Defining parameters
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.j (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 95 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(100\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(475, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 64 | 48 |
Cusp forms | 88 | 56 | 32 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(475, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
475.2.j.a | $4$ | $3.793$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_1 q^{3}-2\beta_{2} q^{4}+2\beta_{3} q^{7}+\beta_{2} q^{9}+\cdots\) |
475.2.j.b | $12$ | $3.793$ | 12.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{11}q^{3}+(2-\beta _{2}+3\beta _{3}+\cdots)q^{4}+\cdots\) |
475.2.j.c | $16$ | $3.793$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{14}q^{2}+(\beta _{7}+\beta _{13})q^{3}+(-\beta _{4}-\beta _{6}+\cdots)q^{4}+\cdots\) |
475.2.j.d | $24$ | $3.793$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(475, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(475, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)