
\(475\) 0 0
\(476\) −59.7623 −2.73920
\(477\) 7.36666 + 4.25314i 0.337296 + 0.194738i
\(478\) 56.2493 + 32.4756i 2.57279 + 1.48540i
\(479\) −12.3775 21.4385i −0.565543 0.979550i −0.996999 0.0774158i \(-0.975333\pi\)
0.431455 0.902134i \(-0.358000\pi\)
\(480\) 0 0
\(481\) −2.04714 3.54574i −0.0933413 0.161672i
\(482\) 23.1236i 1.05325i
\(483\) 1.77418i 0.0807280i
\(484\) −28.7400 49.7792i −1.30637 2.26269i
\(485\) 0 0
\(486\) 21.5794 0.978863
\(487\) 21.8871i 0.991797i −0.868380 0.495899i \(-0.834839\pi\)
0.868380 0.495899i \(-0.165161\pi\)
\(488\) 54.5713 31.5067i 2.47033 1.42624i
\(489\) 13.2911 23.0209i 0.601046 1.04104i
\(490\) 0 0
\(491\) −4.69777 + 8.13677i −0.212007 + 0.367207i −0.952343 0.305030i \(-0.901333\pi\)
0.740335 + 0.672238i \(0.234667\pi\)
\(492\) −29.0754 16.7867i −1.31082 0.756803i
\(493\) 36.3155i 1.63557i
\(494\) 5.96247 4.92498i 0.268264 0.221585i
\(495\) 0 0
\(496\) −40.0137 + 69.3058i −1.79667 + 3.11192i
\(497\) 4.39650 + 2.53832i 0.197210 + 0.113859i
\(498\) −26.5091 + 15.3050i −1.18790 + 0.685834i
\(499\) 12.4558 21.5740i 0.557596 0.965785i −0.440100 0.897949i \(-0.645057\pi\)
0.997696 0.0678367i \(-0.0216097\pi\)
\(500\) 0 0
\(501\) −0.605119 −0.0270347
\(502\) 50.3278i 2.24624i
\(503\) −27.1222 + 15.6590i −1.20932 + 0.698200i −0.962610 0.270890i \(-0.912682\pi\)
−0.246707 + 0.969090i \(0.579349\pi\)
\(504\) 10.9686 + 18.9981i 0.488579 + 0.846244i
\(505\) 0 0
\(506\) −0.995699 −0.0442642
\(507\) 16.2619 9.38878i 0.722214 0.416971i
\(508\) −42.8980 24.7672i −1.90329 1.09887i
\(509\) −4.83310 8.37117i −0.214223 0.371045i 0.738809 0.673915i \(-0.235389\pi\)
−0.953032 + 0.302870i \(0.902055\pi\)
\(510\) 0 0
\(511\) −10.1567 + 17.5919i −0.449305 + 0.778219i
\(512\) 80.2896i 3.54833i
\(513\) 15.6306 + 18.9233i 0.690106 + 0.835484i
\(514\) −38.8874 −1.71525
\(515\) 0 0
\(516\) 8.60848 14.9103i 0.378967 0.656390i
\(517\) −2.96127 + 1.70969i −0.130237 + 0.0751922i
\(518\) 43.3052 + 25.0023i 1.90272 + 1.09854i
\(519\) 13.4429 + 23.2839i 0.590080 + 1.02205i
\(520\) 0 0
\(521\) −0.982633 −0.0430499 −0.0215250 0.999768i \(-0.506852\pi\)
−0.0215250 + 0.999768i \(0.506852\pi\)
\(522\) −17.9463 + 10.3613i −0.785488 + 0.453502i
\(523\) 34.3993 19.8604i 1.50418 0.868436i 0.504187 0.863594i \(-0.331792\pi\)
0.999988 0.00484172i \(-0.00154117\pi\)
\(524\) −117.251 −5.12212
\(525\) 0 0
\(526\) 8.84043 + 15.3121i 0.385461 + 0.667638i
\(527\) 15.9872 + 9.23020i 0.696413 + 0.402074i
\(528\) −18.1249 + 10.4644i −0.788786 + 0.455406i
\(529\) −11.4129 + 19.7677i −0.496211 + 0.859463i
\(530\) 0 0
\(531\) −1.90417 −0.0826337
\(532\) −24.3161 + 65.2327i −1.05424 + 2.82820i
\(533\) 2.58195i 0.111837i
\(534\) 9.14680 15.8427i 0.395821 0.685582i
\(535\) 0 0
\(536\) 12.5941 + 21.8137i 0.543984 + 0.942208i
\(537\) 26.0376 + 15.0328i 1.12360 + 0.648713i
\(538\) 42.9720 24.8099i 1.85266 1.06963i
\(539\) 0.964024 0.0415234
\(540\) 0 0
\(541\) −15.3887 26.6541i −0.661614 1.14595i −0.980191 0.198052i \(-0.936538\pi\)
0.318577 0.947897i \(-0.396795\pi\)
\(542\) −28.3801 + 16.3852i −1.21903 + 0.703807i
\(543\) 25.5280i 1.09551i
\(544\) −92.9629 −3.98575
\(545\) 0 0
\(546\) 3.77007 6.52996i 0.161344 0.279456i
\(547\) 15.4722 8.93287i 0.661543 0.381942i −0.131322 0.991340i \(-0.541922\pi\)
0.792865 + 0.609398i \(0.208589\pi\)
\(548\) −25.3203 14.6187i −1.08163 0.624480i
\(549\) −2.45213 + 4.24722i −0.104654 + 0.181267i
\(550\) 0 0
\(551\) −39.6397 14.7761i −1.68871 0.629482i
\(552\) 6.19529i 0.263689i
\(553\) 4.50109 + 2.59870i 0.191406 + 0.110508i
\(554\) 32.5777 56.4263i 1.38409 2.39732i
\(555\) 0 0
\(556\) 30.0624 52.0696i 1.27493 2.20824i
\(557\) 9.22971 5.32878i 0.391075 0.225787i −0.291551 0.956555i \(-0.594171\pi\)
0.682626 + 0.730768i \(0.260838\pi\)
\(558\) 10.5340i 0.445939i
\(559\) 1.32406 0.0560019
\(560\) 0 0
\(561\) 2.41389 + 4.18098i 0.101915 + 0.176521i
\(562\) 38.0863i 1.60657i
\(563\) 7.75961i 0.327029i 0.986541 + 0.163514i \(0.0522830\pi\)
−0.986541 + 0.163514i \(0.947717\pi\)
\(564\) −16.5368 28.6425i −0.696324 1.20607i
\(565\) 0 0
\(566\) 16.2135 + 28.0826i 0.681504 + 1.18040i
\(567\) 14.9946 + 8.65716i 0.629716 + 0.363567i
\(568\) 15.3522 + 8.86361i 0.644165 + 0.371909i
\(569\) −5.72754 −0.240111 −0.120056 0.992767i \(-0.538307\pi\)
−0.120056 + 0.992767i \(0.538307\pi\)
\(570\) 0 0
\(571\) −20.8347 −0.871903 −0.435952 0.899970i \(-0.643588\pi\)
−0.435952 + 0.899970i \(0.643588\pi\)
\(572\) −2.70116 1.55952i −0.112941 0.0652067i
\(573\) −6.82300 3.93926i −0.285035 0.164565i
\(574\) 15.7671 + 27.3093i 0.658104 + 1.13987i
\(575\) 0 0
\(576\) 13.9654 + 24.1887i 0.581890 + 1.00786i
\(577\) 5.11190i 0.212811i 0.994323 + 0.106406i \(0.0339342\pi\)
−0.994323 + 0.106406i \(0.966066\pi\)
\(578\) 8.27001i 0.343987i
\(579\) 13.4300 + 23.2614i 0.558131 + 0.966712i
\(580\) 0 0
\(581\) 21.1914 0.879167
\(582\) 44.6619i 1.85130i
\(583\) 8.22896 4.75099i 0.340809 0.196766i
\(584\) −35.4663 + 61.4294i −1.46760 + 2.54197i
\(585\) 0 0
\(586\) 37.3127 64.6275i 1.54137 2.66974i
\(587\) −9.23984 5.33462i −0.381369 0.220184i 0.297045 0.954864i \(-0.403999\pi\)
−0.678414 + 0.734680i \(0.737332\pi\)
\(588\) 9.32439i 0.384531i
\(589\) 16.5800 13.6950i 0.683165 0.564292i
\(590\) 0 0
\(591\) −6.02574 + 10.4369i −0.247866 + 0.429316i
\(592\) 89.4110 + 51.6215i 3.67477 + 2.12163i
\(593\) −14.7247 + 8.50133i −0.604673 + 0.349108i −0.770878 0.636983i \(-0.780182\pi\)
0.166205 + 0.986091i \(0.446849\pi\)
\(594\) 6.71507 11.6308i 0.275523 0.477219i
\(595\) 0 0
\(596\) −83.6040 −3.42455
\(597\) 2.09427i 0.0857128i
\(598\) 0.641421 0.370325i 0.0262297 0.0151437i
\(599\) 14.3375 + 24.8334i 0.585816 + 1.01466i 0.994773 + 0.102110i \(0.0325592\pi\)
−0.408957 + 0.912554i \(0.634107\pi\)
\(600\) 0 0
\(601\) 27.4370 1.11918 0.559590 0.828770i \(-0.310959\pi\)
0.559590 + 0.828770i \(0.310959\pi\)
\(602\) −14.0046 + 8.08559i −0.570787 + 0.329544i
\(603\) −1.69773 0.980187i −0.0691371 0.0399163i
\(604\) 60.1564 + 104.194i 2.44773 + 4.23959i
\(605\) 0 0
\(606\) 10.8958 18.8720i 0.442611 0.766624i
\(607\) 17.7547i 0.720639i 0.932829 + 0.360320i \(0.117332\pi\)
−0.932829 + 0.360320i \(0.882668\pi\)
\(608\) −37.8248 + 101.472i −1.53400 + 4.11524i
\(609\) −41.2466 −1.67140
\(610\) 0 0
\(611\) 1.27175 2.20274i 0.0514496 0.0891133i
\(612\) 14.0657 8.12086i 0.568574 0.328266i
\(613\) −29.9983 17.3196i −1.21162 0.699530i −0.248509 0.968629i \(-0.579941\pi\)
−0.963112 + 0.269099i \(0.913274\pi\)
\(614\) 12.1880 + 21.1102i 0.491868 + 0.851940i
\(615\) 0 0
\(616\) 24.5050 0.987334
\(617\) −3.86740 + 2.23284i −0.155696 + 0.0898909i −0.575824 0.817574i \(-0.695319\pi\)
0.420128 + 0.907465i \(0.361985\pi\)
\(618\) −1.37241 + 0.792362i −0.0552065 + 0.0318735i
\(619\) 17.9112 0.719913 0.359957 0.932969i \(-0.382791\pi\)
0.359957 + 0.932969i \(0.382791\pi\)
\(620\) 0 0
\(621\) 1.17531 + 2.03570i 0.0471636 + 0.0816898i
\(622\) −1.55610 0.898414i −0.0623939 0.0360231i
\(623\) −10.9679 + 6.33234i −0.439421 + 0.253700i
\(624\) 7.78396 13.4822i 0.311608 0.539720i
\(625\) 0 0
\(626\) −8.17906 −0.326901
\(627\) 5.54586 0.933688i 0.221480 0.0372879i
\(628\) 13.6308i 0.543927i
\(629\) 11.9078 20.6250i 0.474796 0.822371i
\(630\) 0 0
\(631\) −2.48440 4.30311i −0.0989026 0.171304i 0.812328 0.583201i \(-0.198200\pi\)
−0.911231 + 0.411896i \(0.864867\pi\)
\(632\) 15.7174 + 9.07446i 0.625205 + 0.360963i
\(633\) 24.4407 14.1108i 0.971429 0.560855i
\(634\) 28.6278 1.13696
\(635\) 0 0
\(636\) 45.9534 + 79.5935i 1.82217 + 3.15609i
\(637\) −0.621016 + 0.358544i −0.0246056 + 0.0142060i
\(638\) 23.1483i 0.916449i
\(639\) −1.37969 −0.0545796
\(640\) 0 0
\(641\) 18.9760 32.8675i 0.749508 1.29819i −0.198550 0.980091i \(-0.563623\pi\)
0.948059 0.318096i \(-0.103043\pi\)
\(642\) 22.9251 13.2358i 0.904780 0.522375i
\(643\) −30.5276 17.6251i −1.20389 0.695067i −0.242473 0.970158i \(-0.577958\pi\)
−0.961418 + 0.275092i \(0.911292\pi\)
\(644\) −3.33370 + 5.77413i −0.131366 + 0.227533i
\(645\) 0 0
\(646\) 42.1510 + 15.7122i 1.65841 + 0.618188i
\(647\) 35.5219i 1.39651i −0.715850 0.698254i \(-0.753960\pi\)
0.715850 0.698254i \(-0.246040\pi\)
\(648\) 52.3601 + 30.2301i 2.05690 + 1.18755i
\(649\) −1.06353 + 1.84209i −0.0417471 + 0.0723082i
\(650\) 0 0
\(651\) 10.4835 18.1580i 0.410881 0.711667i
\(652\) −86.5130 + 49.9483i −3.38811 + 1.95613i
\(653\) 8.02411i 0.314008i 0.987598 + 0.157004i \(0.0501835\pi\)
−0.987598 + 0.157004i \(0.949816\pi\)
\(654\) −27.0290 −1.05692
\(655\) 0 0
\(656\) 32.5538 + 56.3848i 1.27101 + 2.20146i
\(657\) 5.52059i 0.215379i
\(658\) 31.0646i 1.21102i
\(659\) −23.6098 40.8933i −0.919706 1.59298i −0.799861 0.600185i \(-0.795094\pi\)
−0.119844 0.992793i \(-0.538240\pi\)
\(660\) 0 0
\(661\) 13.0580 + 22.6171i 0.507896 + 0.879702i 0.999958 + 0.00914181i \(0.00290997\pi\)
−0.492062 + 0.870560i \(0.663757\pi\)
\(662\) 36.0479 + 20.8123i 1.40104 + 0.808892i
\(663\) −3.11002 1.79557i −0.120783 0.0697342i
\(664\) 73.9986 2.87170
\(665\) 0 0
\(666\) −13.5898 −0.526596
\(667\) −3.50874 2.02577i −0.135859 0.0784383i
\(668\) 1.96938 + 1.13702i 0.0761978 + 0.0439928i
\(669\) −12.0458 20.8639i −0.465716 0.806643i
\(670\) 0 0
\(671\) 2.73917 + 4.74437i 0.105744 + 0.183154i
\(672\) 105.586i 4.07306i
\(673\) 15.3820i 0.592931i 0.955044 + 0.296466i \(0.0958080\pi\)
−0.955044 + 0.296466i \(0.904192\pi\)
\(674\) 21.7848 + 37.7324i 0.839119 + 1.45340i
\(675\) 0 0
\(676\) −70.5664 −2.71409
\(677\) 24.4763i 0.940701i −0.882480 0.470350i \(-0.844128\pi\)
0.882480 0.470350i \(-0.155872\pi\)
\(678\) 1.04949 0.605921i 0.0403053 0.0232703i
\(679\) 15.4598 26.7771i 0.593291 1.02761i
\(680\) 0 0
\(681\) −19.6326 + 34.0047i −0.752324 + 1.30306i
\(682\) −10.1906 5.88352i −0.390217 0.225292i
\(683\) 17.8502i 0.683018i −0.939879 0.341509i \(-0.889062\pi\)
0.939879 0.341509i \(-0.110938\pi\)
\(684\) −3.14113 18.6575i −0.120104 0.713386i
\(685\) 0 0
\(686\) −23.1191 + 40.0434i −0.882689 + 1.52886i
\(687\) −17.2259 9.94538i −0.657210 0.379440i
\(688\) −28.9150 + 16.6941i −1.10237 + 0.636455i
\(689\) −3.53402 + 6.12110i −0.134635 + 0.233195i
\(690\) 0 0
\(691\) −9.27242 −0.352739 −0.176370 0.984324i \(-0.556435\pi\)
−0.176370 + 0.984324i \(0.556435\pi\)
\(692\) 101.038i 3.84087i
\(693\) −1.65168 + 0.953597i −0.0627421 + 0.0362241i
\(694\) −29.4448 50.9999i −1.11771 1.93593i
\(695\) 0 0
\(696\) −144.030 −5.45943
\(697\) 13.0066 7.50937i 0.492660 0.284438i
\(698\) 77.3633 + 44.6657i 2.92824 + 1.69062i
\(699\) 18.8798 + 32.7008i 0.714100 + 1.23686i
\(700\) 0 0
\(701\) 3.84453 6.65892i 0.145206 0.251504i −0.784244 0.620453i \(-0.786949\pi\)
0.929450 + 0.368949i \(0.120282\pi\)
\(702\) 9.98999i 0.377048i
\(703\) −17.6678 21.3897i −0.666354 0.806728i
\(704\) 31.2001 1.17590
\(705\) 0 0
\(706\) −1.00748 + 1.74501i −0.0379170 + 0.0656742i
\(707\) −13.0651 + 7.54316i −0.491365 + 0.283690i
\(708\) −17.8173 10.2868i −0.669616 0.386603i
\(709\) 12.2187 + 21.1635i 0.458885 + 0.794812i 0.998902 0.0468421i \(-0.0149158\pi\)
−0.540018 + 0.841654i \(0.681582\pi\)
\(710\) 0 0
\(711\) −1.41251 −0.0529732
\(712\) −38.2992 + 22.1120i −1.43532 + 0.828683i
\(713\) 1.78361 1.02977i 0.0667968 0.0385652i
\(714\) 43.8597 1.64141
\(715\) 0 0
\(716\) −56.4935 97.8496i −2.11126 3.65681i
\(717\) −30.4275 17.5673i −1.13633 0.656063i
\(718\) −64.1305 + 37.0258i −2.39333 + 1.38179i
\(719\) −11.0563 + 19.1501i −0.412331 + 0.714178i −0.995144 0.0984282i \(-0.968619\pi\)
0.582813 + 0.812606i \(0.301952\pi\)
\(720\) 0 0
\(721\) 1.09711 0.0408584
\(722\) 34.3008 39.6163i 1.27655 1.47437i
\(723\) 12.5085i 0.465195i
\(724\) −47.9672 + 83.0817i −1.78269 + 3.08771i
\(725\) 0 0
\(726\) 21.0924 + 36.5331i 0.782812 + 1.35587i
\(727\) −25.1575 14.5247i −0.933042 0.538692i −0.0452694 0.998975i \(-0.514415\pi\)
−0.887772 + 0.460283i \(0.847748\pi\)
\(728\) −15.7859 + 9.11400i −0.585065 + 0.337787i
\(729\) −29.9075 −1.10768
\(730\) 0 0
\(731\) 3.85092 + 6.66999i 0.142431 + 0.246698i
\(732\) −45.8893 + 26.4942i −1.69612 + 0.979254i
\(733\) 14.5428i 0.537151i 0.963259 + 0.268576i \(0.0865529\pi\)
−0.963259 + 0.268576i \(0.913447\pi\)
\(734\) 63.3360 2.33777
\(735\) 0 0
\(736\) −5.18571 + 8.98191i −0.191148 + 0.331078i
\(737\) −1.89646 + 1.09492i −0.0698570 + 0.0403320i
\(738\) −7.42191 4.28504i −0.273204 0.157735i
\(739\) −2.37798 + 4.11878i −0.0874754 + 0.151512i −0.906443 0.422327i \(-0.861213\pi\)
0.818968 + 0.573839i \(0.194547\pi\)
\(740\) 0 0
\(741\) −3.22533 + 2.66411i −0.118486 + 0.0978687i
\(742\) 86.3242i 3.16906i
\(743\) −5.08968 2.93853i −0.186722 0.107804i 0.403725 0.914880i \(-0.367715\pi\)
−0.590447 + 0.807076i \(0.701049\pi\)
\(744\) 36.6076 63.4062i 1.34210 2.32458i
\(745\) 0 0
\(746\) −40.7228 + 70.5339i −1.49097 + 2.58243i
\(747\) −4.98763 + 2.87961i −0.182488 + 0.105359i
\(748\) 18.1429i 0.663370i
\(749\) −18.3263 −0.669629
\(750\) 0 0
\(751\) −0.810481 1.40379i −0.0295749 0.0512252i 0.850859 0.525394i \(-0.176082\pi\)
−0.880434 + 0.474169i \(0.842749\pi\)
\(752\) 64.1382i 2.33888i
\(753\) 27.2243i 0.992107i
\(754\) −8.60941 14.9119i −0.313536 0.543060i
\(755\) 0 0
\(756\) −44.9654 77.8824i −1.63538 2.83255i
\(757\) −24.3470 14.0567i −0.884907 0.510901i −0.0126336 0.999920i \(-0.504022\pi\)
−0.872273 + 0.489019i \(0.837355\pi\)
\(758\) −41.8270 24.1488i −1.51922 0.877125i
\(759\) 0.538612 0.0195504
\(760\) 0 0
\(761\) 20.1663 0.731027 0.365514 0.930806i \(-0.380893\pi\)
0.365514 + 0.930806i \(0.380893\pi\)
\(762\) 31.4829 + 18.1767i 1.14051 + 0.658472i
\(763\) 16.2052 + 9.35610i 0.586669 + 0.338713i
\(764\) 14.8038 + 25.6409i 0.535583 + 0.927656i
\(765\) 0 0
\(766\) −11.1790 19.3625i −0.403912 0.699597i
\(767\) 1.58221i 0.0571303i
\(768\) 97.3257i 3.51194i
\(769\) 22.6524 + 39.2350i 0.816865 + 1.41485i 0.907981 + 0.419011i \(0.137623\pi\)
−0.0911160 + 0.995840i \(0.529043\pi\)
\(770\) 0 0
\(771\) 21.0357 0.757583
\(772\) 100.940i 3.63292i
\(773\) −17.4731 + 10.0881i −0.628462 + 0.362843i −0.780156 0.625585i \(-0.784861\pi\)
0.151694 + 0.988428i \(0.451527\pi\)
\(774\) 2.19744 3.80607i 0.0789852 0.136806i
\(775\) 0 0
\(776\) 53.9842 93.5034i 1.93792 3.35658i
\(777\) −23.4255 13.5247i −0.840385 0.485196i
\(778\) 47.7353i 1.71139i
\(779\) −2.90461 17.2526i −0.104068 0.618138i
\(780\) 0 0
\(781\) −0.770594 + 1.33471i −0.0275740 + 0.0477596i
\(782\) 3.73104 + 2.15411i 0.133422 + 0.0770310i
\(783\) 47.3264 27.3239i 1.69131 0.976478i
\(784\) 9.04120 15.6598i 0.322900 0.559279i
\(785\) 0 0
\(786\) 86.0505 3.06932
\(787\) 46.1385i 1.64466i 0.569010 + 0.822331i \(0.307327\pi\)
−0.569010 + 0.822331i \(0.692673\pi\)
\(788\) 39.2220 22.6448i 1.39723 0.806689i
\(789\) −4.78213 8.28289i −0.170248 0.294879i
\(790\) 0 0
\(791\) −0.838961 −0.0298300
\(792\) −5.76753 + 3.32988i −0.204940 + 0.118322i
\(793\) −3.52910 2.03753i −0.125322 0.0723546i
\(794\) −15.7061 27.2038i −0.557389 0.965427i
\(795\) 0 0
\(796\) −3.93515 + 6.81588i −0.139478 + 0.241583i
\(797\) 1.86497i 0.0660606i 0.999454 + 0.0330303i \(0.0105158\pi\)
−0.999454 + 0.0330303i \(0.989484\pi\)
\(798\) 17.8457 47.8744i 0.631729 1.69474i
\(799\) 14.7951 0.523414
\(800\) 0 0
\(801\) 1.72095 2.98078i 0.0608069 0.105321i
\(802\) 21.3500 12.3264i 0.753894 0.435261i
\(803\) −5.34061 3.08340i −0.188466 0.108811i
\(804\) −10.5905 18.3433i −0.373498 0.646917i
\(805\) 0 0
\(806\) 8.75290 0.308308
\(807\) −23.2453 + 13.4207i −0.818272 + 0.472429i
\(808\) −45.6224 + 26.3401i −1.60499 + 0.926641i
\(809\) −18.2267 −0.640816 −0.320408 0.947280i \(-0.603820\pi\)
−0.320408 + 0.947280i \(0.603820\pi\)
\(810\) 0 0
\(811\) 10.4890 + 18.1674i 0.368317 + 0.637944i 0.989303 0.145878i \(-0.0466008\pi\)
−0.620986 + 0.783822i \(0.713267\pi\)
\(812\) 134.239 + 77.5027i 4.71085 + 2.71981i
\(813\) 15.3519 8.86342i 0.538414 0.310854i
\(814\) −7.59030 + 13.1468i −0.266040 + 0.460794i
\(815\) 0 0
\(816\) 90.5558 3.17009
\(817\) 8.84739 1.48953i 0.309531 0.0521119i
\(818\) 18.0504i 0.631118i
\(819\) 0.709332 1.22860i 0.0247861 0.0429307i
\(820\) 0 0
\(821\) 11.0433 + 19.1276i 0.385415 + 0.667558i 0.991827 0.127593i \(-0.0407251\pi\)
−0.606412 + 0.795151i \(0.707392\pi\)
\(822\) 18.5827 + 10.7287i 0.648145 + 0.374207i
\(823\) 13.8364 7.98847i 0.482308 0.278461i −0.239070 0.971002i \(-0.576843\pi\)
0.721378 + 0.692542i \(0.243509\pi\)
\(824\) 3.83101 0.133460
\(825\) 0 0
\(826\) 9.66200 + 16.7351i 0.336184 + 0.582288i
\(827\) −42.6092 + 24.6004i −1.48167 + 0.855441i −0.999784 0.0207946i \(-0.993380\pi\)
−0.481883 + 0.876235i \(0.660047\pi\)
\(828\) 1.81201i 0.0629717i
\(829\) 35.8564 1.24534 0.622672 0.782483i \(-0.286047\pi\)
0.622672 + 0.782483i \(0.286047\pi\)
\(830\) 0 0
\(831\) −17.6226 + 30.5232i −0.611320 + 1.05884i
\(832\) −20.0989 + 11.6041i −0.696803 + 0.402300i
\(833\) −3.61234 2.08559i −0.125160 0.0722613i
\(834\) −22.0629 + 38.2140i −0.763975 + 1.32324i
\(835\) 0 0
\(836\) −19.8036 7.38199i −0.684922 0.255311i
\(837\) 27.7794i 0.960195i
\(838\) −52.1748 30.1232i −1.80235 1.04059i
\(839\) −12.7415 + 22.0689i −0.439885 + 0.761903i −0.997680 0.0680753i \(-0.978314\pi\)
0.557795 + 0.829979i \(0.311648\pi\)
\(840\) 0 0
\(841\) −32.5957 + 56.4574i −1.12399 + 1.94681i
\(842\) 70.0870 40.4647i 2.41536 1.39451i
\(843\) 20.6024i 0.709583i
\(844\) −106.057 −3.65065
\(845\) 0 0
\(846\) −4.22124 7.31141i −0.145129 0.251371i
\(847\) 29.2046i 1.00348i
\(848\) 178.231i 6.12047i
\(849\) −8.77051 15.1910i −0.301003 0.521353i
\(850\) 0 0
\(851\) −1.32850 2.30103i −0.0455404 0.0788782i
\(852\) −12.9098 7.45347i −0.442282 0.255352i
\(853\) 49.5039 + 28.5811i 1.69498 + 0.978598i 0.950382 + 0.311087i \(0.100693\pi\)
0.744600 + 0.667511i \(0.232640\pi\)
\(854\) 49.7698 1.70309
\(855\) 0 0
\(856\) −63.9940 −2.18727
\(857\) 22.6876 + 13.0987i 0.774993 + 0.447442i 0.834653 0.550776i \(-0.185668\pi\)
−0.0596598 + 0.998219i \(0.519002\pi\)
\(858\) 1.98239 + 1.14453i 0.0676777 + 0.0390737i
\(859\) −8.87246 15.3675i −0.302724 0.524334i 0.674028 0.738706i \(-0.264563\pi\)
−0.976752 + 0.214372i \(0.931229\pi\)
\(860\) 0 0
\(861\) −8.52902 14.7727i −0.290668 0.503452i
\(862\) 35.5418i 1.21056i
\(863\) 25.0867i 0.853960i 0.904261 + 0.426980i \(0.140422\pi\)
−0.904261 + 0.426980i \(0.859578\pi\)
\(864\) −69.9456 121.149i −2.37960 4.12158i
\(865\) 0 0
\(866\) −38.1789 −1.29737
\(867\) 4.47357i 0.151930i
\(868\) −68.2380 + 39.3972i −2.31615 + 1.33723i
\(869\) −0.788924 + 1.36646i −0.0267624 + 0.0463539i
\(870\) 0 0
\(871\) 0.814457 1.41068i 0.0275968 0.0477991i
\(872\) 56.5874 + 32.6707i 1.91629 + 1.10637i
\(873\) 8.40305i 0.284400i
\(874\) 3.86938 3.19609i 0.130884 0.108109i
\(875\) 0 0
\(876\) 29.8238 51.6563i 1.00765 1.74531i
\(877\) 8.67383 + 5.00784i 0.292895 + 0.169103i 0.639246 0.769002i \(-0.279246\pi\)
−0.346352 + 0.938105i \(0.612580\pi\)
\(878\) −0.169126 + 0.0976449i −0.00570772 + 0.00329536i
\(879\) −20.1839 + 34.9595i −0.680786 + 1.17916i
\(880\) 0 0
\(881\) 33.3473 1.12350 0.561750 0.827307i \(-0.310128\pi\)
0.561750 + 0.827307i \(0.310128\pi\)
\(882\) 2.38018i 0.0801449i
\(883\) −23.6919 + 13.6785i −0.797296 + 0.460319i −0.842525 0.538658i \(-0.818932\pi\)
0.0452288 + 0.998977i \(0.485598\pi\)
\(884\) 6.74778 + 11.6875i 0.226953 + 0.393093i
\(885\) 0 0
\(886\) −10.4505 −0.351092
\(887\) −14.8640 + 8.58172i −0.499084 + 0.288146i −0.728335 0.685221i \(-0.759706\pi\)
0.229251 + 0.973367i \(0.426372\pi\)
\(888\) −81.7999 47.2272i −2.74503 1.58484i
\(889\) −12.5837 21.7957i −0.422045 0.731004i
\(890\) 0 0
\(891\) −2.62818 + 4.55213i −0.0880472 + 0.152502i
\(892\) 90.5363i 3.03138i
\(893\) 6.01985 16.1494i 0.201447 0.540419i
\(894\) 61.3571 2.05209
\(895\) 0 0
\(896\) 70.9526 122.894i 2.37036 4.10559i
\(897\) −0.346970 + 0.200323i −0.0115850 + 0.00668859i
\(898\) 63.4783 + 36.6492i 2.11830 + 1.22300i
\(899\) −23.9403 41.4659i −0.798455 1.38296i
\(900\) 0 0
\(901\) −41.1136 −1.36969
\(902\) −8.29068 + 4.78663i −0.276049 + 0.159377i
\(903\) 7.57566 4.37381i 0.252102 0.145551i
\(904\) −2.92958 −0.0974364
\(905\) 0 0
\(906\) −44.1489 76.4682i −1.46675 2.54049i
\(907\) 2.61631 + 1.51053i 0.0868732 + 0.0501563i 0.542807 0.839857i \(-0.317361\pi\)
−0.455934 + 0.890014i \(0.650695\pi\)
\(908\) 127.790 73.7797i 4.24087 2.44847i
\(909\) 2.05002 3.55074i 0.0679948 0.117770i
\(910\) 0 0
\(911\) −19.5682 −0.648324 −0.324162 0.946002i \(-0.605082\pi\)
−0.324162 + 0.946002i \(0.605082\pi\)
\(912\) 36.8454 98.8449i 1.22007 3.27308i
\(913\) 6.43336i 0.212913i
\(914\) −45.7173 + 79.1847i −1.51219 + 2.61920i
\(915\) 0 0
\(916\) 37.3749 + 64.7353i 1.23490 + 2.13891i
\(917\) −51.5916 29.7864i −1.70371 0.983635i
\(918\) −50.3248 + 29.0550i −1.66096 + 0.958959i
\(919\) 1.81420 0.0598448 0.0299224 0.999552i \(-0.490474\pi\)
0.0299224 + 0.999552i \(0.490474\pi\)
\(920\) 0 0
\(921\) −6.59297 11.4194i −0.217246 0.376280i
\(922\) 45.9874 26.5508i 1.51452 0.874406i
\(923\) 1.14641i 0.0377346i
\(924\) −20.6064 −0.677901
\(925\) 0 0
\(926\) −54.0175 + 93.5611i −1.77513 + 3.07461i
\(927\) −0.258217 + 0.149081i −0.00848095 + 0.00489648i
\(928\) 208.814 + 120.559i 6.85465 + 3.95753i
\(929\) −11.2377 + 19.4643i −0.368698 + 0.638603i −0.989362 0.145473i \(-0.953530\pi\)
0.620665 + 0.784076i \(0.286863\pi\)
\(930\) 0 0
\(931\) −3.74628 + 3.09442i −0.122780 + 0.101415i
\(932\) 141.901i 4.64813i
\(933\) 0.841755 + 0.485987i 0.0275578 + 0.0159105i
\(934\) −53.8710 + 93.3072i −1.76271 + 3.05311i
\(935\) 0 0
\(936\) 2.47693 4.29017i 0.0809610 0.140229i
\(937\) −47.6647 + 27.5193i −1.55714 + 0.899015i −0.559611 + 0.828756i \(0.689049\pi\)
−0.997529 + 0.0702593i \(0.977617\pi\)
\(938\) 19.8944i 0.649576i
\(939\) 4.42437 0.144384
\(940\) 0 0
\(941\) 6.09781 + 10.5617i 0.198783 + 0.344302i 0.948134 0.317871i \(-0.102968\pi\)
−0.749351 + 0.662173i \(0.769635\pi\)
\(942\) 10.0036i 0.325937i
\(943\) 1.67557i 0.0545640i
\(944\) 19.9488 + 34.5524i 0.649279 + 1.12458i
\(945\) 0 0
\(946\) −2.45465 4.25159i −0.0798077 0.138231i
\(947\) 26.3537 + 15.2153i 0.856381 + 0.494432i 0.862799 0.505548i \(-0.168710\pi\)
−0.00641783 + 0.999979i \(0.502043\pi\)
\(948\) −13.2169 7.63077i −0.429264 0.247836i
\(949\) 4.58717 0.148906
\(950\) 0 0
\(951\) −15.4859 −0.502164
\(952\) −91.8239 53.0146i −2.97603 1.71821i
\(953\) −13.6293 7.86891i −0.441498 0.254899i 0.262735 0.964868i \(-0.415376\pi\)
−0.704233 + 0.709969i \(0.748709\pi\)
\(954\) 11.7302 + 20.3174i 0.379780 + 0.657799i
\(955\) 0 0
\(956\) 66.0182 + 114.347i 2.13518 + 3.69824i
\(957\) 12.5218i 0.404772i
\(958\) 68.2748i 2.20586i
\(959\) −7.42750 12.8648i −0.239846 0.415426i
\(960\) 0 0
\(961\) −6.66065 −0.214860
\(962\) 11.2921i 0.364071i
\(963\) 4.31331 2.49029i 0.138994 0.0802484i
\(964\) 23.5035 40.7093i 0.756997 1.31116i
\(965\) 0 0
\(966\) 2.44661 4.23765i 0.0787183 0.136344i
\(967\) 26.5326 + 15.3186i 0.853232 + 0.492614i 0.861740 0.507350i \(-0.169375\pi\)
−0.00850791 + 0.999964i \(0.502708\pi\)
\(968\) 101.980i 3.27776i
\(969\) −22.8011 8.49934i −0.732478 0.273038i
\(970\) 0 0
\(971\) −8.23824 + 14.2690i −0.264378 + 0.457915i −0.967400 0.253252i \(-0.918500\pi\)
0.703023 + 0.711167i \(0.251833\pi\)
\(972\) 37.9907 + 21.9340i 1.21855 + 0.703532i
\(973\) 26.4556 15.2742i 0.848128 0.489667i
\(974\) 30.1824 52.2775i 0.967108 1.67508i
\(975\) 0 0
\(976\) 102.758 3.28921
\(977\) 2.77995i 0.0889383i 0.999011 + 0.0444692i \(0.0141596\pi\)
−0.999011 + 0.0444692i \(0.985840\pi\)
\(978\) 63.4921 36.6572i 2.03025 1.17217i
\(979\) −1.92240 3.32969i −0.0614401 0.106417i
\(980\) 0 0
\(981\) −5.08545 −0.162366
\(982\) −22.4413 + 12.9565i −0.716132 + 0.413459i
\(983\) 1.48239 + 0.855856i 0.0472808 + 0.0272976i 0.523454 0.852054i \(-0.324643\pi\)
−0.476173 + 0.879351i \(0.657977\pi\)
\(984\) −29.7826 51.5850i −0.949436 1.64447i
\(985\) 0 0
\(986\) 50.0794 86.7401i 1.59485 2.76237i
\(987\) 16.8041i 0.534879i
\(988\) 15.5029 2.61003i 0.493212 0.0830360i
\(989\) 0.859257 0.0273228
\(990\) 0 0
\(991\) 4.83711 8.37811i 0.153656 0.266140i −0.778913 0.627132i \(-0.784229\pi\)
0.932569 + 0.360992i \(0.117562\pi\)
\(992\) −106.147 + 61.2840i −3.37017 + 1.94577i
\(993\) −19.4997 11.2582i −0.618805 0.357267i
\(994\) 7.00073 + 12.1256i 0.222050 + 0.384601i
\(995\) 0 0
\(996\) −62.2259 −1.97170
\(997\) −19.6857 + 11.3656i −0.623454 + 0.359951i −0.778212 0.628001i \(-0.783873\pi\)
0.154759 + 0.987952i \(0.450540\pi\)
\(998\) 59.5015 34.3532i 1.88349 1.08743i
\(999\) 35.8380 1.13386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.j.c.49.8 16
5.2 odd 4 95.2.e.c.11.1 8
5.3 odd 4 475.2.e.e.201.4 8
5.4 even 2 inner 475.2.j.c.49.1 16
15.2 even 4 855.2.k.h.676.4 8
19.7 even 3 inner 475.2.j.c.349.1 16
20.7 even 4 1520.2.q.o.961.3 8
95.7 odd 12 95.2.e.c.26.1 yes 8
95.8 even 12 9025.2.a.bp.1.4 4
95.27 even 12 1805.2.a.i.1.1 4
95.64 even 6 inner 475.2.j.c.349.8 16
95.68 odd 12 9025.2.a.bg.1.1 4
95.83 odd 12 475.2.e.e.26.4 8
95.87 odd 12 1805.2.a.o.1.4 4
285.197 even 12 855.2.k.h.406.4 8
380.7 even 12 1520.2.q.o.881.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.c.11.1 8 5.2 odd 4
95.2.e.c.26.1 yes 8 95.7 odd 12
475.2.e.e.26.4 8 95.83 odd 12
475.2.e.e.201.4 8 5.3 odd 4
475.2.j.c.49.1 16 5.4 even 2 inner
475.2.j.c.49.8 16 1.1 even 1 trivial
475.2.j.c.349.1 16 19.7 even 3 inner
475.2.j.c.349.8 16 95.64 even 6 inner
855.2.k.h.406.4 8 285.197 even 12
855.2.k.h.676.4 8 15.2 even 4
1520.2.q.o.881.3 8 380.7 even 12
1520.2.q.o.961.3 8 20.7 even 4
1805.2.a.i.1.1 4 95.27 even 12
1805.2.a.o.1.4 4 95.87 odd 12
9025.2.a.bg.1.1 4 95.68 odd 12
9025.2.a.bp.1.4 4 95.8 even 12