Properties

Label 475.2.j.c.349.5
Level $475$
Weight $2$
Character 475.349
Analytic conductor $3.793$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(49,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.1387535264013605949997056.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 11x^{14} + 82x^{12} - 337x^{10} + 1006x^{8} - 1596x^{6} + 1765x^{4} - 414x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.5
Root \(-1.19454 - 0.689667i\) of defining polynomial
Character \(\chi\) \(=\) 475.349
Dual form 475.2.j.c.49.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.950409 - 0.548719i) q^{2} +(0.328513 - 0.189667i) q^{3} +(-0.397815 + 0.689035i) q^{4} +(0.208148 - 0.360522i) q^{6} +1.89307i q^{7} +3.06803i q^{8} +(-1.42805 + 2.47346i) q^{9} +0.134400 q^{11} +0.301809i q^{12} +(3.04298 + 1.75687i) q^{13} +(1.03876 + 1.79919i) q^{14} +(0.887858 + 1.53781i) q^{16} +(-1.43867 + 0.830615i) q^{17} +3.13440i q^{18} +(-2.10596 - 3.81640i) q^{19} +(0.359052 + 0.621897i) q^{21} +(0.127735 - 0.0737478i) q^{22} +(4.65042 + 2.68492i) q^{23} +(0.581904 + 1.00789i) q^{24} +3.85611 q^{26} +2.22142i q^{27} +(-1.30439 - 0.753090i) q^{28} +(2.48530 - 4.30466i) q^{29} +6.56472 q^{31} +(-3.62633 - 2.09366i) q^{32} +(0.0441521 - 0.0254912i) q^{33} +(-0.911548 + 1.57885i) q^{34} +(-1.13620 - 1.96796i) q^{36} -1.69819i q^{37} +(-4.09566 - 2.47156i) q^{38} +1.33288 q^{39} +(-5.31637 - 9.20823i) q^{41} +(0.682493 + 0.394038i) q^{42} +(-7.36801 + 4.25392i) q^{43} +(-0.0534662 + 0.0926063i) q^{44} +5.89307 q^{46} +(9.62623 + 5.55771i) q^{47} +(0.583345 + 0.336794i) q^{48} +3.41630 q^{49} +(-0.315080 + 0.545735i) q^{51} +(-2.42109 + 1.39781i) q^{52} +(-0.229365 - 0.132424i) q^{53} +(1.21894 + 2.11126i) q^{54} -5.80799 q^{56} +(-1.41568 - 0.854305i) q^{57} -5.45492i q^{58} +(-3.44833 - 5.97269i) q^{59} +(-4.58794 + 7.94655i) q^{61} +(6.23917 - 3.60219i) q^{62} +(-4.68243 - 2.70340i) q^{63} -8.14676 q^{64} +(0.0279750 - 0.0484542i) q^{66} +(2.55784 + 1.47677i) q^{67} -1.32172i q^{68} +2.03696 q^{69} +(-0.664176 - 1.15039i) q^{71} +(-7.58865 - 4.38131i) q^{72} +(5.49266 - 3.17119i) q^{73} +(-0.931830 - 1.61398i) q^{74} +(3.46742 + 0.0671384i) q^{76} +0.254428i q^{77} +(1.26678 - 0.731376i) q^{78} +(-0.733639 - 1.27070i) q^{79} +(-3.86283 - 6.69062i) q^{81} +(-10.1055 - 5.83439i) q^{82} -7.44736i q^{83} -0.571345 q^{84} +(-4.66842 + 8.08593i) q^{86} -1.88551i q^{87} +0.412343i q^{88} +(4.86804 - 8.43169i) q^{89} +(-3.32587 + 5.76057i) q^{91} +(-3.70001 + 2.13620i) q^{92} +(2.15659 - 1.24511i) q^{93} +12.1985 q^{94} -1.58839 q^{96} +(15.1285 - 8.73447i) q^{97} +(3.24688 - 1.87459i) q^{98} +(-0.191930 + 0.332433i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 10 q^{4} - 4 q^{6} + 2 q^{9} - 8 q^{11} - 2 q^{14} - 14 q^{16} - 10 q^{19} + 8 q^{21} + 46 q^{24} + 12 q^{26} - 2 q^{29} + 30 q^{34} + 14 q^{36} - 60 q^{39} + 16 q^{41} - 24 q^{44} + 48 q^{46} + 40 q^{49}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.950409 0.548719i 0.672041 0.388003i −0.124809 0.992181i \(-0.539832\pi\)
0.796850 + 0.604178i \(0.206498\pi\)
\(3\) 0.328513 0.189667i 0.189667 0.109504i −0.402160 0.915570i \(-0.631740\pi\)
0.591827 + 0.806065i \(0.298407\pi\)
\(4\) −0.397815 + 0.689035i −0.198907 + 0.344518i
\(5\) 0 0
\(6\) 0.208148 0.360522i 0.0849759 0.147183i
\(7\) 1.89307i 0.715512i 0.933815 + 0.357756i \(0.116458\pi\)
−0.933815 + 0.357756i \(0.883542\pi\)
\(8\) 3.06803i 1.08471i
\(9\) −1.42805 + 2.47346i −0.476018 + 0.824487i
\(10\) 0 0
\(11\) 0.134400 0.0405231 0.0202615 0.999795i \(-0.493550\pi\)
0.0202615 + 0.999795i \(0.493550\pi\)
\(12\) 0.301809i 0.0871248i
\(13\) 3.04298 + 1.75687i 0.843972 + 0.487267i 0.858612 0.512626i \(-0.171327\pi\)
−0.0146407 + 0.999893i \(0.504660\pi\)
\(14\) 1.03876 + 1.79919i 0.277621 + 0.480854i
\(15\) 0 0
\(16\) 0.887858 + 1.53781i 0.221964 + 0.384454i
\(17\) −1.43867 + 0.830615i −0.348928 + 0.201454i −0.664213 0.747543i \(-0.731233\pi\)
0.315285 + 0.948997i \(0.397900\pi\)
\(18\) 3.13440i 0.738785i
\(19\) −2.10596 3.81640i −0.483141 0.875543i
\(20\) 0 0
\(21\) 0.359052 + 0.621897i 0.0783516 + 0.135709i
\(22\) 0.127735 0.0737478i 0.0272332 0.0157231i
\(23\) 4.65042 + 2.68492i 0.969679 + 0.559844i 0.899138 0.437664i \(-0.144194\pi\)
0.0705407 + 0.997509i \(0.477528\pi\)
\(24\) 0.581904 + 1.00789i 0.118781 + 0.205734i
\(25\) 0 0
\(26\) 3.85611 0.756245
\(27\) 2.22142i 0.427512i
\(28\) −1.30439 0.753090i −0.246507 0.142321i
\(29\) 2.48530 4.30466i 0.461508 0.799355i −0.537528 0.843246i \(-0.680642\pi\)
0.999036 + 0.0438905i \(0.0139753\pi\)
\(30\) 0 0
\(31\) 6.56472 1.17906 0.589529 0.807747i \(-0.299313\pi\)
0.589529 + 0.807747i \(0.299313\pi\)
\(32\) −3.62633 2.09366i −0.641050 0.370111i
\(33\) 0.0441521 0.0254912i 0.00768589 0.00443745i
\(34\) −0.911548 + 1.57885i −0.156329 + 0.270770i
\(35\) 0 0
\(36\) −1.13620 1.96796i −0.189367 0.327993i
\(37\) 1.69819i 0.279181i −0.990209 0.139590i \(-0.955421\pi\)
0.990209 0.139590i \(-0.0445786\pi\)
\(38\) −4.09566 2.47156i −0.664404 0.400940i
\(39\) 1.33288 0.213431
\(40\) 0 0
\(41\) −5.31637 9.20823i −0.830278 1.43808i −0.897818 0.440367i \(-0.854848\pi\)
0.0675398 0.997717i \(-0.478485\pi\)
\(42\) 0.682493 + 0.394038i 0.105311 + 0.0608013i
\(43\) −7.36801 + 4.25392i −1.12361 + 0.648717i −0.942320 0.334713i \(-0.891361\pi\)
−0.181290 + 0.983430i \(0.558027\pi\)
\(44\) −0.0534662 + 0.0926063i −0.00806034 + 0.0139609i
\(45\) 0 0
\(46\) 5.89307 0.868885
\(47\) 9.62623 + 5.55771i 1.40413 + 0.810675i 0.994813 0.101718i \(-0.0324339\pi\)
0.409316 + 0.912392i \(0.365767\pi\)
\(48\) 0.583345 + 0.336794i 0.0841986 + 0.0486121i
\(49\) 3.41630 0.488042
\(50\) 0 0
\(51\) −0.315080 + 0.545735i −0.0441201 + 0.0764182i
\(52\) −2.42109 + 1.39781i −0.335744 + 0.193842i
\(53\) −0.229365 0.132424i −0.0315057 0.0181898i 0.484164 0.874977i \(-0.339124\pi\)
−0.515670 + 0.856787i \(0.672457\pi\)
\(54\) 1.21894 + 2.11126i 0.165876 + 0.287306i
\(55\) 0 0
\(56\) −5.80799 −0.776125
\(57\) −1.41568 0.854305i −0.187511 0.113155i
\(58\) 5.45492i 0.716266i
\(59\) −3.44833 5.97269i −0.448935 0.777578i 0.549382 0.835571i \(-0.314863\pi\)
−0.998317 + 0.0579932i \(0.981530\pi\)
\(60\) 0 0
\(61\) −4.58794 + 7.94655i −0.587426 + 1.01745i 0.407142 + 0.913365i \(0.366525\pi\)
−0.994568 + 0.104087i \(0.966808\pi\)
\(62\) 6.23917 3.60219i 0.792375 0.457478i
\(63\) −4.68243 2.70340i −0.589930 0.340596i
\(64\) −8.14676 −1.01834
\(65\) 0 0
\(66\) 0.0279750 0.0484542i 0.00344349 0.00596430i
\(67\) 2.55784 + 1.47677i 0.312490 + 0.180416i 0.648040 0.761606i \(-0.275589\pi\)
−0.335550 + 0.942022i \(0.608922\pi\)
\(68\) 1.32172i 0.160282i
\(69\) 2.03696 0.245221
\(70\) 0 0
\(71\) −0.664176 1.15039i −0.0788232 0.136526i 0.823919 0.566707i \(-0.191783\pi\)
−0.902742 + 0.430181i \(0.858450\pi\)
\(72\) −7.58865 4.38131i −0.894331 0.516342i
\(73\) 5.49266 3.17119i 0.642867 0.371159i −0.142851 0.989744i \(-0.545627\pi\)
0.785718 + 0.618585i \(0.212294\pi\)
\(74\) −0.931830 1.61398i −0.108323 0.187621i
\(75\) 0 0
\(76\) 3.46742 + 0.0671384i 0.397740 + 0.00770130i
\(77\) 0.254428i 0.0289948i
\(78\) 1.26678 0.731376i 0.143435 0.0828120i
\(79\) −0.733639 1.27070i −0.0825408 0.142965i 0.821800 0.569776i \(-0.192970\pi\)
−0.904341 + 0.426811i \(0.859637\pi\)
\(80\) 0 0
\(81\) −3.86283 6.69062i −0.429203 0.743402i
\(82\) −10.1055 5.83439i −1.11596 0.644301i
\(83\) 7.44736i 0.817454i −0.912657 0.408727i \(-0.865973\pi\)
0.912657 0.408727i \(-0.134027\pi\)
\(84\) −0.571345 −0.0623388
\(85\) 0 0
\(86\) −4.66842 + 8.08593i −0.503408 + 0.871929i
\(87\) 1.88551i 0.202148i
\(88\) 0.412343i 0.0439559i
\(89\) 4.86804 8.43169i 0.516011 0.893757i −0.483816 0.875170i \(-0.660750\pi\)
0.999827 0.0185878i \(-0.00591701\pi\)
\(90\) 0 0
\(91\) −3.32587 + 5.76057i −0.348646 + 0.603872i
\(92\) −3.70001 + 2.13620i −0.385753 + 0.222714i
\(93\) 2.15659 1.24511i 0.223628 0.129112i
\(94\) 12.1985 1.25818
\(95\) 0 0
\(96\) −1.58839 −0.162115
\(97\) 15.1285 8.73447i 1.53607 0.886851i 0.537008 0.843577i \(-0.319555\pi\)
0.999063 0.0432737i \(-0.0137788\pi\)
\(98\) 3.24688 1.87459i 0.327984 0.189362i
\(99\) −0.191930 + 0.332433i −0.0192897 + 0.0334108i
\(100\) 0 0
\(101\) −2.69865 + 4.67420i −0.268526 + 0.465101i −0.968481 0.249086i \(-0.919870\pi\)
0.699955 + 0.714187i \(0.253203\pi\)
\(102\) 0.691562i 0.0684749i
\(103\) 2.14750i 0.211599i −0.994387 0.105800i \(-0.966260\pi\)
0.994387 0.105800i \(-0.0337402\pi\)
\(104\) −5.39012 + 9.33596i −0.528545 + 0.915467i
\(105\) 0 0
\(106\) −0.290654 −0.0282308
\(107\) 1.00093i 0.0967631i −0.998829 0.0483815i \(-0.984594\pi\)
0.998829 0.0483815i \(-0.0154063\pi\)
\(108\) −1.53064 0.883713i −0.147285 0.0850353i
\(109\) 8.13145 + 14.0841i 0.778852 + 1.34901i 0.932604 + 0.360902i \(0.117531\pi\)
−0.153752 + 0.988109i \(0.549136\pi\)
\(110\) 0 0
\(111\) −0.322091 0.557877i −0.0305715 0.0529514i
\(112\) −2.91119 + 1.68077i −0.275081 + 0.158818i
\(113\) 0.843010i 0.0793037i −0.999214 0.0396519i \(-0.987375\pi\)
0.999214 0.0396519i \(-0.0126249\pi\)
\(114\) −1.81425 0.0351287i −0.169920 0.00329010i
\(115\) 0 0
\(116\) 1.97737 + 3.42491i 0.183595 + 0.317995i
\(117\) −8.69108 + 5.01780i −0.803491 + 0.463896i
\(118\) −6.55466 3.78433i −0.603405 0.348376i
\(119\) −1.57241 2.72349i −0.144143 0.249662i
\(120\) 0 0
\(121\) −10.9819 −0.998358
\(122\) 10.0700i 0.911692i
\(123\) −3.49299 2.01668i −0.314953 0.181838i
\(124\) −2.61154 + 4.52332i −0.234523 + 0.406206i
\(125\) 0 0
\(126\) −5.93363 −0.528610
\(127\) −16.2290 9.36984i −1.44009 0.831439i −0.442239 0.896897i \(-0.645816\pi\)
−0.997855 + 0.0654584i \(0.979149\pi\)
\(128\) −0.490101 + 0.282960i −0.0433193 + 0.0250104i
\(129\) −1.61366 + 2.79493i −0.142074 + 0.246080i
\(130\) 0 0
\(131\) −1.44322 2.49973i −0.126095 0.218402i 0.796066 0.605210i \(-0.206911\pi\)
−0.922160 + 0.386808i \(0.873578\pi\)
\(132\) 0.0405631i 0.00353057i
\(133\) 7.22471 3.98673i 0.626461 0.345693i
\(134\) 3.24133 0.280008
\(135\) 0 0
\(136\) −2.54835 4.41387i −0.218519 0.378487i
\(137\) 16.3086 + 9.41579i 1.39334 + 0.804445i 0.993683 0.112220i \(-0.0357961\pi\)
0.399656 + 0.916665i \(0.369129\pi\)
\(138\) 1.93595 1.11772i 0.164799 0.0951466i
\(139\) −9.08974 + 15.7439i −0.770982 + 1.33538i 0.166043 + 0.986118i \(0.446901\pi\)
−0.937025 + 0.349262i \(0.886432\pi\)
\(140\) 0 0
\(141\) 4.21645 0.355089
\(142\) −1.26248 0.728892i −0.105945 0.0611672i
\(143\) 0.408977 + 0.236123i 0.0342003 + 0.0197456i
\(144\) −5.07163 −0.422636
\(145\) 0 0
\(146\) 3.48018 6.02785i 0.288022 0.498868i
\(147\) 1.12230 0.647958i 0.0925655 0.0534427i
\(148\) 1.17011 + 0.675565i 0.0961827 + 0.0555311i
\(149\) −11.1272 19.2728i −0.911573 1.57889i −0.811842 0.583877i \(-0.801535\pi\)
−0.0997308 0.995014i \(-0.531798\pi\)
\(150\) 0 0
\(151\) 3.33482 0.271384 0.135692 0.990751i \(-0.456674\pi\)
0.135692 + 0.990751i \(0.456674\pi\)
\(152\) 11.7088 6.46116i 0.949712 0.524069i
\(153\) 4.74465i 0.383582i
\(154\) 0.139610 + 0.241811i 0.0112501 + 0.0194857i
\(155\) 0 0
\(156\) −0.530238 + 0.918400i −0.0424530 + 0.0735308i
\(157\) 6.28986 3.63145i 0.501986 0.289822i −0.227548 0.973767i \(-0.573071\pi\)
0.729533 + 0.683945i \(0.239737\pi\)
\(158\) −1.39451 0.805123i −0.110942 0.0640522i
\(159\) −0.100466 −0.00796744
\(160\) 0 0
\(161\) −5.08273 + 8.80355i −0.400576 + 0.693817i
\(162\) −7.34254 4.23922i −0.576884 0.333064i
\(163\) 19.7783i 1.54916i 0.632478 + 0.774578i \(0.282038\pi\)
−0.632478 + 0.774578i \(0.717962\pi\)
\(164\) 8.45972 0.660593
\(165\) 0 0
\(166\) −4.08651 7.07805i −0.317175 0.549363i
\(167\) 2.94726 + 1.70160i 0.228066 + 0.131674i 0.609679 0.792648i \(-0.291298\pi\)
−0.381614 + 0.924322i \(0.624632\pi\)
\(168\) −1.90800 + 1.10158i −0.147205 + 0.0849890i
\(169\) −0.326838 0.566100i −0.0251414 0.0435461i
\(170\) 0 0
\(171\) 12.4471 + 0.241010i 0.951857 + 0.0184305i
\(172\) 6.76909i 0.516138i
\(173\) 9.16750 5.29286i 0.696992 0.402409i −0.109234 0.994016i \(-0.534840\pi\)
0.806226 + 0.591607i \(0.201506\pi\)
\(174\) −1.03462 1.79201i −0.0784341 0.135852i
\(175\) 0 0
\(176\) 0.119328 + 0.206682i 0.00899469 + 0.0155793i
\(177\) −2.26564 1.30807i −0.170296 0.0983205i
\(178\) 10.6847i 0.800855i
\(179\) 14.6024 1.09144 0.545718 0.837969i \(-0.316257\pi\)
0.545718 + 0.837969i \(0.316257\pi\)
\(180\) 0 0
\(181\) 2.71630 4.70478i 0.201901 0.349703i −0.747240 0.664555i \(-0.768621\pi\)
0.949141 + 0.314851i \(0.101955\pi\)
\(182\) 7.29987i 0.541102i
\(183\) 3.48072i 0.257303i
\(184\) −8.23742 + 14.2676i −0.607270 + 1.05182i
\(185\) 0 0
\(186\) 1.36643 2.36673i 0.100192 0.173537i
\(187\) −0.193357 + 0.111635i −0.0141396 + 0.00816353i
\(188\) −7.65891 + 4.42187i −0.558583 + 0.322498i
\(189\) −4.20530 −0.305890
\(190\) 0 0
\(191\) 20.4758 1.48157 0.740787 0.671740i \(-0.234453\pi\)
0.740787 + 0.671740i \(0.234453\pi\)
\(192\) −2.67631 + 1.54517i −0.193146 + 0.111513i
\(193\) −9.54664 + 5.51176i −0.687182 + 0.396745i −0.802556 0.596577i \(-0.796527\pi\)
0.115373 + 0.993322i \(0.463194\pi\)
\(194\) 9.58554 16.6026i 0.688202 1.19200i
\(195\) 0 0
\(196\) −1.35905 + 2.35395i −0.0970752 + 0.168139i
\(197\) 19.8532i 1.41448i −0.706971 0.707242i \(-0.749939\pi\)
0.706971 0.707242i \(-0.250061\pi\)
\(198\) 0.421263i 0.0299379i
\(199\) 10.5013 18.1888i 0.744417 1.28937i −0.206050 0.978542i \(-0.566061\pi\)
0.950467 0.310826i \(-0.100606\pi\)
\(200\) 0 0
\(201\) 1.12038 0.0790254
\(202\) 5.92321i 0.416756i
\(203\) 8.14901 + 4.70483i 0.571948 + 0.330215i
\(204\) −0.250687 0.434203i −0.0175516 0.0304003i
\(205\) 0 0
\(206\) −1.17837 2.04100i −0.0821011 0.142203i
\(207\) −13.2821 + 7.66842i −0.923169 + 0.532992i
\(208\) 6.23939i 0.432624i
\(209\) −0.283041 0.512924i −0.0195784 0.0354797i
\(210\) 0 0
\(211\) 6.41284 + 11.1074i 0.441478 + 0.764663i 0.997799 0.0663046i \(-0.0211209\pi\)
−0.556321 + 0.830967i \(0.687788\pi\)
\(212\) 0.182489 0.105360i 0.0125334 0.00723617i
\(213\) −0.436380 0.251944i −0.0299003 0.0172629i
\(214\) −0.549227 0.951289i −0.0375444 0.0650288i
\(215\) 0 0
\(216\) −6.81538 −0.463728
\(217\) 12.4275i 0.843630i
\(218\) 15.4564 + 8.92377i 1.04684 + 0.604394i
\(219\) 1.20294 2.08355i 0.0812870 0.140793i
\(220\) 0 0
\(221\) −5.83712 −0.392647
\(222\) −0.612236 0.353475i −0.0410906 0.0237237i
\(223\) −17.6621 + 10.1972i −1.18274 + 0.682856i −0.956647 0.291249i \(-0.905929\pi\)
−0.226095 + 0.974105i \(0.572596\pi\)
\(224\) 3.96344 6.86488i 0.264819 0.458679i
\(225\) 0 0
\(226\) −0.462576 0.801205i −0.0307701 0.0532954i
\(227\) 25.4172i 1.68700i 0.537129 + 0.843500i \(0.319509\pi\)
−0.537129 + 0.843500i \(0.680491\pi\)
\(228\) 1.15182 0.635598i 0.0762814 0.0420935i
\(229\) −2.21553 −0.146406 −0.0732030 0.997317i \(-0.523322\pi\)
−0.0732030 + 0.997317i \(0.523322\pi\)
\(230\) 0 0
\(231\) 0.0482566 + 0.0835829i 0.00317505 + 0.00549935i
\(232\) 13.2068 + 7.62496i 0.867071 + 0.500603i
\(233\) 12.2609 7.07882i 0.803236 0.463749i −0.0413652 0.999144i \(-0.513171\pi\)
0.844602 + 0.535395i \(0.179837\pi\)
\(234\) −5.50672 + 9.53792i −0.359986 + 0.623514i
\(235\) 0 0
\(236\) 5.48719 0.357186
\(237\) −0.482019 0.278294i −0.0313105 0.0180771i
\(238\) −2.98887 1.72562i −0.193739 0.111855i
\(239\) −3.01476 −0.195008 −0.0975042 0.995235i \(-0.531086\pi\)
−0.0975042 + 0.995235i \(0.531086\pi\)
\(240\) 0 0
\(241\) 11.8896 20.5934i 0.765877 1.32654i −0.173904 0.984763i \(-0.555638\pi\)
0.939781 0.341776i \(-0.111028\pi\)
\(242\) −10.4373 + 6.02600i −0.670937 + 0.387366i
\(243\) −8.30939 4.79743i −0.533048 0.307755i
\(244\) −3.65030 6.32251i −0.233687 0.404757i
\(245\) 0 0
\(246\) −4.42636 −0.282215
\(247\) 0.296503 15.3131i 0.0188660 0.974352i
\(248\) 20.1407i 1.27894i
\(249\) −1.41252 2.44655i −0.0895147 0.155044i
\(250\) 0 0
\(251\) −8.59495 + 14.8869i −0.542509 + 0.939653i 0.456250 + 0.889851i \(0.349192\pi\)
−0.998759 + 0.0498012i \(0.984141\pi\)
\(252\) 3.72548 2.15090i 0.234683 0.135494i
\(253\) 0.625016 + 0.360853i 0.0392944 + 0.0226866i
\(254\) −20.5656 −1.29040
\(255\) 0 0
\(256\) 7.83623 13.5727i 0.489764 0.848297i
\(257\) 16.9246 + 9.77143i 1.05573 + 0.609525i 0.924248 0.381794i \(-0.124693\pi\)
0.131481 + 0.991319i \(0.458027\pi\)
\(258\) 3.54178i 0.220501i
\(259\) 3.21479 0.199757
\(260\) 0 0
\(261\) 7.09827 + 12.2946i 0.439372 + 0.761014i
\(262\) −2.74330 1.58384i −0.169482 0.0978502i
\(263\) −7.63280 + 4.40680i −0.470659 + 0.271735i −0.716515 0.697571i \(-0.754264\pi\)
0.245857 + 0.969306i \(0.420931\pi\)
\(264\) 0.0782078 + 0.135460i 0.00481336 + 0.00833698i
\(265\) 0 0
\(266\) 4.67883 7.75336i 0.286878 0.475389i
\(267\) 3.69322i 0.226022i
\(268\) −2.03510 + 1.17496i −0.124313 + 0.0717723i
\(269\) 0.144181 + 0.249729i 0.00879088 + 0.0152263i 0.870387 0.492368i \(-0.163868\pi\)
−0.861596 + 0.507594i \(0.830535\pi\)
\(270\) 0 0
\(271\) 12.4356 + 21.5391i 0.755409 + 1.30841i 0.945171 + 0.326577i \(0.105895\pi\)
−0.189761 + 0.981830i \(0.560771\pi\)
\(272\) −2.55466 1.47494i −0.154899 0.0894311i
\(273\) 2.52323i 0.152713i
\(274\) 20.6665 1.24851
\(275\) 0 0
\(276\) −0.810333 + 1.40354i −0.0487763 + 0.0844831i
\(277\) 4.40486i 0.264662i −0.991206 0.132331i \(-0.957754\pi\)
0.991206 0.132331i \(-0.0422463\pi\)
\(278\) 19.9509i 1.19657i
\(279\) −9.37476 + 16.2376i −0.561252 + 0.972118i
\(280\) 0 0
\(281\) 16.3607 28.3376i 0.975998 1.69048i 0.299398 0.954128i \(-0.403214\pi\)
0.676600 0.736350i \(-0.263452\pi\)
\(282\) 4.00736 2.31365i 0.238635 0.137776i
\(283\) 1.15088 0.664463i 0.0684129 0.0394982i −0.465403 0.885099i \(-0.654091\pi\)
0.533816 + 0.845600i \(0.320757\pi\)
\(284\) 1.05688 0.0627140
\(285\) 0 0
\(286\) 0.518260 0.0306454
\(287\) 17.4318 10.0643i 1.02897 0.594074i
\(288\) 10.3572 5.97972i 0.610302 0.352358i
\(289\) −7.12016 + 12.3325i −0.418833 + 0.725440i
\(290\) 0 0
\(291\) 3.31328 5.73877i 0.194228 0.336413i
\(292\) 5.04618i 0.295305i
\(293\) 7.72365i 0.451220i 0.974218 + 0.225610i \(0.0724375\pi\)
−0.974218 + 0.225610i \(0.927562\pi\)
\(294\) 0.711094 1.23165i 0.0414718 0.0718313i
\(295\) 0 0
\(296\) 5.21010 0.302831
\(297\) 0.298558i 0.0173241i
\(298\) −21.1507 12.2114i −1.22523 0.707386i
\(299\) 9.43409 + 16.3403i 0.545588 + 0.944986i
\(300\) 0 0
\(301\) −8.05296 13.9481i −0.464165 0.803957i
\(302\) 3.16944 1.82988i 0.182381 0.105298i
\(303\) 2.04738i 0.117619i
\(304\) 3.99912 6.62700i 0.229366 0.380085i
\(305\) 0 0
\(306\) −2.60348 4.50936i −0.148831 0.257783i
\(307\) −7.88085 + 4.55001i −0.449784 + 0.259683i −0.707739 0.706474i \(-0.750285\pi\)
0.257955 + 0.966157i \(0.416951\pi\)
\(308\) −0.175310 0.101215i −0.00998921 0.00576727i
\(309\) −0.407309 0.705480i −0.0231710 0.0401333i
\(310\) 0 0
\(311\) −12.4569 −0.706364 −0.353182 0.935555i \(-0.614900\pi\)
−0.353182 + 0.935555i \(0.614900\pi\)
\(312\) 4.08931i 0.231512i
\(313\) 1.77148 + 1.02277i 0.100130 + 0.0578101i 0.549229 0.835672i \(-0.314922\pi\)
−0.449099 + 0.893482i \(0.648255\pi\)
\(314\) 3.98530 6.90274i 0.224903 0.389544i
\(315\) 0 0
\(316\) 1.16741 0.0656719
\(317\) −20.4133 11.7856i −1.14653 0.661947i −0.198487 0.980103i \(-0.563603\pi\)
−0.948038 + 0.318157i \(0.896936\pi\)
\(318\) −0.0954834 + 0.0551274i −0.00535445 + 0.00309139i
\(319\) 0.334024 0.578546i 0.0187017 0.0323923i
\(320\) 0 0
\(321\) −0.189842 0.328817i −0.0105960 0.0183528i
\(322\) 11.1560i 0.621698i
\(323\) 6.19974 + 3.74129i 0.344963 + 0.208171i
\(324\) 6.14676 0.341487
\(325\) 0 0
\(326\) 10.8527 + 18.7975i 0.601077 + 1.04110i
\(327\) 5.34257 + 3.08454i 0.295445 + 0.170575i
\(328\) 28.2511 16.3108i 1.55991 0.900613i
\(329\) −10.5211 + 18.2231i −0.580048 + 1.00467i
\(330\) 0 0
\(331\) −18.7175 −1.02881 −0.514403 0.857549i \(-0.671986\pi\)
−0.514403 + 0.857549i \(0.671986\pi\)
\(332\) 5.13150 + 2.96267i 0.281627 + 0.162598i
\(333\) 4.20041 + 2.42511i 0.230181 + 0.132895i
\(334\) 3.73480 0.204359
\(335\) 0 0
\(336\) −0.637575 + 1.10431i −0.0347826 + 0.0602451i
\(337\) −28.3087 + 16.3440i −1.54207 + 0.890316i −0.543365 + 0.839497i \(0.682850\pi\)
−0.998708 + 0.0508197i \(0.983817\pi\)
\(338\) −0.621259 0.358684i −0.0337921 0.0195098i
\(339\) −0.159891 0.276940i −0.00868409 0.0150413i
\(340\) 0 0
\(341\) 0.882297 0.0477791
\(342\) 11.9621 6.60093i 0.646838 0.356937i
\(343\) 19.7188i 1.06471i
\(344\) −13.0512 22.6053i −0.703671 1.21879i
\(345\) 0 0
\(346\) 5.80859 10.0608i 0.312271 0.540870i
\(347\) −2.22279 + 1.28333i −0.119326 + 0.0688927i −0.558475 0.829521i \(-0.688613\pi\)
0.439149 + 0.898414i \(0.355280\pi\)
\(348\) 1.29919 + 0.750085i 0.0696436 + 0.0402088i
\(349\) −16.6195 −0.889619 −0.444810 0.895625i \(-0.646729\pi\)
−0.444810 + 0.895625i \(0.646729\pi\)
\(350\) 0 0
\(351\) −3.90274 + 6.75974i −0.208313 + 0.360808i
\(352\) −0.487378 0.281388i −0.0259773 0.0149980i
\(353\) 28.3629i 1.50961i −0.655951 0.754803i \(-0.727732\pi\)
0.655951 0.754803i \(-0.272268\pi\)
\(354\) −2.87105 −0.152595
\(355\) 0 0
\(356\) 3.87315 + 6.70850i 0.205277 + 0.355550i
\(357\) −1.03311 0.596468i −0.0546781 0.0315684i
\(358\) 13.8783 8.01262i 0.733489 0.423480i
\(359\) 8.69427 + 15.0589i 0.458866 + 0.794780i 0.998901 0.0468628i \(-0.0149224\pi\)
−0.540035 + 0.841643i \(0.681589\pi\)
\(360\) 0 0
\(361\) −10.1298 + 16.0744i −0.533150 + 0.846021i
\(362\) 5.96195i 0.313353i
\(363\) −3.60771 + 2.08291i −0.189355 + 0.109324i
\(364\) −2.64616 4.58328i −0.138696 0.240229i
\(365\) 0 0
\(366\) 1.90994 + 3.30811i 0.0998342 + 0.172918i
\(367\) −22.3477 12.9024i −1.16654 0.673501i −0.213676 0.976905i \(-0.568544\pi\)
−0.952862 + 0.303404i \(0.901877\pi\)
\(368\) 9.53531i 0.497062i
\(369\) 30.3683 1.58091
\(370\) 0 0
\(371\) 0.250687 0.434203i 0.0130150 0.0225427i
\(372\) 1.98129i 0.102725i
\(373\) 27.0663i 1.40144i −0.713437 0.700719i \(-0.752862\pi\)
0.713437 0.700719i \(-0.247138\pi\)
\(374\) −0.122512 + 0.212197i −0.00633495 + 0.0109724i
\(375\) 0 0
\(376\) −17.0512 + 29.5336i −0.879349 + 1.52308i
\(377\) 15.1254 8.73267i 0.778999 0.449755i
\(378\) −3.99675 + 2.30753i −0.205571 + 0.118686i
\(379\) −12.4028 −0.637092 −0.318546 0.947907i \(-0.603194\pi\)
−0.318546 + 0.947907i \(0.603194\pi\)
\(380\) 0 0
\(381\) −7.10859 −0.364184
\(382\) 19.4604 11.2354i 0.995678 0.574855i
\(383\) 4.64139 2.67971i 0.237164 0.136927i −0.376709 0.926332i \(-0.622944\pi\)
0.613873 + 0.789405i \(0.289611\pi\)
\(384\) −0.107336 + 0.185912i −0.00547749 + 0.00948728i
\(385\) 0 0
\(386\) −6.04881 + 10.4769i −0.307877 + 0.533258i
\(387\) 24.2993i 1.23520i
\(388\) 13.8988i 0.705605i
\(389\) 4.28467 7.42126i 0.217241 0.376273i −0.736722 0.676195i \(-0.763628\pi\)
0.953964 + 0.299923i \(0.0969608\pi\)
\(390\) 0 0
\(391\) −8.92053 −0.451131
\(392\) 10.4813i 0.529386i
\(393\) −0.948232 0.547462i −0.0478320 0.0276158i
\(394\) −10.8939 18.8687i −0.548824 0.950592i
\(395\) 0 0
\(396\) −0.152705 0.264493i −0.00767373 0.0132913i
\(397\) −9.21844 + 5.32227i −0.462660 + 0.267117i −0.713162 0.700999i \(-0.752738\pi\)
0.250502 + 0.968116i \(0.419404\pi\)
\(398\) 23.0490i 1.15534i
\(399\) 1.61726 2.67998i 0.0809641 0.134167i
\(400\) 0 0
\(401\) −3.82604 6.62690i −0.191063 0.330932i 0.754539 0.656255i \(-0.227860\pi\)
−0.945603 + 0.325323i \(0.894527\pi\)
\(402\) 1.06482 0.614773i 0.0531083 0.0306621i
\(403\) 19.9763 + 11.5333i 0.995091 + 0.574516i
\(404\) −2.14713 3.71893i −0.106824 0.185024i
\(405\) 0 0
\(406\) 10.3265 0.512497
\(407\) 0.228237i 0.0113133i
\(408\) −1.67433 0.966676i −0.0828918 0.0478576i
\(409\) −8.84435 + 15.3189i −0.437325 + 0.757469i −0.997482 0.0709173i \(-0.977407\pi\)
0.560157 + 0.828386i \(0.310741\pi\)
\(410\) 0 0
\(411\) 7.14345 0.352361
\(412\) 1.47970 + 0.854305i 0.0728996 + 0.0420886i
\(413\) 11.3067 6.52793i 0.556367 0.321218i
\(414\) −8.41561 + 14.5763i −0.413605 + 0.716384i
\(415\) 0 0
\(416\) −7.35657 12.7420i −0.360685 0.624726i
\(417\) 6.89609i 0.337703i
\(418\) −0.550456 0.332178i −0.0269237 0.0162473i
\(419\) −1.18732 −0.0580045 −0.0290023 0.999579i \(-0.509233\pi\)
−0.0290023 + 0.999579i \(0.509233\pi\)
\(420\) 0 0
\(421\) −16.6836 28.8969i −0.813111 1.40835i −0.910677 0.413120i \(-0.864439\pi\)
0.0975661 0.995229i \(-0.468894\pi\)
\(422\) 12.1896 + 7.03770i 0.593383 + 0.342590i
\(423\) −27.4935 + 15.8734i −1.33678 + 0.771791i
\(424\) 0.406280 0.703698i 0.0197307 0.0341746i
\(425\) 0 0
\(426\) −0.552987 −0.0267923
\(427\) −15.0434 8.68529i −0.727999 0.420311i
\(428\) 0.689673 + 0.398183i 0.0333366 + 0.0192469i
\(429\) 0.179139 0.00864890
\(430\) 0 0
\(431\) 3.08799 5.34855i 0.148743 0.257631i −0.782020 0.623253i \(-0.785811\pi\)
0.930763 + 0.365623i \(0.119144\pi\)
\(432\) −3.41613 + 1.97230i −0.164359 + 0.0948925i
\(433\) −16.0693 9.27761i −0.772241 0.445854i 0.0614325 0.998111i \(-0.480433\pi\)
−0.833673 + 0.552258i \(0.813766\pi\)
\(434\) 6.81918 + 11.8112i 0.327331 + 0.566954i
\(435\) 0 0
\(436\) −12.9392 −0.619677
\(437\) 0.453129 23.4022i 0.0216761 1.11948i
\(438\) 2.64030i 0.126158i
\(439\) −0.113656 0.196858i −0.00542450 0.00939550i 0.863300 0.504690i \(-0.168393\pi\)
−0.868725 + 0.495295i \(0.835060\pi\)
\(440\) 0 0
\(441\) −4.87865 + 8.45007i −0.232317 + 0.402384i
\(442\) −5.54765 + 3.20294i −0.263875 + 0.152348i
\(443\) −30.2959 17.4913i −1.43940 0.831038i −0.441593 0.897216i \(-0.645586\pi\)
−0.997808 + 0.0661770i \(0.978920\pi\)
\(444\) 0.512529 0.0243236
\(445\) 0 0
\(446\) −11.1908 + 19.3831i −0.529901 + 0.917815i
\(447\) −7.31083 4.22091i −0.345791 0.199642i
\(448\) 15.4224i 0.728638i
\(449\) 16.9509 0.799961 0.399980 0.916524i \(-0.369017\pi\)
0.399980 + 0.916524i \(0.369017\pi\)
\(450\) 0 0
\(451\) −0.714520 1.23759i −0.0336454 0.0582756i
\(452\) 0.580864 + 0.335362i 0.0273215 + 0.0157741i
\(453\) 1.09553 0.632505i 0.0514725 0.0297177i
\(454\) 13.9469 + 24.1568i 0.654561 + 1.13373i
\(455\) 0 0
\(456\) 2.62103 4.34335i 0.122741 0.203396i
\(457\) 1.60241i 0.0749578i 0.999297 + 0.0374789i \(0.0119327\pi\)
−0.999297 + 0.0374789i \(0.988067\pi\)
\(458\) −2.10566 + 1.21570i −0.0983909 + 0.0568060i
\(459\) −1.84514 3.19588i −0.0861239 0.149171i
\(460\) 0 0
\(461\) 4.37081 + 7.57046i 0.203569 + 0.352592i 0.949676 0.313234i \(-0.101413\pi\)
−0.746107 + 0.665826i \(0.768079\pi\)
\(462\) 0.0917270 + 0.0529586i 0.00426753 + 0.00246386i
\(463\) 21.1886i 0.984718i −0.870392 0.492359i \(-0.836135\pi\)
0.870392 0.492359i \(-0.163865\pi\)
\(464\) 8.82636 0.409753
\(465\) 0 0
\(466\) 7.76857 13.4556i 0.359872 0.623316i
\(467\) 20.4516i 0.946388i 0.880958 + 0.473194i \(0.156899\pi\)
−0.880958 + 0.473194i \(0.843101\pi\)
\(468\) 7.98461i 0.369089i
\(469\) −2.79563 + 4.84217i −0.129090 + 0.223591i
\(470\) 0 0
\(471\) 1.37753 2.38596i 0.0634734 0.109939i
\(472\) 18.3244 10.5796i 0.843449 0.486965i
\(473\) −0.990259 + 0.571727i −0.0455322 + 0.0262880i
\(474\) −0.610821 −0.0280559
\(475\) 0 0
\(476\) 2.50211 0.114684
\(477\) 0.655090 0.378216i 0.0299945 0.0173173i
\(478\) −2.86525 + 1.65425i −0.131054 + 0.0756639i
\(479\) 11.7746 20.3942i 0.537994 0.931833i −0.461018 0.887391i \(-0.652516\pi\)
0.999012 0.0444419i \(-0.0141510\pi\)
\(480\) 0 0
\(481\) 2.98350 5.16757i 0.136036 0.235621i
\(482\) 26.0962i 1.18865i
\(483\) 3.85611i 0.175459i
\(484\) 4.36877 7.56694i 0.198581 0.343952i
\(485\) 0 0
\(486\) −10.5298 −0.477640
\(487\) 36.0392i 1.63309i 0.577280 + 0.816546i \(0.304114\pi\)
−0.577280 + 0.816546i \(0.695886\pi\)
\(488\) −24.3803 14.0760i −1.10364 0.637188i
\(489\) 3.75129 + 6.49742i 0.169639 + 0.293824i
\(490\) 0 0
\(491\) −10.0297 17.3720i −0.452635 0.783988i 0.545913 0.837842i \(-0.316183\pi\)
−0.998549 + 0.0538541i \(0.982849\pi\)
\(492\) 2.77913 1.60453i 0.125293 0.0723378i
\(493\) 8.25729i 0.371890i
\(494\) −8.12081 14.7164i −0.365373 0.662124i
\(495\) 0 0
\(496\) 5.82853 + 10.0953i 0.261709 + 0.453293i
\(497\) 2.17776 1.25733i 0.0976858 0.0563989i
\(498\) −2.68494 1.55015i −0.120315 0.0694640i
\(499\) −18.4364 31.9328i −0.825328 1.42951i −0.901668 0.432429i \(-0.857657\pi\)
0.0763399 0.997082i \(-0.475677\pi\)
\(500\) 0 0
\(501\) 1.29095 0.0576753
\(502\) 18.8649i 0.841980i
\(503\) −18.7483 10.8244i −0.835947 0.482634i 0.0199377 0.999801i \(-0.493653\pi\)
−0.855884 + 0.517167i \(0.826987\pi\)
\(504\) 8.29412 14.3658i 0.369449 0.639905i
\(505\) 0 0
\(506\) 0.792028 0.0352099
\(507\) −0.214741 0.123981i −0.00953697 0.00550617i
\(508\) 12.9123 7.45492i 0.572891 0.330759i
\(509\) −18.2279 + 31.5717i −0.807938 + 1.39939i 0.106351 + 0.994329i \(0.466083\pi\)
−0.914289 + 0.405062i \(0.867250\pi\)
\(510\) 0 0
\(511\) 6.00327 + 10.3980i 0.265569 + 0.459979i
\(512\) 18.3314i 0.810141i
\(513\) 8.47783 4.67822i 0.374305 0.206549i
\(514\) 21.4471 0.945990
\(515\) 0 0
\(516\) −1.28387 2.22373i −0.0565193 0.0978943i
\(517\) 1.29376 + 0.746955i 0.0568997 + 0.0328511i
\(518\) 3.05537 1.76402i 0.134245 0.0775065i
\(519\) 2.00776 3.47754i 0.0881309 0.152647i
\(520\) 0 0
\(521\) −22.6092 −0.990528 −0.495264 0.868742i \(-0.664929\pi\)
−0.495264 + 0.868742i \(0.664929\pi\)
\(522\) 13.4925 + 7.78991i 0.590552 + 0.340955i
\(523\) 0.461515 + 0.266456i 0.0201806 + 0.0116513i 0.510056 0.860141i \(-0.329625\pi\)
−0.489876 + 0.871792i \(0.662958\pi\)
\(524\) 2.29654 0.100325
\(525\) 0 0
\(526\) −4.83619 + 8.37653i −0.210868 + 0.365234i
\(527\) −9.44444 + 5.45275i −0.411406 + 0.237525i
\(528\) 0.0784015 + 0.0452651i 0.00341199 + 0.00196991i
\(529\) 2.91759 + 5.05341i 0.126852 + 0.219714i
\(530\) 0 0
\(531\) 19.6976 0.854804
\(532\) −0.127098 + 6.56406i −0.00551038 + 0.284588i
\(533\) 37.3606i 1.61827i
\(534\) −2.02654 3.51007i −0.0876971 0.151896i
\(535\) 0 0
\(536\) −4.53078 + 7.84754i −0.195700 + 0.338962i
\(537\) 4.79708 2.76959i 0.207009 0.119517i
\(538\) 0.274062 + 0.158230i 0.0118157 + 0.00682178i
\(539\) 0.459150 0.0197770
\(540\) 0 0
\(541\) −2.50820 + 4.34433i −0.107836 + 0.186777i −0.914893 0.403696i \(-0.867725\pi\)
0.807057 + 0.590473i \(0.201059\pi\)
\(542\) 23.6378 + 13.6473i 1.01533 + 0.586202i
\(543\) 2.06077i 0.0884362i
\(544\) 6.95610 0.298240
\(545\) 0 0
\(546\) 1.38454 + 2.39810i 0.0592530 + 0.102629i
\(547\) −19.5981 11.3149i −0.837952 0.483792i 0.0186154 0.999827i \(-0.494074\pi\)
−0.856568 + 0.516035i \(0.827408\pi\)
\(548\) −12.9756 + 7.49148i −0.554291 + 0.320020i
\(549\) −13.1037 22.6962i −0.559250 0.968650i
\(550\) 0 0
\(551\) −21.6622 0.419439i −0.922843 0.0178687i
\(552\) 6.24946i 0.265995i
\(553\) 2.40552 1.38883i 0.102293 0.0590590i
\(554\) −2.41703 4.18642i −0.102690 0.177864i
\(555\) 0 0
\(556\) −7.23207 12.5263i −0.306708 0.531234i
\(557\) −30.5321 17.6277i −1.29369 0.746910i −0.314381 0.949297i \(-0.601797\pi\)
−0.979306 + 0.202387i \(0.935130\pi\)
\(558\) 20.5764i 0.871070i
\(559\) −29.8943 −1.26439
\(560\) 0 0
\(561\) −0.0423468 + 0.0733467i −0.00178788 + 0.00309670i
\(562\) 35.9097i 1.51476i
\(563\) 24.6295i 1.03801i 0.854771 + 0.519005i \(0.173698\pi\)
−0.854771 + 0.519005i \(0.826302\pi\)
\(564\) −1.67737 + 2.90528i −0.0706298 + 0.122334i
\(565\) 0 0
\(566\) 0.729207 1.26302i 0.0306509 0.0530888i
\(567\) 12.6658 7.31260i 0.531913 0.307100i
\(568\) 3.52942 2.03771i 0.148091 0.0855005i
\(569\) 20.0193 0.839252 0.419626 0.907697i \(-0.362161\pi\)
0.419626 + 0.907697i \(0.362161\pi\)
\(570\) 0 0
\(571\) −16.6121 −0.695195 −0.347597 0.937644i \(-0.613002\pi\)
−0.347597 + 0.937644i \(0.613002\pi\)
\(572\) −0.325394 + 0.187866i −0.0136054 + 0.00785508i
\(573\) 6.72655 3.88357i 0.281006 0.162239i
\(574\) 11.0449 19.1303i 0.461005 0.798484i
\(575\) 0 0
\(576\) 11.6340 20.1507i 0.484750 0.839612i
\(577\) 12.4486i 0.518244i 0.965845 + 0.259122i \(0.0834331\pi\)
−0.965845 + 0.259122i \(0.916567\pi\)
\(578\) 15.6279i 0.650034i
\(579\) −2.09080 + 3.62136i −0.0868905 + 0.150499i
\(580\) 0 0
\(581\) 14.0984 0.584899
\(582\) 7.27224i 0.301444i
\(583\) −0.0308266 0.0177977i −0.00127671 0.000737107i
\(584\) 9.72930 + 16.8516i 0.402601 + 0.697326i
\(585\) 0 0
\(586\) 4.23811 + 7.34063i 0.175075 + 0.303238i
\(587\) 3.90702 2.25572i 0.161260 0.0931036i −0.417198 0.908816i \(-0.636988\pi\)
0.578458 + 0.815712i \(0.303655\pi\)
\(588\) 1.03107i 0.0425206i
\(589\) −13.8250 25.0536i −0.569651 1.03232i
\(590\) 0 0
\(591\) −3.76550 6.52204i −0.154892 0.268281i
\(592\) 2.61150 1.50775i 0.107332 0.0619682i
\(593\) 16.9812 + 9.80411i 0.697335 + 0.402606i 0.806354 0.591433i \(-0.201438\pi\)
−0.109019 + 0.994040i \(0.534771\pi\)
\(594\) 0.163825 + 0.283753i 0.00672181 + 0.0116425i
\(595\) 0 0
\(596\) 17.7062 0.725274
\(597\) 7.96699i 0.326067i
\(598\) 17.9325 + 10.3533i 0.733315 + 0.423379i
\(599\) 5.38795 9.33221i 0.220146 0.381304i −0.734706 0.678385i \(-0.762680\pi\)
0.954852 + 0.297082i \(0.0960134\pi\)
\(600\) 0 0
\(601\) 15.0244 0.612860 0.306430 0.951893i \(-0.400866\pi\)
0.306430 + 0.951893i \(0.400866\pi\)
\(602\) −15.3072 8.83763i −0.623876 0.360195i
\(603\) −7.30547 + 4.21782i −0.297502 + 0.171763i
\(604\) −1.32664 + 2.29781i −0.0539802 + 0.0934964i
\(605\) 0 0
\(606\) 1.12344 + 1.94585i 0.0456365 + 0.0790448i
\(607\) 25.1901i 1.02243i 0.859452 + 0.511217i \(0.170805\pi\)
−0.859452 + 0.511217i \(0.829195\pi\)
\(608\) −0.353343 + 18.2487i −0.0143300 + 0.740082i
\(609\) 3.56940 0.144640
\(610\) 0 0
\(611\) 19.5283 + 33.8240i 0.790030 + 1.36837i
\(612\) 3.26923 + 1.88749i 0.132151 + 0.0762973i
\(613\) −14.0600 + 8.11753i −0.567877 + 0.327864i −0.756301 0.654224i \(-0.772995\pi\)
0.188424 + 0.982088i \(0.439662\pi\)
\(614\) −4.99336 + 8.64875i −0.201516 + 0.349035i
\(615\) 0 0
\(616\) −0.780593 −0.0314510
\(617\) −5.64498 3.25913i −0.227258 0.131208i 0.382048 0.924142i \(-0.375219\pi\)
−0.609307 + 0.792935i \(0.708552\pi\)
\(618\) −0.774220 0.446996i −0.0311437 0.0179808i
\(619\) 4.39112 0.176494 0.0882470 0.996099i \(-0.471874\pi\)
0.0882470 + 0.996099i \(0.471874\pi\)
\(620\) 0 0
\(621\) −5.96433 + 10.3305i −0.239340 + 0.414550i
\(622\) −11.8391 + 6.83532i −0.474705 + 0.274071i
\(623\) 15.9618 + 9.21553i 0.639494 + 0.369212i
\(624\) 1.18341 + 2.04972i 0.0473742 + 0.0820545i
\(625\) 0 0
\(626\) 2.24484 0.0897220
\(627\) −0.190267 0.114819i −0.00759855 0.00458541i
\(628\) 5.77858i 0.230590i
\(629\) 1.41054 + 2.44313i 0.0562420 + 0.0974140i
\(630\) 0 0
\(631\) 17.3104 29.9826i 0.689118 1.19359i −0.283006 0.959118i \(-0.591332\pi\)
0.972124 0.234469i \(-0.0753350\pi\)
\(632\) 3.89855 2.25083i 0.155076 0.0895331i
\(633\) 4.21340 + 2.43261i 0.167468 + 0.0966875i
\(634\) −25.8680 −1.02735
\(635\) 0 0
\(636\) 0.0399667 0.0692243i 0.00158478 0.00274492i
\(637\) 10.3957 + 6.00198i 0.411894 + 0.237807i
\(638\) 0.733141i 0.0290253i
\(639\) 3.79391 0.150085
\(640\) 0 0
\(641\) −3.70621 6.41934i −0.146386 0.253549i 0.783503 0.621388i \(-0.213431\pi\)
−0.929889 + 0.367839i \(0.880098\pi\)
\(642\) −0.360856 0.208340i −0.0142418 0.00822253i
\(643\) 14.3292 8.27294i 0.565087 0.326253i −0.190098 0.981765i \(-0.560880\pi\)
0.755185 + 0.655512i \(0.227547\pi\)
\(644\) −4.04397 7.00437i −0.159355 0.276011i
\(645\) 0 0
\(646\) 7.94520 + 0.153840i 0.312600 + 0.00605276i
\(647\) 29.4822i 1.15907i 0.814949 + 0.579533i \(0.196765\pi\)
−0.814949 + 0.579533i \(0.803235\pi\)
\(648\) 20.5270 11.8513i 0.806377 0.465562i
\(649\) −0.463456 0.802729i −0.0181922 0.0315099i
\(650\) 0 0
\(651\) 2.35708 + 4.08258i 0.0923811 + 0.160009i
\(652\) −13.6279 7.86810i −0.533712 0.308138i
\(653\) 6.57421i 0.257269i −0.991692 0.128634i \(-0.958941\pi\)
0.991692 0.128634i \(-0.0410594\pi\)
\(654\) 6.77017 0.264735
\(655\) 0 0
\(656\) 9.44037 16.3512i 0.368584 0.638407i
\(657\) 18.1145i 0.706713i
\(658\) 23.0925i 0.900241i
\(659\) −13.1685 + 22.8085i −0.512972 + 0.888494i 0.486915 + 0.873450i \(0.338122\pi\)
−0.999887 + 0.0150445i \(0.995211\pi\)
\(660\) 0 0
\(661\) −1.89210 + 3.27721i −0.0735941 + 0.127469i −0.900474 0.434910i \(-0.856780\pi\)
0.826880 + 0.562378i \(0.190114\pi\)
\(662\) −17.7893 + 10.2706i −0.691399 + 0.399180i
\(663\) −1.91757 + 1.10711i −0.0744721 + 0.0429965i
\(664\) 22.8487 0.886703
\(665\) 0 0
\(666\) 5.32281 0.206255
\(667\) 23.1153 13.3456i 0.895029 0.516745i
\(668\) −2.34492 + 1.35384i −0.0907278 + 0.0523817i
\(669\) −3.86815 + 6.69983i −0.149551 + 0.259031i
\(670\) 0 0
\(671\) −0.616619 + 1.06802i −0.0238043 + 0.0412303i
\(672\) 3.00694i 0.115995i
\(673\) 21.0431i 0.811150i 0.914062 + 0.405575i \(0.132929\pi\)
−0.914062 + 0.405575i \(0.867071\pi\)
\(674\) −17.9366 + 31.0670i −0.690891 + 1.19666i
\(675\) 0 0
\(676\) 0.520083 0.0200032
\(677\) 15.2744i 0.587043i −0.955952 0.293522i \(-0.905173\pi\)
0.955952 0.293522i \(-0.0948273\pi\)
\(678\) −0.303924 0.175471i −0.0116721 0.00673891i
\(679\) 16.5349 + 28.6394i 0.634553 + 1.09908i
\(680\) 0 0
\(681\) 4.82081 + 8.34988i 0.184734 + 0.319968i
\(682\) 0.838544 0.484133i 0.0321095 0.0185384i
\(683\) 8.60225i 0.329156i 0.986364 + 0.164578i \(0.0526262\pi\)
−0.986364 + 0.164578i \(0.947374\pi\)
\(684\) −5.11772 + 8.48064i −0.195681 + 0.324265i
\(685\) 0 0
\(686\) 10.8201 + 18.7409i 0.413112 + 0.715530i
\(687\) −0.727828 + 0.420212i −0.0277684 + 0.0160321i
\(688\) −13.0835 7.55375i −0.498803 0.287984i
\(689\) −0.465302 0.805926i −0.0177266 0.0307033i
\(690\) 0 0
\(691\) 34.1079 1.29753 0.648763 0.760990i \(-0.275286\pi\)
0.648763 + 0.760990i \(0.275286\pi\)
\(692\) 8.42231i 0.320168i
\(693\) −0.629318 0.363337i −0.0239058 0.0138020i
\(694\) −1.40837 + 2.43937i −0.0534611 + 0.0925974i
\(695\) 0 0
\(696\) 5.78481 0.219273
\(697\) 15.2970 + 8.83172i 0.579414 + 0.334525i
\(698\) −15.7953 + 9.11942i −0.597861 + 0.345175i
\(699\) 2.68523 4.65096i 0.101565 0.175916i
\(700\) 0 0
\(701\) −5.36463 9.29181i −0.202619 0.350947i 0.746752 0.665102i \(-0.231612\pi\)
−0.949372 + 0.314155i \(0.898279\pi\)
\(702\) 8.56603i 0.323304i
\(703\) −6.48098 + 3.57633i −0.244435 + 0.134884i
\(704\) −1.09492 −0.0412665
\(705\) 0 0
\(706\) −15.5633 26.9564i −0.585732 1.01452i
\(707\) −8.84859 5.10873i −0.332785 0.192134i
\(708\) 1.80261 1.04074i 0.0677463 0.0391134i
\(709\) −14.4238 + 24.9828i −0.541697 + 0.938247i 0.457109 + 0.889410i \(0.348885\pi\)
−0.998807 + 0.0488369i \(0.984449\pi\)
\(710\) 0 0
\(711\) 4.19070 0.157164
\(712\) 25.8687 + 14.9353i 0.969470 + 0.559724i
\(713\) 30.5287 + 17.6257i 1.14331 + 0.660089i
\(714\) −1.30917 −0.0489946
\(715\) 0 0
\(716\) −5.80905 + 10.0616i −0.217095 + 0.376019i
\(717\) −0.990386 + 0.571800i −0.0369866 + 0.0213542i
\(718\) 16.5262 + 9.54143i 0.616754 + 0.356083i
\(719\) −10.0278 17.3686i −0.373972 0.647739i 0.616200 0.787589i \(-0.288671\pi\)
−0.990173 + 0.139851i \(0.955338\pi\)
\(720\) 0 0
\(721\) 4.06535 0.151402
\(722\) −0.807171 + 20.8357i −0.0300398 + 0.775424i
\(723\) 9.02026i 0.335467i
\(724\) 2.16117 + 3.74326i 0.0803193 + 0.139117i
\(725\) 0 0
\(726\) −2.28587 + 3.95923i −0.0848364 + 0.146941i
\(727\) −0.675951 + 0.390261i −0.0250697 + 0.0144740i −0.512482 0.858698i \(-0.671274\pi\)
0.487413 + 0.873172i \(0.337941\pi\)
\(728\) −17.6736 10.2039i −0.655028 0.378180i
\(729\) 19.5373 0.723604
\(730\) 0 0
\(731\) 7.06674 12.2399i 0.261373 0.452711i
\(732\) −2.39834 1.38468i −0.0886452 0.0511794i
\(733\) 26.8391i 0.991326i 0.868515 + 0.495663i \(0.165075\pi\)
−0.868515 + 0.495663i \(0.834925\pi\)
\(734\) −28.3192 −1.04528
\(735\) 0 0
\(736\) −11.2426 19.4728i −0.414409 0.717777i
\(737\) 0.343774 + 0.198478i 0.0126631 + 0.00731103i
\(738\) 28.8623 16.6636i 1.06243 0.613397i
\(739\) 10.3265 + 17.8861i 0.379867 + 0.657949i 0.991043 0.133546i \(-0.0426363\pi\)
−0.611175 + 0.791495i \(0.709303\pi\)
\(740\) 0 0
\(741\) −2.80699 5.08680i −0.103117 0.186868i
\(742\) 0.550227i 0.0201995i
\(743\) −1.27580 + 0.736585i −0.0468047 + 0.0270227i −0.523220 0.852198i \(-0.675269\pi\)
0.476415 + 0.879220i \(0.341936\pi\)
\(744\) 3.82003 + 6.61649i 0.140049 + 0.242572i
\(745\) 0 0
\(746\) −14.8518 25.7240i −0.543762 0.941824i
\(747\) 18.4208 + 10.6352i 0.673980 + 0.389123i
\(748\) 0.177639i 0.00649514i
\(749\) 1.89482 0.0692352
\(750\) 0 0
\(751\) −7.78121 + 13.4775i −0.283940 + 0.491799i −0.972352 0.233521i \(-0.924975\pi\)
0.688411 + 0.725321i \(0.258308\pi\)
\(752\) 19.7378i 0.719764i
\(753\) 6.52071i 0.237628i
\(754\) 9.58356 16.5992i 0.349013 0.604508i
\(755\) 0 0
\(756\) 1.67293 2.89760i 0.0608438 0.105385i
\(757\) 17.4726 10.0878i 0.635052 0.366647i −0.147654 0.989039i \(-0.547172\pi\)
0.782706 + 0.622392i \(0.213839\pi\)
\(758\) −11.7878 + 6.80568i −0.428152 + 0.247193i
\(759\) 0.273767 0.00993713
\(760\) 0 0
\(761\) −15.1076 −0.547649 −0.273825 0.961780i \(-0.588289\pi\)
−0.273825 + 0.961780i \(0.588289\pi\)
\(762\) −6.75607 + 3.90062i −0.244747 + 0.141305i
\(763\) −26.6621 + 15.3934i −0.965234 + 0.557278i
\(764\) −8.14556 + 14.1085i −0.294696 + 0.510428i
\(765\) 0 0
\(766\) 2.94082 5.09364i 0.106256 0.184041i
\(767\) 24.2331i 0.875005i
\(768\) 5.94509i 0.214525i
\(769\) 25.8290 44.7372i 0.931418 1.61326i 0.150518 0.988607i \(-0.451906\pi\)
0.780900 0.624656i \(-0.214761\pi\)
\(770\) 0 0
\(771\) 7.41327 0.266982
\(772\) 8.77063i 0.315662i
\(773\) 26.1157 + 15.0779i 0.939316 + 0.542314i 0.889746 0.456457i \(-0.150882\pi\)
0.0495699 + 0.998771i \(0.484215\pi\)
\(774\) −13.3335 23.0943i −0.479262 0.830107i
\(775\) 0 0
\(776\) 26.7976 + 46.4148i 0.961978 + 1.66620i
\(777\) 1.05610 0.609739i 0.0378874 0.0218743i
\(778\) 9.40431i 0.337161i
\(779\) −23.9462 + 39.6816i −0.857962 + 1.42174i
\(780\) 0 0
\(781\) −0.0892652 0.154612i −0.00319416 0.00553244i
\(782\) −8.47816 + 4.89487i −0.303178 + 0.175040i
\(783\) 9.56245 + 5.52088i 0.341734 + 0.197300i
\(784\) 3.03318 + 5.25363i 0.108328 + 0.187630i
\(785\) 0 0
\(786\) −1.20161 −0.0428601
\(787\) 43.0969i 1.53624i 0.640307 + 0.768119i \(0.278807\pi\)
−0.640307 + 0.768119i \(0.721193\pi\)
\(788\) 13.6796 + 7.89791i 0.487315 + 0.281351i
\(789\) −1.67165 + 2.89538i −0.0595123 + 0.103078i
\(790\) 0 0
\(791\) 1.59588 0.0567428
\(792\) −1.01991 0.588848i −0.0362411 0.0209238i
\(793\) −27.9221 + 16.1208i −0.991542 + 0.572467i
\(794\) −5.84086 + 10.1167i −0.207284 + 0.359027i
\(795\) 0 0
\(796\) 8.35514 + 14.4715i 0.296140 + 0.512929i
\(797\) 50.5062i 1.78902i −0.447048 0.894510i \(-0.647525\pi\)
0.447048 0.894510i \(-0.352475\pi\)
\(798\) 0.0665010 3.43450i 0.00235411 0.121580i
\(799\) −18.4652 −0.653253
\(800\) 0 0
\(801\) 13.9036 + 24.0818i 0.491261 + 0.850889i
\(802\) −7.27261 4.19885i −0.256805 0.148266i
\(803\) 0.738212 0.426207i 0.0260509 0.0150405i
\(804\) −0.445703 + 0.771981i −0.0157187 + 0.0272257i
\(805\) 0 0
\(806\) 25.3142 0.891656
\(807\) 0.0947307 + 0.0546928i 0.00333468 + 0.00192528i
\(808\) −14.3406 8.27955i −0.504501 0.291274i
\(809\) 30.0872 1.05781 0.528905 0.848681i \(-0.322603\pi\)
0.528905 + 0.848681i \(0.322603\pi\)
\(810\) 0 0
\(811\) −11.4755 + 19.8761i −0.402958 + 0.697944i −0.994081 0.108637i \(-0.965351\pi\)
0.591123 + 0.806581i \(0.298685\pi\)
\(812\) −6.48359 + 3.74330i −0.227529 + 0.131364i
\(813\) 8.17051 + 4.71725i 0.286552 + 0.165441i
\(814\) −0.125238 0.216918i −0.00438958 0.00760298i
\(815\) 0 0
\(816\) −1.11899 −0.0391723
\(817\) 31.7514 + 19.1607i 1.11084 + 0.670347i
\(818\) 19.4123i 0.678734i
\(819\) −9.49903 16.4528i −0.331923 0.574907i
\(820\) 0 0
\(821\) 19.0403 32.9788i 0.664513 1.15097i −0.314905 0.949123i \(-0.601973\pi\)
0.979417 0.201846i \(-0.0646941\pi\)
\(822\) 6.78921 3.91975i 0.236801 0.136717i
\(823\) 46.5862 + 26.8966i 1.62389 + 0.937556i 0.985865 + 0.167544i \(0.0535836\pi\)
0.638030 + 0.770012i \(0.279750\pi\)
\(824\) 6.58858 0.229524
\(825\) 0 0
\(826\) 7.16400 12.4084i 0.249267 0.431744i
\(827\) −28.0672 16.2046i −0.975993 0.563490i −0.0749347 0.997188i \(-0.523875\pi\)
−0.901058 + 0.433699i \(0.857208\pi\)
\(828\) 12.2024i 0.424064i
\(829\) 18.5305 0.643592 0.321796 0.946809i \(-0.395713\pi\)
0.321796 + 0.946809i \(0.395713\pi\)
\(830\) 0 0
\(831\) −0.835456 1.44705i −0.0289817 0.0501977i
\(832\) −24.7904 14.3128i −0.859454 0.496206i
\(833\) −4.91491 + 2.83763i −0.170292 + 0.0983179i
\(834\) 3.78402 + 6.55411i 0.131030 + 0.226950i
\(835\) 0 0
\(836\) 0.466021 + 0.00902339i 0.0161177 + 0.000312081i
\(837\) 14.5830i 0.504062i
\(838\) −1.12844 + 0.651507i −0.0389814 + 0.0225059i
\(839\) 0.413304 + 0.715864i 0.0142688 + 0.0247144i 0.873072 0.487592i \(-0.162125\pi\)
−0.858803 + 0.512306i \(0.828791\pi\)
\(840\) 0 0
\(841\) 2.14661 + 3.71803i 0.0740209 + 0.128208i
\(842\) −31.7126 18.3093i −1.09289 0.630979i
\(843\) 12.4123i 0.427504i
\(844\) −10.2045 −0.351253
\(845\) 0 0
\(846\) −17.4201 + 30.1725i −0.598914 + 1.03735i
\(847\) 20.7895i 0.714337i
\(848\) 0.470294i 0.0161500i
\(849\) 0.252053 0.436569i 0.00865044 0.0149830i
\(850\) 0 0
\(851\) 4.55951 7.89730i 0.156298 0.270716i
\(852\) 0.347197 0.200454i 0.0118948 0.00686745i
\(853\) 6.36475 3.67469i 0.217925 0.125819i −0.387064 0.922053i \(-0.626511\pi\)
0.604989 + 0.796234i \(0.293177\pi\)
\(854\) −19.0631 −0.652327
\(855\) 0 0
\(856\) 3.07087 0.104960
\(857\) −39.2739 + 22.6748i −1.34157 + 0.774556i −0.987038 0.160488i \(-0.948693\pi\)
−0.354532 + 0.935044i \(0.615360\pi\)
\(858\) 0.170255 0.0982968i 0.00581241 0.00335580i
\(859\) 14.8143 25.6590i 0.505456 0.875475i −0.494524 0.869164i \(-0.664658\pi\)
0.999980 0.00631148i \(-0.00200902\pi\)
\(860\) 0 0
\(861\) 3.81771 6.61247i 0.130107 0.225352i
\(862\) 6.77775i 0.230851i
\(863\) 41.0807i 1.39840i −0.714925 0.699201i \(-0.753539\pi\)
0.714925 0.699201i \(-0.246461\pi\)
\(864\) 4.65090 8.05559i 0.158227 0.274057i
\(865\) 0 0
\(866\) −20.3632 −0.691970
\(867\) 5.40183i 0.183456i
\(868\) −8.56295 4.94382i −0.290645 0.167804i
\(869\) −0.0986010 0.170782i −0.00334481 0.00579338i
\(870\) 0 0
\(871\) 5.18898 + 8.98758i 0.175822 + 0.304533i
\(872\) −43.2104 + 24.9475i −1.46329 + 0.844831i
\(873\) 49.8931i 1.68863i
\(874\) −12.4106 22.4903i −0.419794 0.760746i
\(875\) 0 0
\(876\) 0.957093 + 1.65773i 0.0323372 + 0.0560096i
\(877\) 47.3116 27.3154i 1.59760 0.922374i 0.605650 0.795731i \(-0.292913\pi\)
0.991948 0.126643i \(-0.0404204\pi\)
\(878\) −0.216039 0.124730i −0.00729097 0.00420944i
\(879\) 1.46492 + 2.53732i 0.0494105 + 0.0855815i
\(880\) 0 0
\(881\) −15.4805 −0.521552 −0.260776 0.965399i \(-0.583978\pi\)
−0.260776 + 0.965399i \(0.583978\pi\)
\(882\) 10.7080i 0.360558i
\(883\) −39.2738 22.6747i −1.32167 0.763066i −0.337674 0.941263i \(-0.609640\pi\)
−0.983995 + 0.178197i \(0.942973\pi\)
\(884\) 2.32209 4.02198i 0.0781004 0.135274i
\(885\) 0 0
\(886\) −38.3913 −1.28978
\(887\) 26.9680 + 15.5700i 0.905496 + 0.522788i 0.878979 0.476860i \(-0.158225\pi\)
0.0265165 + 0.999648i \(0.491559\pi\)
\(888\) 1.71158 0.988184i 0.0574370 0.0331613i
\(889\) 17.7377 30.7227i 0.594905 1.03041i
\(890\) 0 0
\(891\) −0.519164 0.899218i −0.0173926 0.0301249i
\(892\) 16.2264i 0.543301i
\(893\) 0.937963 48.4419i 0.0313877 1.62105i
\(894\) −9.26438 −0.309847
\(895\) 0 0
\(896\) −0.535663 0.927795i −0.0178952 0.0309955i
\(897\) 6.19844 + 3.57867i 0.206960 + 0.119488i
\(898\) 16.1103 9.30127i 0.537606 0.310387i
\(899\) 16.3153 28.2589i 0.544145 0.942486i
\(900\) 0 0
\(901\) 0.439972 0.0146576
\(902\) −1.35817 0.784142i −0.0452222 0.0261091i
\(903\) −5.29100 3.05476i −0.176073 0.101656i
\(904\) 2.58638 0.0860218
\(905\) 0 0
\(906\) 0.694135 1.20228i 0.0230611 0.0399430i
\(907\) 37.7080 21.7707i 1.25207 0.722886i 0.280554 0.959838i \(-0.409482\pi\)
0.971521 + 0.236952i \(0.0761486\pi\)
\(908\) −17.5134 10.1113i −0.581201 0.335557i
\(909\) −7.70764 13.3500i −0.255646 0.442792i
\(910\) 0 0
\(911\) 5.72789 0.189774 0.0948868 0.995488i \(-0.469751\pi\)
0.0948868 + 0.995488i \(0.469751\pi\)
\(912\) 0.0568401 2.93556i 0.00188217 0.0972060i
\(913\) 1.00093i 0.0331258i
\(914\) 0.879275 + 1.52295i 0.0290838 + 0.0503747i
\(915\) 0 0
\(916\) 0.881369 1.52658i 0.0291212 0.0504395i
\(917\) 4.73216 2.73211i 0.156270 0.0902223i
\(918\) −3.50728 2.02493i −0.115758 0.0668327i
\(919\) −7.93860 −0.261870 −0.130935 0.991391i \(-0.541798\pi\)
−0.130935 + 0.991391i \(0.541798\pi\)
\(920\) 0 0
\(921\) −1.72597 + 2.98947i −0.0568728 + 0.0985065i
\(922\) 8.30812 + 4.79669i 0.273613 + 0.157971i
\(923\) 4.66747i 0.153632i
\(924\) −0.0767887 −0.00252616
\(925\) 0 0
\(926\) −11.6266 20.1378i −0.382073 0.661771i
\(927\) 5.31174 + 3.06674i 0.174461 + 0.100725i
\(928\) −18.0250 + 10.4067i −0.591700 + 0.341618i
\(929\) −14.4784 25.0772i −0.475019 0.822758i 0.524571 0.851366i \(-0.324226\pi\)
−0.999591 + 0.0286089i \(0.990892\pi\)
\(930\) 0 0
\(931\) −7.19459 13.0380i −0.235793 0.427302i
\(932\) 11.2642i 0.368972i
\(933\) −4.09224 + 2.36265i −0.133974 + 0.0773498i
\(934\) 11.2222 + 19.4374i 0.367201 + 0.636011i
\(935\) 0 0
\(936\) −15.3948 26.6645i −0.503193 0.871556i
\(937\) 12.7146 + 7.34080i 0.415369 + 0.239813i 0.693094 0.720847i \(-0.256247\pi\)
−0.277725 + 0.960661i \(0.589580\pi\)
\(938\) 6.13606i 0.200349i
\(939\) 0.775939 0.0253218
\(940\) 0 0
\(941\) 0.0773773 0.134021i 0.00252243 0.00436897i −0.864761 0.502183i \(-0.832530\pi\)
0.867284 + 0.497814i \(0.165864\pi\)
\(942\) 3.02352i 0.0985114i
\(943\) 57.0961i 1.85931i
\(944\) 6.12326 10.6058i 0.199295 0.345189i
\(945\) 0 0
\(946\) −0.627435 + 1.08675i −0.0203997 + 0.0353332i
\(947\) −6.51084 + 3.75904i −0.211574 + 0.122152i −0.602043 0.798464i \(-0.705646\pi\)
0.390469 + 0.920616i \(0.372313\pi\)
\(948\) 0.383509 0.221419i 0.0124558 0.00719135i
\(949\) 22.2854 0.723415
\(950\) 0 0
\(951\) −8.94137 −0.289944
\(952\) 8.35576 4.82420i 0.270812 0.156353i
\(953\) −19.6365 + 11.3372i −0.636090 + 0.367247i −0.783107 0.621887i \(-0.786366\pi\)
0.147017 + 0.989134i \(0.453033\pi\)
\(954\) 0.415069 0.718920i 0.0134384 0.0232759i
\(955\) 0 0
\(956\) 1.19931 2.07727i 0.0387886 0.0671838i
\(957\) 0.253413i 0.00819167i
\(958\) 25.8437i 0.834973i
\(959\) −17.8247 + 30.8733i −0.575590 + 0.996952i
\(960\) 0 0
\(961\) 12.0955 0.390177
\(962\) 6.54840i 0.211129i
\(963\) 2.47575 + 1.42937i 0.0797799 + 0.0460609i
\(964\) 9.45972 + 16.3847i 0.304677 + 0.527716i
\(965\) 0 0
\(966\) 2.11592 + 3.66488i 0.0680786 + 0.117916i
\(967\) 24.9714 14.4172i 0.803025 0.463627i −0.0415030 0.999138i \(-0.513215\pi\)
0.844528 + 0.535512i \(0.179881\pi\)
\(968\) 33.6929i 1.08293i
\(969\) 2.74629 + 0.0531755i 0.0882236 + 0.00170824i
\(970\) 0 0
\(971\) −13.1831 22.8338i −0.423065 0.732770i 0.573173 0.819435i \(-0.305712\pi\)
−0.996238 + 0.0866647i \(0.972379\pi\)
\(972\) 6.61120 3.81698i 0.212054 0.122430i
\(973\) −29.8043 17.2075i −0.955481 0.551647i
\(974\) 19.7754 + 34.2520i 0.633645 + 1.09750i
\(975\) 0 0
\(976\) −16.2938 −0.521551
\(977\) 4.59218i 0.146917i 0.997298 + 0.0734585i \(0.0234036\pi\)
−0.997298 + 0.0734585i \(0.976596\pi\)
\(978\) 7.13052 + 4.11681i 0.228009 + 0.131641i
\(979\) 0.654264 1.13322i 0.0209104 0.0362178i
\(980\) 0 0
\(981\) −46.4486 −1.48299
\(982\) −19.0647 11.0070i −0.608379 0.351248i
\(983\) −5.98833 + 3.45737i −0.190998 + 0.110273i −0.592450 0.805607i \(-0.701839\pi\)
0.401452 + 0.915880i \(0.368506\pi\)
\(984\) 6.18724 10.7166i 0.197242 0.341633i
\(985\) 0 0
\(986\) 4.53094 + 7.84781i 0.144294 + 0.249925i
\(987\) 7.98203i 0.254071i
\(988\) 10.4333 + 6.29609i 0.331929 + 0.200305i
\(989\) −45.6857 −1.45272
\(990\) 0 0
\(991\) 19.0035 + 32.9150i 0.603666 + 1.04558i 0.992261 + 0.124172i \(0.0396274\pi\)
−0.388594 + 0.921409i \(0.627039\pi\)
\(992\) −23.8058 13.7443i −0.755835 0.436382i
\(993\) −6.14893 + 3.55009i −0.195130 + 0.112659i
\(994\) 1.37984 2.38996i 0.0437659 0.0758048i
\(995\) 0 0
\(996\) 2.24768 0.0712205
\(997\) −14.0526 8.11326i −0.445050 0.256950i 0.260688 0.965423i \(-0.416051\pi\)
−0.705737 + 0.708474i \(0.749384\pi\)
\(998\) −35.0443 20.2329i −1.10931 0.640460i
\(999\) 3.77239 0.119353
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.j.c.349.5 16
5.2 odd 4 475.2.e.e.26.3 8
5.3 odd 4 95.2.e.c.26.2 yes 8
5.4 even 2 inner 475.2.j.c.349.4 16
15.8 even 4 855.2.k.h.406.3 8
19.11 even 3 inner 475.2.j.c.49.4 16
20.3 even 4 1520.2.q.o.881.2 8
95.7 odd 12 9025.2.a.bg.1.2 4
95.12 even 12 9025.2.a.bp.1.3 4
95.49 even 6 inner 475.2.j.c.49.5 16
95.68 odd 12 95.2.e.c.11.2 8
95.83 odd 12 1805.2.a.o.1.3 4
95.87 odd 12 475.2.e.e.201.3 8
95.88 even 12 1805.2.a.i.1.2 4
285.68 even 12 855.2.k.h.676.3 8
380.163 even 12 1520.2.q.o.961.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.c.11.2 8 95.68 odd 12
95.2.e.c.26.2 yes 8 5.3 odd 4
475.2.e.e.26.3 8 5.2 odd 4
475.2.e.e.201.3 8 95.87 odd 12
475.2.j.c.49.4 16 19.11 even 3 inner
475.2.j.c.49.5 16 95.49 even 6 inner
475.2.j.c.349.4 16 5.4 even 2 inner
475.2.j.c.349.5 16 1.1 even 1 trivial
855.2.k.h.406.3 8 15.8 even 4
855.2.k.h.676.3 8 285.68 even 12
1520.2.q.o.881.2 8 20.3 even 4
1520.2.q.o.961.2 8 380.163 even 12
1805.2.a.i.1.2 4 95.88 even 12
1805.2.a.o.1.3 4 95.83 odd 12
9025.2.a.bg.1.2 4 95.7 odd 12
9025.2.a.bp.1.3 4 95.12 even 12