Properties

Label 475.2.j.c.49.3
Level $475$
Weight $2$
Character 475.49
Analytic conductor $3.793$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(49,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.1387535264013605949997056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 11x^{14} + 82x^{12} - 337x^{10} + 1006x^{8} - 1596x^{6} + 1765x^{4} - 414x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.3
Root \(1.77290 - 1.02359i\) of defining polynomial
Character \(\chi\) \(=\) 475.49
Dual form 475.2.j.c.349.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.03136 - 0.595455i) q^{2} +(-2.63893 - 1.52359i) q^{3} +(-0.290867 - 0.503797i) q^{4} +(1.81445 + 3.14272i) q^{6} +0.609175i q^{7} +3.07461i q^{8} +(3.14263 + 5.44319i) q^{9} +O(q^{10})\) \(q+(-1.03136 - 0.595455i) q^{2} +(-2.63893 - 1.52359i) q^{3} +(-0.290867 - 0.503797i) q^{4} +(1.81445 + 3.14272i) q^{6} +0.609175i q^{7} +3.07461i q^{8} +(3.14263 + 5.44319i) q^{9} +4.48517 q^{11} +1.77264i q^{12} +(3.84342 - 2.21900i) q^{13} +(0.362736 - 0.628278i) q^{14} +(1.24906 - 2.16343i) q^{16} +(2.51445 + 1.45172i) q^{17} -7.48517i q^{18} +(-3.60532 + 2.44983i) q^{19} +(0.928131 - 1.60757i) q^{21} +(-4.62581 - 2.67071i) q^{22} +(-2.46580 + 1.42363i) q^{23} +(4.68443 - 8.11368i) q^{24} -5.28525 q^{26} -10.0107i q^{27} +(0.306901 - 0.177189i) q^{28} +(0.558149 + 0.966742i) q^{29} -6.22908 q^{31} +(2.74893 - 1.58710i) q^{32} +(-11.8360 - 6.83354i) q^{33} +(-1.72886 - 2.99448i) q^{34} +(1.82817 - 3.16649i) q^{36} +3.77264i q^{37} +(5.17714 - 0.379847i) q^{38} -13.5233 q^{39} +(4.15184 - 7.19120i) q^{41} +(-1.91447 + 1.10532i) q^{42} +(8.65053 + 4.99438i) q^{43} +(-1.30459 - 2.25961i) q^{44} +3.39082 q^{46} +(5.09656 - 2.94250i) q^{47} +(-6.59235 + 3.80609i) q^{48} +6.62891 q^{49} +(-4.42363 - 7.66195i) q^{51} +(-2.23585 - 1.29087i) q^{52} +(7.31681 - 4.22436i) q^{53} +(-5.96093 + 10.3246i) q^{54} -1.87298 q^{56} +(13.2467 - 0.971912i) q^{57} -1.32941i q^{58} +(5.11793 - 8.86451i) q^{59} +(2.49099 + 4.31453i) q^{61} +(6.42441 + 3.70913i) q^{62} +(-3.31586 + 1.91441i) q^{63} -8.77641 q^{64} +(8.13812 + 14.0956i) q^{66} +(-7.34057 + 4.23808i) q^{67} -1.68903i q^{68} +8.67608 q^{69} +(-5.80995 + 10.0631i) q^{71} +(-16.7357 + 9.66236i) q^{72} +(-3.22443 - 1.86162i) q^{73} +(2.24644 - 3.89095i) q^{74} +(2.28289 + 1.10377i) q^{76} +2.73225i q^{77} +(13.9474 + 8.05253i) q^{78} +(4.51908 - 7.82728i) q^{79} +(-5.82432 + 10.0880i) q^{81} +(-8.56407 + 4.94447i) q^{82} -2.12178i q^{83} -1.07985 q^{84} +(-5.94786 - 10.3020i) q^{86} -3.40155i q^{87} +13.7901i q^{88} +(3.96608 + 6.86946i) q^{89} +(1.35176 + 2.34131i) q^{91} +(1.43444 + 0.828173i) q^{92} +(16.4381 + 9.49053i) q^{93} -7.00850 q^{94} -9.67231 q^{96} +(-8.37668 - 4.83628i) q^{97} +(-6.83677 - 3.94721i) q^{98} +(14.0952 + 24.4136i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 10 q^{4} - 4 q^{6} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 10 q^{4} - 4 q^{6} + 2 q^{9} - 8 q^{11} - 2 q^{14} - 14 q^{16} - 10 q^{19} + 8 q^{21} + 46 q^{24} + 12 q^{26} - 2 q^{29} + 30 q^{34} + 14 q^{36} - 60 q^{39} + 16 q^{41} - 24 q^{44} + 48 q^{46} + 40 q^{49} - 44 q^{51} - 68 q^{54} - 164 q^{56} - 10 q^{59} - 224 q^{64} + 62 q^{66} + 36 q^{69} - 40 q^{71} + 50 q^{74} + 126 q^{76} + 34 q^{79} - 24 q^{81} + 80 q^{84} - 16 q^{86} + 22 q^{89} - 12 q^{91} + 124 q^{94} + 84 q^{96} + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.03136 0.595455i −0.729280 0.421050i 0.0888786 0.996042i \(-0.471672\pi\)
−0.818159 + 0.574992i \(0.805005\pi\)
\(3\) −2.63893 1.52359i −1.52359 0.879643i −0.999610 0.0279089i \(-0.991115\pi\)
−0.523975 0.851734i \(-0.675552\pi\)
\(4\) −0.290867 0.503797i −0.145434 0.251898i
\(5\) 0 0
\(6\) 1.81445 + 3.14272i 0.740747 + 1.28301i
\(7\) 0.609175i 0.230247i 0.993351 + 0.115123i \(0.0367263\pi\)
−0.993351 + 0.115123i \(0.963274\pi\)
\(8\) 3.07461i 1.08704i
\(9\) 3.14263 + 5.44319i 1.04754 + 1.81440i
\(10\) 0 0
\(11\) 4.48517 1.35233 0.676164 0.736751i \(-0.263641\pi\)
0.676164 + 0.736751i \(0.263641\pi\)
\(12\) 1.77264i 0.511718i
\(13\) 3.84342 2.21900i 1.06597 0.615439i 0.138894 0.990307i \(-0.455645\pi\)
0.927078 + 0.374868i \(0.122312\pi\)
\(14\) 0.362736 0.628278i 0.0969454 0.167914i
\(15\) 0 0
\(16\) 1.24906 2.16343i 0.312265 0.540858i
\(17\) 2.51445 + 1.45172i 0.609843 + 0.352093i 0.772904 0.634523i \(-0.218803\pi\)
−0.163061 + 0.986616i \(0.552137\pi\)
\(18\) 7.48517i 1.76427i
\(19\) −3.60532 + 2.44983i −0.827117 + 0.562030i
\(20\) 0 0
\(21\) 0.928131 1.60757i 0.202535 0.350800i
\(22\) −4.62581 2.67071i −0.986227 0.569398i
\(23\) −2.46580 + 1.42363i −0.514154 + 0.296847i −0.734540 0.678566i \(-0.762602\pi\)
0.220386 + 0.975413i \(0.429268\pi\)
\(24\) 4.68443 8.11368i 0.956206 1.65620i
\(25\) 0 0
\(26\) −5.28525 −1.03652
\(27\) 10.0107i 1.92656i
\(28\) 0.306901 0.177189i 0.0579987 0.0334856i
\(29\) 0.558149 + 0.966742i 0.103646 + 0.179519i 0.913184 0.407547i \(-0.133616\pi\)
−0.809538 + 0.587067i \(0.800283\pi\)
\(30\) 0 0
\(31\) −6.22908 −1.11877 −0.559387 0.828906i \(-0.688964\pi\)
−0.559387 + 0.828906i \(0.688964\pi\)
\(32\) 2.74893 1.58710i 0.485947 0.280562i
\(33\) −11.8360 6.83354i −2.06039 1.18957i
\(34\) −1.72886 2.99448i −0.296498 0.513549i
\(35\) 0 0
\(36\) 1.82817 3.16649i 0.304696 0.527748i
\(37\) 3.77264i 0.620219i 0.950701 + 0.310109i \(0.100366\pi\)
−0.950701 + 0.310109i \(0.899634\pi\)
\(38\) 5.17714 0.379847i 0.839843 0.0616193i
\(39\) −13.5233 −2.16547
\(40\) 0 0
\(41\) 4.15184 7.19120i 0.648409 1.12308i −0.335094 0.942185i \(-0.608768\pi\)
0.983503 0.180893i \(-0.0578987\pi\)
\(42\) −1.91447 + 1.10532i −0.295409 + 0.170555i
\(43\) 8.65053 + 4.99438i 1.31919 + 0.761637i 0.983599 0.180370i \(-0.0577295\pi\)
0.335594 + 0.942007i \(0.391063\pi\)
\(44\) −1.30459 2.25961i −0.196674 0.340649i
\(45\) 0 0
\(46\) 3.39082 0.499950
\(47\) 5.09656 2.94250i 0.743409 0.429208i −0.0798983 0.996803i \(-0.525460\pi\)
0.823308 + 0.567595i \(0.192126\pi\)
\(48\) −6.59235 + 3.80609i −0.951524 + 0.549362i
\(49\) 6.62891 0.946986
\(50\) 0 0
\(51\) −4.42363 7.66195i −0.619432 1.07289i
\(52\) −2.23585 1.29087i −0.310056 0.179011i
\(53\) 7.31681 4.22436i 1.00504 0.580261i 0.0953049 0.995448i \(-0.469617\pi\)
0.909736 + 0.415188i \(0.136284\pi\)
\(54\) −5.96093 + 10.3246i −0.811180 + 1.40501i
\(55\) 0 0
\(56\) −1.87298 −0.250287
\(57\) 13.2467 0.971912i 1.75457 0.128733i
\(58\) 1.32941i 0.174560i
\(59\) 5.11793 8.86451i 0.666297 1.15406i −0.312634 0.949874i \(-0.601211\pi\)
0.978932 0.204187i \(-0.0654552\pi\)
\(60\) 0 0
\(61\) 2.49099 + 4.31453i 0.318939 + 0.552419i 0.980267 0.197678i \(-0.0633401\pi\)
−0.661328 + 0.750097i \(0.730007\pi\)
\(62\) 6.42441 + 3.70913i 0.815900 + 0.471060i
\(63\) −3.31586 + 1.91441i −0.417759 + 0.241193i
\(64\) −8.77641 −1.09705
\(65\) 0 0
\(66\) 8.13812 + 14.0956i 1.00173 + 1.73505i
\(67\) −7.34057 + 4.23808i −0.896794 + 0.517764i −0.876159 0.482023i \(-0.839902\pi\)
−0.0206350 + 0.999787i \(0.506569\pi\)
\(68\) 1.68903i 0.204825i
\(69\) 8.67608 1.04448
\(70\) 0 0
\(71\) −5.80995 + 10.0631i −0.689514 + 1.19427i 0.282481 + 0.959273i \(0.408843\pi\)
−0.971995 + 0.235001i \(0.924491\pi\)
\(72\) −16.7357 + 9.66236i −1.97232 + 1.13872i
\(73\) −3.22443 1.86162i −0.377391 0.217887i 0.299292 0.954162i \(-0.403250\pi\)
−0.676682 + 0.736275i \(0.736583\pi\)
\(74\) 2.24644 3.89095i 0.261143 0.452313i
\(75\) 0 0
\(76\) 2.28289 + 1.10377i 0.261865 + 0.126611i
\(77\) 2.73225i 0.311369i
\(78\) 13.9474 + 8.05253i 1.57923 + 0.911770i
\(79\) 4.51908 7.82728i 0.508437 0.880638i −0.491516 0.870869i \(-0.663557\pi\)
0.999952 0.00976923i \(-0.00310969\pi\)
\(80\) 0 0
\(81\) −5.82432 + 10.0880i −0.647146 + 1.12089i
\(82\) −8.56407 + 4.94447i −0.945744 + 0.546025i
\(83\) 2.12178i 0.232896i −0.993197 0.116448i \(-0.962849\pi\)
0.993197 0.116448i \(-0.0371508\pi\)
\(84\) −1.07985 −0.117821
\(85\) 0 0
\(86\) −5.94786 10.3020i −0.641374 1.11089i
\(87\) 3.40155i 0.364684i
\(88\) 13.7901i 1.47003i
\(89\) 3.96608 + 6.86946i 0.420404 + 0.728161i 0.995979 0.0895879i \(-0.0285550\pi\)
−0.575575 + 0.817749i \(0.695222\pi\)
\(90\) 0 0
\(91\) 1.35176 + 2.34131i 0.141703 + 0.245436i
\(92\) 1.43444 + 0.828173i 0.149551 + 0.0863430i
\(93\) 16.4381 + 9.49053i 1.70455 + 0.984122i
\(94\) −7.00850 −0.722872
\(95\) 0 0
\(96\) −9.67231 −0.987176
\(97\) −8.37668 4.83628i −0.850523 0.491050i 0.0103043 0.999947i \(-0.496720\pi\)
−0.860827 + 0.508897i \(0.830053\pi\)
\(98\) −6.83677 3.94721i −0.690619 0.398729i
\(99\) 14.0952 + 24.4136i 1.41662 + 2.45366i
\(100\) 0 0
\(101\) 0.485632 + 0.841140i 0.0483222 + 0.0836965i 0.889175 0.457568i \(-0.151279\pi\)
−0.840853 + 0.541264i \(0.817946\pi\)
\(102\) 10.5363i 1.04325i
\(103\) 3.34143i 0.329241i −0.986357 0.164620i \(-0.947360\pi\)
0.986357 0.164620i \(-0.0526399\pi\)
\(104\) 6.82256 + 11.8170i 0.669007 + 1.15875i
\(105\) 0 0
\(106\) −10.0617 −0.977275
\(107\) 9.51655i 0.920000i −0.887919 0.460000i \(-0.847849\pi\)
0.887919 0.460000i \(-0.152151\pi\)
\(108\) −5.04337 + 2.91179i −0.485298 + 0.280187i
\(109\) 2.77178 4.80087i 0.265489 0.459840i −0.702203 0.711977i \(-0.747800\pi\)
0.967692 + 0.252137i \(0.0811333\pi\)
\(110\) 0 0
\(111\) 5.74795 9.95573i 0.545571 0.944956i
\(112\) 1.31791 + 0.760896i 0.124531 + 0.0718979i
\(113\) 1.54134i 0.144997i 0.997369 + 0.0724987i \(0.0230973\pi\)
−0.997369 + 0.0724987i \(0.976903\pi\)
\(114\) −14.2408 6.88542i −1.33378 0.644879i
\(115\) 0 0
\(116\) 0.324694 0.562387i 0.0301471 0.0522163i
\(117\) 24.1568 + 13.9470i 2.23330 + 1.28940i
\(118\) −10.5568 + 6.09499i −0.971835 + 0.561089i
\(119\) −0.884350 + 1.53174i −0.0810682 + 0.140414i
\(120\) 0 0
\(121\) 9.11672 0.828793
\(122\) 5.93310i 0.537158i
\(123\) −21.9128 + 12.6514i −1.97581 + 1.14074i
\(124\) 1.81183 + 3.13819i 0.162707 + 0.281818i
\(125\) 0 0
\(126\) 4.55978 0.406217
\(127\) −1.99661 + 1.15274i −0.177171 + 0.102289i −0.585963 0.810338i \(-0.699283\pi\)
0.408792 + 0.912628i \(0.365950\pi\)
\(128\) 3.55376 + 2.05176i 0.314111 + 0.181352i
\(129\) −15.2187 26.3596i −1.33994 2.32084i
\(130\) 0 0
\(131\) 6.45905 11.1874i 0.564330 0.977448i −0.432782 0.901499i \(-0.642468\pi\)
0.997112 0.0759493i \(-0.0241987\pi\)
\(132\) 7.95060i 0.692011i
\(133\) −1.49238 2.19627i −0.129405 0.190441i
\(134\) 10.0943 0.872018
\(135\) 0 0
\(136\) −4.46346 + 7.73095i −0.382739 + 0.662923i
\(137\) 11.0276 6.36677i 0.942149 0.543950i 0.0515159 0.998672i \(-0.483595\pi\)
0.890633 + 0.454722i \(0.150261\pi\)
\(138\) −8.94814 5.16621i −0.761716 0.439777i
\(139\) 5.30433 + 9.18738i 0.449908 + 0.779263i 0.998380 0.0569059i \(-0.0181235\pi\)
−0.548472 + 0.836169i \(0.684790\pi\)
\(140\) 0 0
\(141\) −17.9326 −1.51020
\(142\) 11.9843 6.91913i 1.00570 0.580640i
\(143\) 17.2384 9.95258i 1.44154 0.832276i
\(144\) 15.7013 1.30844
\(145\) 0 0
\(146\) 2.21703 + 3.84000i 0.183482 + 0.317801i
\(147\) −17.4932 10.0997i −1.44281 0.833010i
\(148\) 1.90065 1.09734i 0.156232 0.0902006i
\(149\) 1.88653 3.26757i 0.154551 0.267690i −0.778344 0.627837i \(-0.783940\pi\)
0.932895 + 0.360147i \(0.117274\pi\)
\(150\) 0 0
\(151\) −9.51562 −0.774370 −0.387185 0.922002i \(-0.626553\pi\)
−0.387185 + 0.922002i \(0.626553\pi\)
\(152\) −7.53228 11.0850i −0.610948 0.899109i
\(153\) 18.2488i 1.47533i
\(154\) 1.62693 2.81793i 0.131102 0.227075i
\(155\) 0 0
\(156\) 3.93349 + 6.81301i 0.314931 + 0.545477i
\(157\) −2.99336 1.72822i −0.238896 0.137927i 0.375773 0.926712i \(-0.377377\pi\)
−0.614669 + 0.788785i \(0.710710\pi\)
\(158\) −9.32158 + 5.38182i −0.741585 + 0.428155i
\(159\) −25.7447 −2.04169
\(160\) 0 0
\(161\) −0.867239 1.50210i −0.0683480 0.118382i
\(162\) 12.0139 6.93624i 0.943902 0.544962i
\(163\) 6.65283i 0.521090i 0.965462 + 0.260545i \(0.0839022\pi\)
−0.965462 + 0.260545i \(0.916098\pi\)
\(164\) −4.83054 −0.377202
\(165\) 0 0
\(166\) −1.26343 + 2.18832i −0.0980609 + 0.169846i
\(167\) 14.2509 8.22775i 1.10277 0.636682i 0.165820 0.986156i \(-0.446973\pi\)
0.936946 + 0.349474i \(0.113640\pi\)
\(168\) 4.94265 + 2.85364i 0.381334 + 0.220163i
\(169\) 3.34790 5.79874i 0.257531 0.446057i
\(170\) 0 0
\(171\) −24.6651 11.9255i −1.88618 0.911968i
\(172\) 5.81081i 0.443070i
\(173\) 19.7302 + 11.3912i 1.50006 + 0.866058i 1.00000 6.58713e-5i \(2.09675e-5\pi\)
0.500057 + 0.865992i \(0.333312\pi\)
\(174\) −2.02547 + 3.50822i −0.153550 + 0.265957i
\(175\) 0 0
\(176\) 5.60224 9.70336i 0.422284 0.731418i
\(177\) −27.0117 + 15.5952i −2.03032 + 1.17221i
\(178\) 9.44650i 0.708045i
\(179\) 2.32916 0.174090 0.0870449 0.996204i \(-0.472258\pi\)
0.0870449 + 0.996204i \(0.472258\pi\)
\(180\) 0 0
\(181\) 11.1696 + 19.3463i 0.830230 + 1.43800i 0.897856 + 0.440290i \(0.145124\pi\)
−0.0676258 + 0.997711i \(0.521542\pi\)
\(182\) 3.21965i 0.238656i
\(183\) 15.1810i 1.12221i
\(184\) −4.37710 7.58137i −0.322684 0.558906i
\(185\) 0 0
\(186\) −11.3024 19.5763i −0.828729 1.43540i
\(187\) 11.2777 + 6.51119i 0.824708 + 0.476145i
\(188\) −2.96484 1.71175i −0.216233 0.124842i
\(189\) 6.09829 0.443585
\(190\) 0 0
\(191\) 2.23766 0.161911 0.0809556 0.996718i \(-0.474203\pi\)
0.0809556 + 0.996718i \(0.474203\pi\)
\(192\) 23.1603 + 13.3716i 1.67145 + 0.965013i
\(193\) 3.93441 + 2.27153i 0.283205 + 0.163508i 0.634873 0.772616i \(-0.281052\pi\)
−0.351669 + 0.936125i \(0.614386\pi\)
\(194\) 5.75957 + 9.97587i 0.413513 + 0.716226i
\(195\) 0 0
\(196\) −1.92813 3.33962i −0.137724 0.238544i
\(197\) 19.2236i 1.36962i 0.728720 + 0.684812i \(0.240116\pi\)
−0.728720 + 0.684812i \(0.759884\pi\)
\(198\) 33.5722i 2.38587i
\(199\) −3.07547 5.32687i −0.218014 0.377612i 0.736186 0.676779i \(-0.236625\pi\)
−0.954201 + 0.299167i \(0.903291\pi\)
\(200\) 0 0
\(201\) 25.8283 1.82179
\(202\) 1.15669i 0.0813843i
\(203\) −0.588915 + 0.340010i −0.0413338 + 0.0238641i
\(204\) −2.57338 + 4.45722i −0.180172 + 0.312068i
\(205\) 0 0
\(206\) −1.98967 + 3.44621i −0.138627 + 0.240109i
\(207\) −15.4981 8.94786i −1.07720 0.621919i
\(208\) 11.0866i 0.768720i
\(209\) −16.1705 + 10.9879i −1.11853 + 0.760049i
\(210\) 0 0
\(211\) −6.34661 + 10.9926i −0.436919 + 0.756765i −0.997450 0.0713679i \(-0.977264\pi\)
0.560531 + 0.828133i \(0.310597\pi\)
\(212\) −4.25644 2.45746i −0.292333 0.168779i
\(213\) 30.6641 17.7039i 2.10107 1.21305i
\(214\) −5.66668 + 9.81497i −0.387366 + 0.670938i
\(215\) 0 0
\(216\) 30.7791 2.09425
\(217\) 3.79460i 0.257594i
\(218\) −5.71740 + 3.30094i −0.387231 + 0.223568i
\(219\) 5.67269 + 9.82538i 0.383325 + 0.663938i
\(220\) 0 0
\(221\) 12.8854 0.866767
\(222\) −11.8564 + 6.84528i −0.795748 + 0.459425i
\(223\) −19.5181 11.2688i −1.30703 0.754614i −0.325430 0.945566i \(-0.605509\pi\)
−0.981599 + 0.190952i \(0.938842\pi\)
\(224\) 0.966820 + 1.67458i 0.0645984 + 0.111888i
\(225\) 0 0
\(226\) 0.917800 1.58968i 0.0610512 0.105744i
\(227\) 18.1124i 1.20216i −0.799189 0.601080i \(-0.794737\pi\)
0.799189 0.601080i \(-0.205263\pi\)
\(228\) −4.34268 6.39095i −0.287601 0.423251i
\(229\) 9.41604 0.622229 0.311115 0.950372i \(-0.399298\pi\)
0.311115 + 0.950372i \(0.399298\pi\)
\(230\) 0 0
\(231\) 4.16282 7.21022i 0.273894 0.474398i
\(232\) −2.97236 + 1.71609i −0.195145 + 0.112667i
\(233\) −13.5966 7.85000i −0.890743 0.514271i −0.0165573 0.999863i \(-0.505271\pi\)
−0.874185 + 0.485592i \(0.838604\pi\)
\(234\) −16.6096 28.7686i −1.08580 1.88066i
\(235\) 0 0
\(236\) −5.95455 −0.387608
\(237\) −23.8511 + 13.7704i −1.54929 + 0.894485i
\(238\) 1.82416 1.05318i 0.118243 0.0682676i
\(239\) 23.4610 1.51757 0.758783 0.651344i \(-0.225795\pi\)
0.758783 + 0.651344i \(0.225795\pi\)
\(240\) 0 0
\(241\) −6.58469 11.4050i −0.424157 0.734662i 0.572184 0.820125i \(-0.306096\pi\)
−0.996341 + 0.0854634i \(0.972763\pi\)
\(242\) −9.40260 5.42860i −0.604422 0.348963i
\(243\) 4.73128 2.73161i 0.303512 0.175233i
\(244\) 1.44910 2.50991i 0.0927689 0.160680i
\(245\) 0 0
\(246\) 30.1333 1.92123
\(247\) −8.42058 + 17.4159i −0.535789 + 1.10815i
\(248\) 19.1520i 1.21615i
\(249\) −3.23272 + 5.59923i −0.204865 + 0.354837i
\(250\) 0 0
\(251\) 8.66257 + 15.0040i 0.546776 + 0.947045i 0.998493 + 0.0548830i \(0.0174786\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(252\) 1.92895 + 1.11368i 0.121512 + 0.0701551i
\(253\) −11.0595 + 6.38521i −0.695305 + 0.401435i
\(254\) 2.74563 0.172276
\(255\) 0 0
\(256\) 6.33295 + 10.9690i 0.395809 + 0.685562i
\(257\) 4.91867 2.83980i 0.306818 0.177142i −0.338683 0.940900i \(-0.609982\pi\)
0.645502 + 0.763759i \(0.276648\pi\)
\(258\) 36.2483i 2.25672i
\(259\) −2.29820 −0.142803
\(260\) 0 0
\(261\) −3.50811 + 6.07622i −0.217146 + 0.376108i
\(262\) −13.3232 + 7.69215i −0.823109 + 0.475222i
\(263\) −4.89966 2.82882i −0.302126 0.174433i 0.341272 0.939965i \(-0.389142\pi\)
−0.643398 + 0.765532i \(0.722476\pi\)
\(264\) 21.0105 36.3912i 1.29311 2.23972i
\(265\) 0 0
\(266\) 0.231393 + 3.15379i 0.0141876 + 0.193371i
\(267\) 24.1707i 1.47922i
\(268\) 4.27026 + 2.46544i 0.260848 + 0.150601i
\(269\) −11.9959 + 20.7775i −0.731402 + 1.26683i 0.224881 + 0.974386i \(0.427801\pi\)
−0.956284 + 0.292440i \(0.905533\pi\)
\(270\) 0 0
\(271\) 10.6497 18.4459i 0.646926 1.12051i −0.336927 0.941531i \(-0.609388\pi\)
0.983853 0.178978i \(-0.0572791\pi\)
\(272\) 6.28138 3.62656i 0.380865 0.219892i
\(273\) 8.23808i 0.498591i
\(274\) −15.1645 −0.916121
\(275\) 0 0
\(276\) −2.52359 4.37098i −0.151902 0.263102i
\(277\) 0.821109i 0.0493357i 0.999696 + 0.0246678i \(0.00785281\pi\)
−0.999696 + 0.0246678i \(0.992147\pi\)
\(278\) 12.6340i 0.757735i
\(279\) −19.5757 33.9060i −1.17196 2.02990i
\(280\) 0 0
\(281\) 0.293739 + 0.508772i 0.0175230 + 0.0303508i 0.874654 0.484748i \(-0.161089\pi\)
−0.857131 + 0.515099i \(0.827755\pi\)
\(282\) 18.4949 + 10.6780i 1.10136 + 0.635869i
\(283\) −26.7969 15.4712i −1.59291 0.919667i −0.992805 0.119746i \(-0.961792\pi\)
−0.600105 0.799921i \(-0.704875\pi\)
\(284\) 6.75969 0.401114
\(285\) 0 0
\(286\) −23.7052 −1.40172
\(287\) 4.38070 + 2.52920i 0.258585 + 0.149294i
\(288\) 17.2777 + 9.97530i 1.01810 + 0.587800i
\(289\) −4.28504 7.42191i −0.252061 0.436583i
\(290\) 0 0
\(291\) 14.7370 + 25.5252i 0.863896 + 1.49631i
\(292\) 2.16594i 0.126752i
\(293\) 3.76271i 0.219820i 0.993942 + 0.109910i \(0.0350562\pi\)
−0.993942 + 0.109910i \(0.964944\pi\)
\(294\) 12.0278 + 20.8328i 0.701478 + 1.21499i
\(295\) 0 0
\(296\) −11.5994 −0.674202
\(297\) 44.8998i 2.60535i
\(298\) −3.89138 + 2.24669i −0.225422 + 0.130147i
\(299\) −6.31806 + 10.9432i −0.365383 + 0.632861i
\(300\) 0 0
\(301\) −3.04246 + 5.26969i −0.175364 + 0.303740i
\(302\) 9.81401 + 5.66612i 0.564733 + 0.326049i
\(303\) 2.95961i 0.170025i
\(304\) 0.796788 + 10.8598i 0.0456989 + 0.622855i
\(305\) 0 0
\(306\) 10.8663 18.8211i 0.621187 1.07593i
\(307\) 17.6166 + 10.1709i 1.00543 + 0.580485i 0.909850 0.414936i \(-0.136196\pi\)
0.0955798 + 0.995422i \(0.469529\pi\)
\(308\) 1.37650 0.794723i 0.0784334 0.0452835i
\(309\) −5.09095 + 8.81779i −0.289614 + 0.501626i
\(310\) 0 0
\(311\) −7.67830 −0.435397 −0.217698 0.976016i \(-0.569855\pi\)
−0.217698 + 0.976016i \(0.569855\pi\)
\(312\) 41.5790i 2.35395i
\(313\) 20.7783 11.9964i 1.17446 0.678074i 0.219733 0.975560i \(-0.429481\pi\)
0.954726 + 0.297486i \(0.0961481\pi\)
\(314\) 2.05815 + 3.56482i 0.116148 + 0.201174i
\(315\) 0 0
\(316\) −5.25781 −0.295775
\(317\) −0.899831 + 0.519518i −0.0505395 + 0.0291790i −0.525057 0.851067i \(-0.675956\pi\)
0.474517 + 0.880246i \(0.342623\pi\)
\(318\) 26.5520 + 15.3298i 1.48896 + 0.859653i
\(319\) 2.50339 + 4.33600i 0.140163 + 0.242769i
\(320\) 0 0
\(321\) −14.4993 + 25.1135i −0.809271 + 1.40170i
\(322\) 2.06561i 0.115112i
\(323\) −12.6218 + 0.926066i −0.702298 + 0.0515277i
\(324\) 6.77641 0.376467
\(325\) 0 0
\(326\) 3.96146 6.86145i 0.219405 0.380020i
\(327\) −14.6291 + 8.44610i −0.808990 + 0.467070i
\(328\) 22.1102 + 12.7653i 1.22083 + 0.704846i
\(329\) 1.79250 + 3.10470i 0.0988236 + 0.171167i
\(330\) 0 0
\(331\) 30.8316 1.69466 0.847328 0.531069i \(-0.178210\pi\)
0.847328 + 0.531069i \(0.178210\pi\)
\(332\) −1.06895 + 0.617157i −0.0586661 + 0.0338709i
\(333\) −20.5352 + 11.8560i −1.12532 + 0.649705i
\(334\) −19.5970 −1.07230
\(335\) 0 0
\(336\) −2.31858 4.01590i −0.126489 0.219085i
\(337\) 17.9400 + 10.3576i 0.977252 + 0.564217i 0.901439 0.432906i \(-0.142512\pi\)
0.0758124 + 0.997122i \(0.475845\pi\)
\(338\) −6.90577 + 3.98705i −0.375625 + 0.216867i
\(339\) 2.34837 4.06749i 0.127546 0.220916i
\(340\) 0 0
\(341\) −27.9384 −1.51295
\(342\) 18.3374 + 26.9864i 0.991572 + 1.45926i
\(343\) 8.30239i 0.448287i
\(344\) −15.3558 + 26.5970i −0.827929 + 1.43402i
\(345\) 0 0
\(346\) −13.5659 23.4968i −0.729308 1.26320i
\(347\) 7.11991 + 4.11068i 0.382217 + 0.220673i 0.678782 0.734340i \(-0.262508\pi\)
−0.296566 + 0.955013i \(0.595841\pi\)
\(348\) −1.71369 + 0.989399i −0.0918634 + 0.0530373i
\(349\) −11.9216 −0.638150 −0.319075 0.947730i \(-0.603372\pi\)
−0.319075 + 0.947730i \(0.603372\pi\)
\(350\) 0 0
\(351\) −22.2138 38.4754i −1.18568 2.05366i
\(352\) 12.3294 7.11839i 0.657160 0.379412i
\(353\) 11.7983i 0.627959i −0.949430 0.313980i \(-0.898338\pi\)
0.949430 0.313980i \(-0.101662\pi\)
\(354\) 37.1450 1.97423
\(355\) 0 0
\(356\) 2.30721 3.99620i 0.122282 0.211798i
\(357\) 4.66747 2.69477i 0.247029 0.142622i
\(358\) −2.40220 1.38691i −0.126960 0.0733005i
\(359\) 0.0554058 0.0959656i 0.00292420 0.00506487i −0.864560 0.502530i \(-0.832403\pi\)
0.867484 + 0.497465i \(0.165736\pi\)
\(360\) 0 0
\(361\) 6.99666 17.6648i 0.368245 0.929729i
\(362\) 26.6040i 1.39827i
\(363\) −24.0584 13.8901i −1.26274 0.729042i
\(364\) 0.786364 1.36202i 0.0412167 0.0713894i
\(365\) 0 0
\(366\) −9.03958 + 15.6570i −0.472507 + 0.818405i
\(367\) −10.1669 + 5.86986i −0.530708 + 0.306404i −0.741305 0.671169i \(-0.765793\pi\)
0.210597 + 0.977573i \(0.432459\pi\)
\(368\) 7.11278i 0.370779i
\(369\) 52.1908 2.71694
\(370\) 0 0
\(371\) 2.57338 + 4.45722i 0.133603 + 0.231407i
\(372\) 11.0419i 0.572498i
\(373\) 14.5190i 0.751763i 0.926668 + 0.375882i \(0.122660\pi\)
−0.926668 + 0.375882i \(0.877340\pi\)
\(374\) −7.75424 13.4307i −0.400962 0.694487i
\(375\) 0 0
\(376\) 9.04704 + 15.6699i 0.466566 + 0.808115i
\(377\) 4.29040 + 2.47706i 0.220967 + 0.127575i
\(378\) −6.28952 3.63125i −0.323498 0.186772i
\(379\) 6.59023 0.338518 0.169259 0.985572i \(-0.445863\pi\)
0.169259 + 0.985572i \(0.445863\pi\)
\(380\) 0 0
\(381\) 7.02522 0.359913
\(382\) −2.30782 1.33242i −0.118079 0.0681727i
\(383\) 2.48481 + 1.43461i 0.126968 + 0.0733049i 0.562139 0.827043i \(-0.309979\pi\)
−0.435171 + 0.900348i \(0.643312\pi\)
\(384\) −6.25207 10.8289i −0.319050 0.552610i
\(385\) 0 0
\(386\) −2.70519 4.68552i −0.137690 0.238487i
\(387\) 62.7819i 3.19138i
\(388\) 5.62686i 0.285660i
\(389\) −3.16575 5.48323i −0.160510 0.278011i 0.774542 0.632523i \(-0.217980\pi\)
−0.935052 + 0.354512i \(0.884647\pi\)
\(390\) 0 0
\(391\) −8.26682 −0.418071
\(392\) 20.3813i 1.02941i
\(393\) −34.0899 + 19.6818i −1.71961 + 0.992817i
\(394\) 11.4468 19.8264i 0.576680 0.998840i
\(395\) 0 0
\(396\) 8.19966 14.2022i 0.412049 0.713689i
\(397\) −26.4569 15.2749i −1.32784 0.766626i −0.342871 0.939382i \(-0.611399\pi\)
−0.984965 + 0.172756i \(0.944733\pi\)
\(398\) 7.32522i 0.367180i
\(399\) 0.592065 + 8.06957i 0.0296403 + 0.403984i
\(400\) 0 0
\(401\) −15.1711 + 26.2771i −0.757609 + 1.31222i 0.186458 + 0.982463i \(0.440299\pi\)
−0.944067 + 0.329754i \(0.893034\pi\)
\(402\) −26.6382 15.3796i −1.32859 0.767064i
\(403\) −23.9409 + 13.8223i −1.19258 + 0.688538i
\(404\) 0.282509 0.489320i 0.0140553 0.0243446i
\(405\) 0 0
\(406\) 0.809843 0.0401919
\(407\) 16.9209i 0.838740i
\(408\) 23.5575 13.6009i 1.16627 0.673347i
\(409\) −7.48628 12.9666i −0.370173 0.641158i 0.619419 0.785060i \(-0.287368\pi\)
−0.989592 + 0.143903i \(0.954035\pi\)
\(410\) 0 0
\(411\) −38.8013 −1.91393
\(412\) −1.68340 + 0.971912i −0.0829352 + 0.0478827i
\(413\) 5.40004 + 3.11772i 0.265719 + 0.153413i
\(414\) 10.6561 + 18.4569i 0.523718 + 0.907107i
\(415\) 0 0
\(416\) 7.04353 12.1997i 0.345337 0.598142i
\(417\) 32.3264i 1.58303i
\(418\) 23.2203 1.70368i 1.13574 0.0833296i
\(419\) 6.17419 0.301629 0.150815 0.988562i \(-0.451810\pi\)
0.150815 + 0.988562i \(0.451810\pi\)
\(420\) 0 0
\(421\) 13.7714 23.8528i 0.671177 1.16251i −0.306394 0.951905i \(-0.599122\pi\)
0.977571 0.210608i \(-0.0675443\pi\)
\(422\) 13.0913 7.55824i 0.637272 0.367929i
\(423\) 32.0331 + 18.4943i 1.55750 + 0.899226i
\(424\) 12.9883 + 22.4963i 0.630766 + 1.09252i
\(425\) 0 0
\(426\) −42.1675 −2.04302
\(427\) −2.62830 + 1.51745i −0.127193 + 0.0734347i
\(428\) −4.79441 + 2.76805i −0.231746 + 0.133799i
\(429\) −60.6544 −2.92842
\(430\) 0 0
\(431\) 7.52941 + 13.0413i 0.362679 + 0.628179i 0.988401 0.151868i \(-0.0485288\pi\)
−0.625722 + 0.780046i \(0.715195\pi\)
\(432\) −21.6575 12.5040i −1.04200 0.601598i
\(433\) −0.840772 + 0.485420i −0.0404049 + 0.0233278i −0.520066 0.854126i \(-0.674093\pi\)
0.479661 + 0.877454i \(0.340759\pi\)
\(434\) −2.25951 + 3.91359i −0.108460 + 0.187858i
\(435\) 0 0
\(436\) −3.22488 −0.154444
\(437\) 5.40234 11.1734i 0.258429 0.534497i
\(438\) 13.5113i 0.645596i
\(439\) −13.7187 + 23.7616i −0.654760 + 1.13408i 0.327194 + 0.944957i \(0.393897\pi\)
−0.981954 + 0.189120i \(0.939436\pi\)
\(440\) 0 0
\(441\) 20.8322 + 36.0824i 0.992008 + 1.71821i
\(442\) −13.2895 7.67269i −0.632116 0.364952i
\(443\) −7.59109 + 4.38272i −0.360664 + 0.208229i −0.669372 0.742928i \(-0.733437\pi\)
0.308708 + 0.951157i \(0.400103\pi\)
\(444\) −6.68755 −0.317377
\(445\) 0 0
\(446\) 13.4201 + 23.2443i 0.635461 + 1.10065i
\(447\) −9.95686 + 5.74859i −0.470943 + 0.271899i
\(448\) 5.34637i 0.252592i
\(449\) 9.63397 0.454655 0.227327 0.973818i \(-0.427001\pi\)
0.227327 + 0.973818i \(0.427001\pi\)
\(450\) 0 0
\(451\) 18.6217 32.2538i 0.876862 1.51877i
\(452\) 0.776524 0.448326i 0.0365246 0.0210875i
\(453\) 25.1110 + 14.4979i 1.17982 + 0.681169i
\(454\) −10.7851 + 18.6803i −0.506169 + 0.876711i
\(455\) 0 0
\(456\) 2.98825 + 40.7285i 0.139938 + 1.90729i
\(457\) 10.6708i 0.499161i 0.968354 + 0.249580i \(0.0802927\pi\)
−0.968354 + 0.249580i \(0.919707\pi\)
\(458\) −9.71131 5.60683i −0.453780 0.261990i
\(459\) 14.5327 25.1714i 0.678330 1.17490i
\(460\) 0 0
\(461\) −2.84340 + 4.92491i −0.132430 + 0.229376i −0.924613 0.380908i \(-0.875611\pi\)
0.792183 + 0.610284i \(0.208945\pi\)
\(462\) −8.58672 + 4.95754i −0.399490 + 0.230646i
\(463\) 35.3550i 1.64309i 0.570147 + 0.821543i \(0.306886\pi\)
−0.570147 + 0.821543i \(0.693114\pi\)
\(464\) 2.78864 0.129459
\(465\) 0 0
\(466\) 9.34864 + 16.1923i 0.433067 + 0.750095i
\(467\) 32.9071i 1.52276i 0.648306 + 0.761380i \(0.275478\pi\)
−0.648306 + 0.761380i \(0.724522\pi\)
\(468\) 16.2269i 0.750086i
\(469\) −2.58173 4.47169i −0.119213 0.206484i
\(470\) 0 0
\(471\) 5.26617 + 9.12127i 0.242652 + 0.420286i
\(472\) 27.2549 + 15.7356i 1.25451 + 0.724292i
\(473\) 38.7991 + 22.4006i 1.78398 + 1.02998i
\(474\) 32.7986 1.50649
\(475\) 0 0
\(476\) 1.02891 0.0471602
\(477\) 45.9880 + 26.5512i 2.10564 + 1.21569i
\(478\) −24.1967 13.9700i −1.10673 0.638971i
\(479\) −4.52861 7.84378i −0.206917 0.358391i 0.743825 0.668375i \(-0.233010\pi\)
−0.950742 + 0.309984i \(0.899676\pi\)
\(480\) 0 0
\(481\) 8.37149 + 14.4998i 0.381707 + 0.661136i
\(482\) 15.6835i 0.714366i
\(483\) 5.28525i 0.240487i
\(484\) −2.65175 4.59297i −0.120534 0.208772i
\(485\) 0 0
\(486\) −6.50619 −0.295127
\(487\) 16.5206i 0.748620i 0.927304 + 0.374310i \(0.122120\pi\)
−0.927304 + 0.374310i \(0.877880\pi\)
\(488\) −13.2655 + 7.65884i −0.600501 + 0.346700i
\(489\) 10.1362 17.5563i 0.458373 0.793925i
\(490\) 0 0
\(491\) 0.695625 1.20486i 0.0313931 0.0543745i −0.849902 0.526941i \(-0.823339\pi\)
0.881295 + 0.472566i \(0.156672\pi\)
\(492\) 12.7474 + 7.35974i 0.574699 + 0.331803i
\(493\) 3.24109i 0.145972i
\(494\) 19.0550 12.9480i 0.857326 0.582557i
\(495\) 0 0
\(496\) −7.78048 + 13.4762i −0.349354 + 0.605099i
\(497\) −6.13021 3.53928i −0.274977 0.158758i
\(498\) 6.66818 3.84988i 0.298808 0.172517i
\(499\) −8.33255 + 14.4324i −0.373016 + 0.646083i −0.990028 0.140871i \(-0.955010\pi\)
0.617012 + 0.786954i \(0.288343\pi\)
\(500\) 0 0
\(501\) −50.1427 −2.24021
\(502\) 20.6327i 0.920881i
\(503\) 13.5439 7.81956i 0.603892 0.348657i −0.166679 0.986011i \(-0.553304\pi\)
0.770571 + 0.637354i \(0.219971\pi\)
\(504\) −5.88607 10.1950i −0.262186 0.454120i
\(505\) 0 0
\(506\) 15.2084 0.676096
\(507\) −17.6697 + 10.2016i −0.784741 + 0.453070i
\(508\) 1.16150 + 0.670591i 0.0515331 + 0.0297526i
\(509\) −9.57702 16.5879i −0.424494 0.735245i 0.571879 0.820338i \(-0.306215\pi\)
−0.996373 + 0.0850929i \(0.972881\pi\)
\(510\) 0 0
\(511\) 1.13406 1.96424i 0.0501677 0.0868929i
\(512\) 23.2910i 1.02933i
\(513\) 24.5246 + 36.0919i 1.08279 + 1.59349i
\(514\) −6.76389 −0.298342
\(515\) 0 0
\(516\) −8.85327 + 15.3343i −0.389743 + 0.675055i
\(517\) 22.8589 13.1976i 1.00533 0.580430i
\(518\) 2.37027 + 1.36848i 0.104144 + 0.0601273i
\(519\) −34.7110 60.1212i −1.52364 2.63903i
\(520\) 0 0
\(521\) −19.2394 −0.842892 −0.421446 0.906853i \(-0.638477\pi\)
−0.421446 + 0.906853i \(0.638477\pi\)
\(522\) 7.23622 4.17784i 0.316721 0.182859i
\(523\) 5.74993 3.31973i 0.251427 0.145161i −0.368990 0.929433i \(-0.620296\pi\)
0.620418 + 0.784272i \(0.286963\pi\)
\(524\) −7.51490 −0.328290
\(525\) 0 0
\(526\) 3.36887 + 5.83505i 0.146890 + 0.254420i
\(527\) −15.6627 9.04285i −0.682277 0.393913i
\(528\) −29.5678 + 17.0710i −1.28677 + 0.742919i
\(529\) −7.44657 + 12.8978i −0.323764 + 0.560775i
\(530\) 0 0
\(531\) 64.3349 2.79190
\(532\) −0.672391 + 1.39068i −0.0291519 + 0.0602935i
\(533\) 36.8517i 1.59623i
\(534\) −14.3925 + 24.9286i −0.622826 + 1.07877i
\(535\) 0 0
\(536\) −13.0305 22.5694i −0.562830 0.974850i
\(537\) −6.14649 3.54868i −0.265241 0.153137i
\(538\) 24.7441 14.2860i 1.06679 0.615914i
\(539\) 29.7317 1.28064
\(540\) 0 0
\(541\) −20.8756 36.1575i −0.897510 1.55453i −0.830667 0.556770i \(-0.812040\pi\)
−0.0668435 0.997763i \(-0.521293\pi\)
\(542\) −21.9674 + 12.6829i −0.943581 + 0.544777i
\(543\) 68.0714i 2.92122i
\(544\) 9.21606 0.395135
\(545\) 0 0
\(546\) −4.90540 + 8.49641i −0.209932 + 0.363613i
\(547\) −10.5700 + 6.10258i −0.451939 + 0.260927i −0.708649 0.705561i \(-0.750695\pi\)
0.256710 + 0.966489i \(0.417362\pi\)
\(548\) −6.41512 3.70377i −0.274040 0.158217i
\(549\) −15.6565 + 27.1179i −0.668204 + 1.15736i
\(550\) 0 0
\(551\) −4.38066 2.11804i −0.186622 0.0902317i
\(552\) 26.6756i 1.13539i
\(553\) 4.76819 + 2.75291i 0.202764 + 0.117066i
\(554\) 0.488934 0.846858i 0.0207728 0.0359795i
\(555\) 0 0
\(556\) 3.08571 5.34461i 0.130863 0.226662i
\(557\) −30.4450 + 17.5774i −1.28999 + 0.744779i −0.978653 0.205519i \(-0.934112\pi\)
−0.311342 + 0.950298i \(0.600778\pi\)
\(558\) 46.6257i 1.97382i
\(559\) 44.3301 1.87496
\(560\) 0 0
\(561\) −19.8407 34.3651i −0.837675 1.45090i
\(562\) 0.699634i 0.0295123i
\(563\) 17.8406i 0.751891i 0.926642 + 0.375945i \(0.122682\pi\)
−0.926642 + 0.375945i \(0.877318\pi\)
\(564\) 5.21600 + 9.03438i 0.219633 + 0.380416i
\(565\) 0 0
\(566\) 18.4248 + 31.9127i 0.774452 + 1.34139i
\(567\) −6.14537 3.54803i −0.258081 0.149003i
\(568\) −30.9402 17.8633i −1.29822 0.749529i
\(569\) −31.6042 −1.32492 −0.662459 0.749098i \(-0.730487\pi\)
−0.662459 + 0.749098i \(0.730487\pi\)
\(570\) 0 0
\(571\) −4.73053 −0.197967 −0.0989833 0.995089i \(-0.531559\pi\)
−0.0989833 + 0.995089i \(0.531559\pi\)
\(572\) −10.0281 5.78975i −0.419298 0.242082i
\(573\) −5.90501 3.40926i −0.246685 0.142424i
\(574\) −3.01205 5.21702i −0.125721 0.217754i
\(575\) 0 0
\(576\) −27.5810 47.7717i −1.14921 1.99049i
\(577\) 24.4074i 1.01609i −0.861330 0.508047i \(-0.830368\pi\)
0.861330 0.508047i \(-0.169632\pi\)
\(578\) 10.2062i 0.424522i
\(579\) −6.92174 11.9888i −0.287658 0.498238i
\(580\) 0 0
\(581\) 1.29254 0.0536235
\(582\) 35.1008i 1.45497i
\(583\) 32.8171 18.9470i 1.35915 0.784703i
\(584\) 5.72377 9.91386i 0.236851 0.410239i
\(585\) 0 0
\(586\) 2.24052 3.88070i 0.0925551 0.160310i
\(587\) −24.7817 14.3077i −1.02285 0.590543i −0.107922 0.994159i \(-0.534420\pi\)
−0.914928 + 0.403616i \(0.867753\pi\)
\(588\) 11.7507i 0.484590i
\(589\) 22.4578 15.2602i 0.925358 0.628785i
\(590\) 0 0
\(591\) 29.2888 50.7297i 1.20478 2.08674i
\(592\) 8.16186 + 4.71225i 0.335450 + 0.193672i
\(593\) 3.21738 1.85756i 0.132122 0.0762807i −0.432482 0.901642i \(-0.642362\pi\)
0.564604 + 0.825362i \(0.309029\pi\)
\(594\) −26.7358 + 46.3077i −1.09698 + 1.90003i
\(595\) 0 0
\(596\) −2.19492 −0.0899076
\(597\) 18.7430i 0.767099i
\(598\) 13.0324 7.52423i 0.532933 0.307689i
\(599\) 3.54970 + 6.14826i 0.145037 + 0.251211i 0.929387 0.369108i \(-0.120337\pi\)
−0.784350 + 0.620319i \(0.787003\pi\)
\(600\) 0 0
\(601\) −11.0596 −0.451131 −0.225566 0.974228i \(-0.572423\pi\)
−0.225566 + 0.974228i \(0.572423\pi\)
\(602\) 6.27572 3.62329i 0.255779 0.147674i
\(603\) −46.1373 26.6374i −1.87886 1.08476i
\(604\) 2.76778 + 4.79394i 0.112619 + 0.195063i
\(605\) 0 0
\(606\) −1.76231 + 3.05242i −0.0715891 + 0.123996i
\(607\) 27.1193i 1.10074i −0.834921 0.550369i \(-0.814487\pi\)
0.834921 0.550369i \(-0.185513\pi\)
\(608\) −6.02266 + 12.4564i −0.244251 + 0.505174i
\(609\) 2.07214 0.0839673
\(610\) 0 0
\(611\) 13.0588 22.6185i 0.528302 0.915046i
\(612\) 9.19369 5.30798i 0.371633 0.214562i
\(613\) −36.2268 20.9156i −1.46319 0.844772i −0.464031 0.885819i \(-0.653597\pi\)
−0.999157 + 0.0410468i \(0.986931\pi\)
\(614\) −12.1127 20.9797i −0.488827 0.846673i
\(615\) 0 0
\(616\) −8.40062 −0.338471
\(617\) 15.3332 8.85262i 0.617291 0.356393i −0.158523 0.987355i \(-0.550673\pi\)
0.775813 + 0.630962i \(0.217340\pi\)
\(618\) 10.5012 6.06286i 0.422420 0.243884i
\(619\) 39.8064 1.59995 0.799976 0.600032i \(-0.204845\pi\)
0.799976 + 0.600032i \(0.204845\pi\)
\(620\) 0 0
\(621\) 14.2515 + 24.6844i 0.571895 + 0.990551i
\(622\) 7.91908 + 4.57208i 0.317526 + 0.183324i
\(623\) −4.18471 + 2.41604i −0.167657 + 0.0967966i
\(624\) −16.8914 + 29.2568i −0.676198 + 1.17121i
\(625\) 0 0
\(626\) −28.5732 −1.14201
\(627\) 59.4137 4.35919i 2.37275 0.174089i
\(628\) 2.01072i 0.0802366i
\(629\) −5.47681 + 9.48611i −0.218375 + 0.378236i
\(630\) 0 0
\(631\) −23.0990 40.0087i −0.919557 1.59272i −0.800088 0.599882i \(-0.795214\pi\)
−0.119469 0.992838i \(-0.538119\pi\)
\(632\) 24.0659 + 13.8944i 0.957288 + 0.552691i
\(633\) 33.4965 19.3392i 1.33137 0.768664i
\(634\) 1.23740 0.0491433
\(635\) 0 0
\(636\) 7.48829 + 12.9701i 0.296930 + 0.514298i
\(637\) 25.4776 14.7095i 1.00946 0.582813i
\(638\) 5.96262i 0.236062i
\(639\) −73.0340 −2.88918
\(640\) 0 0
\(641\) −3.30674 + 5.72744i −0.130608 + 0.226220i −0.923911 0.382607i \(-0.875026\pi\)
0.793303 + 0.608827i \(0.208360\pi\)
\(642\) 29.9079 17.2673i 1.18037 0.681487i
\(643\) 26.5135 + 15.3076i 1.04559 + 0.603673i 0.921412 0.388587i \(-0.127037\pi\)
0.124180 + 0.992260i \(0.460370\pi\)
\(644\) −0.504503 + 0.873824i −0.0198802 + 0.0344335i
\(645\) 0 0
\(646\) 13.5691 + 6.56063i 0.533868 + 0.258125i
\(647\) 11.8979i 0.467753i 0.972266 + 0.233877i \(0.0751412\pi\)
−0.972266 + 0.233877i \(0.924859\pi\)
\(648\) −31.0167 17.9075i −1.21845 0.703474i
\(649\) 22.9548 39.7588i 0.901053 1.56067i
\(650\) 0 0
\(651\) −5.78140 + 10.0137i −0.226591 + 0.392467i
\(652\) 3.35167 1.93509i 0.131262 0.0757839i
\(653\) 1.42899i 0.0559207i −0.999609 0.0279604i \(-0.991099\pi\)
0.999609 0.0279604i \(-0.00890122\pi\)
\(654\) 20.1171 0.786640
\(655\) 0 0
\(656\) −10.3718 17.9645i −0.404950 0.701395i
\(657\) 23.4015i 0.912981i
\(658\) 4.26941i 0.166439i
\(659\) −12.2485 21.2150i −0.477134 0.826420i 0.522523 0.852625i \(-0.324991\pi\)
−0.999657 + 0.0262051i \(0.991658\pi\)
\(660\) 0 0
\(661\) 1.61303 + 2.79385i 0.0627396 + 0.108668i 0.895689 0.444681i \(-0.146683\pi\)
−0.832949 + 0.553349i \(0.813350\pi\)
\(662\) −31.7984 18.3588i −1.23588 0.713535i
\(663\) −34.0037 19.6320i −1.32059 0.762445i
\(664\) 6.52366 0.253167
\(665\) 0 0
\(666\) 28.2389 1.09423
\(667\) −2.75256 1.58919i −0.106580 0.0615338i
\(668\) −8.29023 4.78636i −0.320758 0.185190i
\(669\) 34.3379 + 59.4750i 1.32758 + 2.29944i
\(670\) 0 0
\(671\) 11.1725 + 19.3514i 0.431311 + 0.747052i
\(672\) 5.89213i 0.227294i
\(673\) 37.1424i 1.43173i 0.698237 + 0.715866i \(0.253968\pi\)
−0.698237 + 0.715866i \(0.746032\pi\)
\(674\) −12.3350 21.3649i −0.475127 0.822944i
\(675\) 0 0
\(676\) −3.89518 −0.149815
\(677\) 24.7550i 0.951412i 0.879604 + 0.475706i \(0.157807\pi\)
−0.879604 + 0.475706i \(0.842193\pi\)
\(678\) −4.84402 + 2.79669i −0.186033 + 0.107406i
\(679\) 2.94614 5.10287i 0.113063 0.195830i
\(680\) 0 0
\(681\) −27.5957 + 47.7972i −1.05747 + 1.83159i
\(682\) 28.8145 + 16.6361i 1.10337 + 0.637028i
\(683\) 40.1153i 1.53497i 0.641068 + 0.767484i \(0.278492\pi\)
−0.641068 + 0.767484i \(0.721508\pi\)
\(684\) 1.16621 + 15.8949i 0.0445912 + 0.607757i
\(685\) 0 0
\(686\) 4.94370 8.56274i 0.188751 0.326927i
\(687\) −24.8482 14.3461i −0.948020 0.547340i
\(688\) 21.6100 12.4766i 0.823875 0.475664i
\(689\) 18.7477 32.4720i 0.714230 1.23708i
\(690\) 0 0
\(691\) 39.4963 1.50251 0.751254 0.660013i \(-0.229449\pi\)
0.751254 + 0.660013i \(0.229449\pi\)
\(692\) 13.2533i 0.503816i
\(693\) −14.8722 + 8.58645i −0.564947 + 0.326172i
\(694\) −4.89545 8.47917i −0.185829 0.321865i
\(695\) 0 0
\(696\) 10.4584 0.396426
\(697\) 20.8792 12.0546i 0.790855 0.456600i
\(698\) 12.2955 + 7.09879i 0.465390 + 0.268693i
\(699\) 23.9203 + 41.4312i 0.904748 + 1.56707i
\(700\) 0 0
\(701\) −0.0109776 + 0.0190137i −0.000414618 + 0.000718139i −0.866233 0.499641i \(-0.833465\pi\)
0.865818 + 0.500359i \(0.166799\pi\)
\(702\) 52.9092i 1.99693i
\(703\) −9.24234 13.6016i −0.348581 0.512994i
\(704\) −39.3637 −1.48357
\(705\) 0 0
\(706\) −7.02535 + 12.1683i −0.264402 + 0.457958i
\(707\) −0.512402 + 0.295835i −0.0192708 + 0.0111260i
\(708\) 15.7136 + 9.07226i 0.590554 + 0.340957i
\(709\) −8.90087 15.4168i −0.334279 0.578989i 0.649067 0.760731i \(-0.275160\pi\)
−0.983346 + 0.181743i \(0.941826\pi\)
\(710\) 0 0
\(711\) 56.8071 2.13043
\(712\) −21.1209 + 12.1942i −0.791540 + 0.456996i
\(713\) 15.3596 8.86789i 0.575223 0.332105i
\(714\) −6.41844 −0.240204
\(715\) 0 0
\(716\) −0.677477 1.17342i −0.0253185 0.0438529i
\(717\) −61.9118 35.7448i −2.31214 1.33491i
\(718\) −0.114286 + 0.0659833i −0.00426513 + 0.00246247i
\(719\) 9.40515 16.2902i 0.350753 0.607522i −0.635629 0.771995i \(-0.719259\pi\)
0.986382 + 0.164473i \(0.0525923\pi\)
\(720\) 0 0
\(721\) 2.03552 0.0758066
\(722\) −17.7347 + 14.0526i −0.660016 + 0.522983i
\(723\) 40.1294i 1.49243i
\(724\) 6.49774 11.2544i 0.241487 0.418267i
\(725\) 0 0
\(726\) 16.5419 + 28.6513i 0.613926 + 1.06335i
\(727\) 4.33274 + 2.50151i 0.160692 + 0.0927758i 0.578190 0.815902i \(-0.303759\pi\)
−0.417497 + 0.908678i \(0.637093\pi\)
\(728\) −7.19864 + 4.15613i −0.266799 + 0.154037i
\(729\) 18.2986 0.677725
\(730\) 0 0
\(731\) 14.5009 + 25.1162i 0.536334 + 0.928957i
\(732\) −7.64812 + 4.41565i −0.282683 + 0.163207i
\(733\) 23.5259i 0.868950i −0.900684 0.434475i \(-0.856934\pi\)
0.900684 0.434475i \(-0.143066\pi\)
\(734\) 13.9809 0.516046
\(735\) 0 0
\(736\) −4.51887 + 7.82691i −0.166568 + 0.288504i
\(737\) −32.9237 + 19.0085i −1.21276 + 0.700187i
\(738\) −53.8274 31.0772i −1.98141 1.14397i
\(739\) −18.6918 + 32.3752i −0.687590 + 1.19094i 0.285026 + 0.958520i \(0.407998\pi\)
−0.972615 + 0.232421i \(0.925335\pi\)
\(740\) 0 0
\(741\) 48.7559 33.1299i 1.79109 1.21706i
\(742\) 6.12932i 0.225014i
\(743\) −8.99679 5.19430i −0.330060 0.190560i 0.325808 0.945436i \(-0.394364\pi\)
−0.655868 + 0.754876i \(0.727697\pi\)
\(744\) −29.1797 + 50.5407i −1.06978 + 1.85291i
\(745\) 0 0
\(746\) 8.64539 14.9742i 0.316530 0.548246i
\(747\) 11.5493 6.66797i 0.422566 0.243968i
\(748\) 7.57556i 0.276990i
\(749\) 5.79725 0.211827
\(750\) 0 0
\(751\) 15.6413 + 27.0915i 0.570758 + 0.988581i 0.996488 + 0.0837314i \(0.0266838\pi\)
−0.425731 + 0.904850i \(0.639983\pi\)
\(752\) 14.7014i 0.536105i
\(753\) 52.7927i 1.92387i
\(754\) −2.94996 5.10947i −0.107431 0.186076i
\(755\) 0 0
\(756\) −1.77379 3.07230i −0.0645122 0.111738i
\(757\) −10.9328 6.31205i −0.397359 0.229415i 0.287985 0.957635i \(-0.407015\pi\)
−0.685344 + 0.728220i \(0.740348\pi\)
\(758\) −6.79689 3.92419i −0.246874 0.142533i
\(759\) 38.9137 1.41248
\(760\) 0 0
\(761\) 11.5495 0.418668 0.209334 0.977844i \(-0.432870\pi\)
0.209334 + 0.977844i \(0.432870\pi\)
\(762\) −7.24551 4.18320i −0.262477 0.151541i
\(763\) 2.92457 + 1.68850i 0.105877 + 0.0611279i
\(764\) −0.650861 1.12732i −0.0235473 0.0407851i
\(765\) 0 0
\(766\) −1.70849 2.95918i −0.0617301 0.106920i
\(767\) 45.4267i 1.64026i
\(768\) 38.5951i 1.39268i
\(769\) −13.4603 23.3140i −0.485392 0.840724i 0.514467 0.857510i \(-0.327990\pi\)
−0.999859 + 0.0167864i \(0.994656\pi\)
\(770\) 0 0
\(771\) −17.3067 −0.623286
\(772\) 2.64286i 0.0951184i
\(773\) 18.4750 10.6666i 0.664500 0.383649i −0.129489 0.991581i \(-0.541334\pi\)
0.793989 + 0.607932i \(0.208001\pi\)
\(774\) 37.3838 64.7506i 1.34373 2.32741i
\(775\) 0 0
\(776\) 14.8697 25.7550i 0.533790 0.924552i
\(777\) 6.06479 + 3.50151i 0.217573 + 0.125616i
\(778\) 7.54024i